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Abstract

Polytomous attributes extend the traditional dichotomous attributes (i.e., two
levels, typically defined as 0 and 1) in diagnostic assessments to multiple values
(multiple levels can be 0, 1, ---). They can describe not only whether examinees
have mastered knowledge attributes but also the degree of mastery on these
attributes, thereby enabling diagnostic assessments to provide richer details re-
garding knowledge mastery for test takers. This paper extends the statistic
applicable to Q-matrices with dichotomous attributes (S statistic) to Q-matrix
validation and estimation under polytomous attributes. Two estimation algo-
rithms are designed under two common conditions: a joint estimation algorithm
and an online estimation algorithm. Simulation study results indicate that the
joint estimation algorithm is suitable for validating expert-defined initial Q-
matrices; when the initial Q-matrix contains few errors, the joint estimation
algorithm has a high probability of recovering the correct Q-matrix. The online
estimation algorithm is suitable for the online calibration of attribute vectors
and item parameters for “new items” ; based on a certain number of “base
items” , the online estimation algorithm can also achieve satisfactory success
rates for estimating new items. Empirical data analysis further demonstrates
the application of this method.
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Abstract

Polytomous attributes extend the traditional binary definition of attributes (i.e.,
two levels, typically defined as 0 and 1) in cognitive diagnostic assessment to
multiple levels (0, 1, ---). This extension not only describes whether examinees
have mastered knowledge attributes but also characterizes the degree of mastery,
thereby providing richer diagnostic information about knowledge acquisition.
This study extends the S statistic—originally developed for binary-attribute Q-
matrix validation and estimation—to polytomous-attribute contexts. Under two
common practical conditions, we propose two estimation algorithms: a joint
estimation algorithm and an online estimation algorithm. Simulation results
demonstrate that the joint estimation algorithm is suitable for validating an
expert-defined initial Q-matrix; when the initial Q-matrix contains few errors,
the algorithm can recover the correct Q-matrix with high probability. The
online estimation algorithm is appropriate for calibrating attribute vectors and
item parameters for “new items” incrementally. Based on a sufficient number
of “anchor items,” this algorithm achieves satisfactory success rates for new
item estimation. An empirical data analysis further illustrates the practical
application of these methods.

Keywords: polytomous attributes, Q-matrix, pG-DINA model, S statistic

1 Introduction

With societal development, educational and psychological assessments have
evolved beyond overall evaluation. Cognitive Diagnosis Assessment (CDA)
provides detailed profiles of students’ knowledge mastery and has attracted
widespread attention (Leighton & Gierl, 2007; Tatsuoka, 2009; Rupp et al.,
2010; Luo, 2019; von Davier & Lee, 2019). Traditional assessments based on
Classical Test Theory (CTT) or Item Response Theory (IRT) only provide
overall scores or ability estimates. In contrast, CDA offers knowledge states
(KS) that can guide student learning, inform teaching practices, and evaluate
instructional effectiveness.

In conventional CDA, knowledge mastery is typically described using binary
values (0 or 1), where 1 indicates mastery and 0 indicates non-mastery. While
this dichotomous approach is simple and interpretable, it is relatively coarse
and cannot accurately characterize the degree of mastery. Two students both
coded as 0 on an attribute may differ substantially in their actual knowledge
level. Consequently, many researchers have considered extending attributes to
multiple levels (Karelitz, 2004; von Davier, 2005; Chen & de la Torre, 2013; Sun
et al., 2013; Cai & Tu, 2015; Tu & Cai, 2015; Zhan et al., 2016; Zhan et al., 2020;
Shang et al., 2021). In practice, many educational contexts require multi-level
assessment of knowledge attributes. For example, the Full-time Compulsory Ed-
ucation Mathematics Curriculum Standards (Revised Draft) uses four ordered
categorical terms— “know (recognize),” “understand,” “master,” and “apply” —
to describe different levels of knowledge and skill objectives. Polytomous at-

» «

chinarxiv.org/items/chinaxiv-202205.00168 Machine Translation


https://chinarxiv.org/items/chinaxiv-202205.00168

ChinaRxiv [$X]

tributes enable finer-grained classification of students, making diagnostic tests
with polytomous attributes both practically valuable and theoretically signifi-
cant.

Researchers have developed diagnostic models specifically for polytomous at-
tributes, including the OCAC-DINA model based on ordered-category attribute
coding (Karelitz, 2004), polytomous extensions of the RRUM (Templin, 2004),
LCDM (Templin & Bradshaw, 2004), and GDM (Haberman, von Davier, & Lee,
2008; von Davier, 2005). Zhan et al. (2020) developed higher-order diagnostic
models for polytomous attributes, while Shang et al. (2021) defined continuous
polytomous attributes and constructed corresponding diagnostic models draw-
ing on multidimensional IRT. As in traditional CDA, the Q-matrix plays a
critical role in polytomous-attribute CDA. Its accuracy directly affects model
parameter identifiability, examinee classification, and overall test reliability and
validity. Moreover, Q-matrices defined solely by experts are prone to errors
and inconsistencies (de la Torre, 2008; Tu et al., 2012; DeCarlo, 2012; Liu et
al., 2012; Yu et al., 2015; Yu & Cheng, 2020). Existing studies on polytomous-
attribute Q-matrices have primarily relied on expert definition or simulation,
typically assuming correctness without validating appropriateness. Objective
methods for validating or estimating polytomous-attribute Q-matrices remain
underexplored. This study extends objective Q-matrix validation and estima-
tion methods from binary to polytomous attributes, aiming to advance the
development of polytomous-attribute CDA.

2 Polytomous-Attribute Q-Matrix and Diagnostic Models

Before presenting estimation algorithms for polytomous-attribute Q-matrices,
we first introduce the Q-matrix structure and corresponding diagnostic models.

2.1 Polytomous-Attribute Q-Matrix

For clarity, we define a binary attribute as one taking only values 0 and 1, and
a binary-attribute Q-matriz (BQM) as a matrix composed solely of binary at-
tributes, denoted by Q. The corresponding CDA is denoted as BCDA. A poly-
tomous attribute can take values 0,1, 2, ..., and a polytomous-attribute Q-matriz
(PQM) containing such attributes is denoted by Q,, with the corresponding
CDA denoted as PCDA. Q,, is a J x K matrix where J and K represent the
number of items and attributes, respectively. Unlike binary attributes, each
element ¢, in Q, has L + 1 possible levels with value space {0,1,..., L}.

Consider a simple polytomous-attribute Q-matrix example (Karelitz, 2004) with
4 items assessing 2 attributes, where both attributes have 5 levels: {0, 1,2,3,4}.
If attributes are dichotomized using 0 as the cutoff point (traditional binary
approach), the corresponding binary Q-matrix would be as shown in Equation
(2). For a test assessing K attributes, binary attributes can classify examinees
into at most 2% groups, whereas polytomous attributes (with L + 1 levels per
attribute) can classify examinees into (L+1)¥ groups, where (L+1)% > 2K For
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example, with 2 attributes, binary classification yields 4 groups, while 5-level
attributes yield 25 groups.

2.2 Diagnostic Models for Polytomous Attributes

Existing polytomous-attribute diagnostic models include OCAC-DINA (Kare-
litz, 2004), polytomous extensions of LCDM (Templin & Bradshaw, 2004), GDM
(Haberman et al., 2008; von Davier, 2005), G-DINA framework extensions (Chen
& de la Torre, 2013; Cai & Tu, 2015), higher-order models (Zhan et al., 2020),
and continuous polytomous-attribute models (Shang et al., 2021). For brevity,
we focus on the pG-DINA and p-DINA models relevant to this study.

The pG-DINA (polytomous generalized deterministic inputs, noisy, “and”gate)
model is the polytomous extension of the G-DINA model (Chen & de la Torre,
2013). Assuming all attributes have the same number of levels L and following
the notation of Chen and de la Torre (2013) and de la Torre (2011), let K7
denote the number of attributes measured by item j. For simplicity, assume
item j measures the first K7 attributes. The required attribute vector can be
expressed as a simplified vector q; = (qjl,qj27...,qu;), where each element
ranges from 0 to L. This simplification reduces the number of attribute vectors
to consider from (L 4 1)¥ to (L + 1)%7, improving computational efficiency.

Under the p-DIN A model, each item classifies examinees into two groups: those
who have mastered the item (having mastered all required attributes at levels
no lower than those required) and those who have not. For item j, if 4, > 0,
the examinee’ s mastery status on attribute k can be compressed into a binary
state: o, =1 (@i > gqjj,)- This yields a compressed attribute mastery vector

o = (A, e, K;), reducing the number of examinee parameters from (L+1)%

to 255, See Chen and de la Torre (2013, Table 2) for details.

In the saturated pG-DINA model, the probability of a correct response for an

examinee with attribute vector ozj is:

K K —1
P(X;=1]aj) = J0+Z5ﬂc%k+ Z Z O s -+ 012 ks HO‘
=k+1 k=1

where d, is the intercept (probability of correct response when no attributes
are mastered), 45, are main effects, and higher-order terms represent interaction
effects. The pG-DINA model reduces to p-DINA when only intercept and K7-
order interaction are considered, and to pA-CDM when only intercept and main
effects are retained. Other models like p-DINO and pR-RUM can be obtained
through parameter constraints. Due to its relative simplicity, this study uses the
p-DINA model for polytomous-attribute Q-matrix estimation and validation.
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3 Estimation Methods for Polytomous-Attribute Q-Matrix

Before introducing estimation methods, we briefly review binary-attribute Q-
matrix estimation. Numerous studies have investigated Q-matrix validation and
estimation in BCDA, including methods by de la Torre (2008), Tu et al. (2012),
DeCarlo (2012), Liu et al. (2012), Xiang (2013), Chung (2014), Yu et al. (2015),
de la Torre and Chiu (2016), Wang et al. (2020), and Yu and Cheng (2020).
Among these, the S-statistic method is entirely data-driven, model-independent,
and theoretically rigorous (Liu et al., 2013; Xu, 2013), offering excellent gener-
alizability. This study extends the S statistic to polytomous-attribute Q-matrix
estimation.

We consider two practical scenarios: (1) an expert-defined Q-matrix Q, ex-
ists but may contain errors (i.e., some item attribute vectors are misspecified),
requiring validation; and (2) only a small set of items have defined attribute
vectors, with many “new items” requiring attribute definition. We denote the
binary-attribute S statistic as S;, and its polytomous extension as S,,.

3.1 S-Statistic-Based Estimation for Polytomous-Attribute Q-Matrix

The core of the S statistic is the T-matrix, whose elements describe expected
correct response probabilities for different ability groups on individual items or
item combinations. The T-matrix links expected response distributions to model
structure, reflecting Q-matrix definitions and establishing linear dependence
between attribute and response distributions (Liu et al., 2012, 2013; Qin et al.,
2015).

For a test assessing K attributes each with L+ 1 levels, examinees have (L+1)%
possible attribute mastery patterns. The T-matrix has (L + 1)% columns and
rows corresponding to correct response probabilities on single items, item pairs,
-, and all J items combined, as shown in Equation (4). Row t;, represents
the probability of correctly answering both items 1 and 2; columns represent all
possible examinee classes.

Let 7 denote the population distribution of attribute patterns. Without prior
information, w can be treated as uniform and updated using empirical Bayes
methods (de la Torre, 2009). The expected response distribution 7 on single
items and their combinations is obtained via 7 = T'w, where 7, represents the
expected probability of correctly answering item 1, calculated as in Equation
(6). The observed response distribution 7 is derived from response data, with
item parameters § estimated via EM algorithm (de la Torre, 2011) and examinee
knowledge states & via MAP algorithm (de la Torre, 2009).

When the Q-matrix is correctly specified and parameter estimation errors are
small, the law of large numbers ensures that as sample size N — oo, T converges
in probability to 7 (Liu et al., 2012, 2013; Xu, 2013). With guessing and slipping
present, fewer Q-matrix errors yield smaller distance between 7 and 7. Therefore,
the objective function for polytomous-attribute Q-matrix estimation is:
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Q= inf |7 — T
Q argéréQIIT Q)

where Q is a candidate Q-matrix, Q is the estimate, and “arg inf” denotes the
Q-matrix minimizing the function across all possible Q-matrices.

3.2 Joint Estimation Algorithm (JE)

The JE algorithm starts from an expert-defined initial Q-matrix Q, that may
contain errors. Using Q, as input, the algorithm produces estimates Q, ¢, and

a. Comparing Q with the true Q assesses estimation success. The algorithm
proceeds as follows:

1. Estimate item parameters § and examinee parameters & using EM and
MAP algorithms (Chen & de la Torre, 2013) based on Q, and response
data X, then compute 7.

2. For each item j, while fixing other items, iterate through all possible at-

tribute vectors q; (from space 9; with (L + 1)%5 possibilities) to obtain

7, estimate parameters, and compute the corresponding 7. Select the
attribute vector minimizing the distance as item j° s estimate:

q. — inf |5 = T(O*
q; argqjkrégj\lT Q)7

3. After processing all items, one iteration completes, yielding Q. If Q)
matches the true Q, proceed to step 5; otherwise, increment iteration
count and continue.

4. Set Q, = Q'Y and repeat step 2.

5. Terminate and output Q and parameter estimates.

3.3 Online Estimation Algorithm (OE)

Unlike JE, which requires all items to have initial attribute definitions, OE only
needs a small set of anchor items with known attributes. The remaining “new
items” require attribute vector definition. Let Q, denote anchor items and Q,,
denote new items. The algorithm incrementally adds one new item at a time
from Q,, to Q,, estimating its attribute vector before proceeding.

The OE algorithm proceeds as follows:

1. Randomly select one item from Q,, without replacement and add it to Q,,
placing it in the first row.

2. Based on the expanded Q,, estimate item and examinee parameters from
response data, then compute 7.
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3. For the newly added item, iterate through all possible attribute vectors
q;, estimate parameters, and compute 7. Select the attribute vector min-
imizing the distance as the item’ s estimate.

4. If Q,, is not empty, repeat step 1; otherwise proceed to step 5.

5. Terminate and output the estimated Q

When the initial anchor set is correct and sufficiently large, this incremental
approach avoids the “masking effect” (Fung, 1993; Yuan & Zhong, 2008) caused
by introducing multiple erroneous items simultaneously. However, if anchor
items contain errors or are too few, OE may produce incorrect estimates for
some items, necessitating a “second-stage correction” using JE on the full Q-
matrix.

4 Research Design

We evaluate the two algorithms’ performance in recovering correct polytomous-
attribute Q-matrices across various conditions via simulation studies. We as-
sume an expert-defined initial Q-matrix containing few errors. Two error types
are considered: (I) attribute level mis-specification (over- or under-estimation,
excluding changes to/from 0), where the true value should be 2 but is specified
as 1 or 3; and (II) both level mis-specification and inclusion/exclusion of mea-
sured attributes (e.g., incorrectly setting ;1 > 0 when it should be 0, or vice
versa). Error Type II represents general test development scenarios, with Error
Type I as a special case.

Given (L + 1)¥ possible attribute patterns, a sample of 500 examinees would
yield only 2.06 examinees per pattern on average, which is insufficient. There-
fore, the minimum sample size is set to 1,000.

4.1 Joint Estimation Algorithm Conditions

For JE, we manipulate four factors: number of items (15 or 30, following Chen
& de la Torre, 2013), sample size (1,000, 2,000, or 4,000), number of misspecified
items (3, 4, or 5, following Liu et al., 2012), and error type (I or IT). This yields
2 x 3 x 3 x 2 =36 experimental conditions.

4.2 Online Estimation Algorithm Conditions

For OE, we manipulate: number of items (15 or 30), sample size (1,000, 2,000,
or 4,000), and number of anchor items. Following Qin et al. (2015, 2020), for
30-item tests we use 8-15 anchor items (8 levels), and for 15-item tests we use
5-10 anchor items (6 levels). This yields 2 x 3 x 8 +2 x 3 x 6 = 84 conditions.

4.3 Experimental Design Details

Q-matrix: True Q-matrices for 30-item (Q5y) and 15-item (Qq5) tests are
provided in Appendix Tables Al and A2 (Chen & de la Torre, 2013; Yu &
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Cheng, 2020).

Item Parameters: Guessing and slipping parameters are simulated from uni-
form distributions.

Examinee Parameters: Attribute mastery patterns follow a uniform distri-
bution.

Response Data: Generated using the p-DINA model based on true Q-matrices
and parameters.

Initial Q-matrix: For JE, randomly select items from the true Q-matrix and
modify their attribute vectors according to error types I or II (excluding all-
zero vectors or correct values). For OE, randomly select anchor items; new
items’ initial attribute vectors are randomly generated (excluding zero vectors
or correct vectors).

Parameter Estimation: Implemented in MATLAB with 100 replications per
condition.

Evaluation Metrics: We use three criteria: (1) Q-matrix recovery rate—the
proportion of 100 replications where the estimated Q-matrix exactly matches the
true Q-matrix; (2) average iterations; and (3) average execution time. Recovery
rate indicates estimation accuracy, while iterations and time reflect computa-
tional efficiency.

4.4 Study 1: Joint Estimation of Polytomous-Attribute Q-Matrix and
Parameters

JE is suitable when experts have defined attributes for all items but some defi-
nitions are uncertain or disputed. We examine two error conditions.

Error Type I (Level Mis-specification Only): This simpler scenario occurs
when experts disagree on attribute levels. We investigate JE' s performance
when the initial Q-matrix contains only under- or over-estimated attribute levels
(excluding changes to/from 0).

Error Type II (Level and Attribute Inclusion/Exclusion Errors): This
more severe scenario involves both level mis-specification and incorrect inclu-
sion/exclusion of attributes, which may occur in practice. Error Type I is a
special case of Error Type II.

4.5 Study 2: Online Estimation of Polytomous-Attribute Q-Matrix
and Parameters

OE is suitable when only a small set of items is correctly defined and many new
items require attribute definition, such as when developing new test items. New
items’ attribute vectors can be randomly initialized. The algorithm leverages
information from anchor items to define new items incrementally, fixing anchor
attributes while estimating one new item at a time. After all new items are
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processed, JE is applied to the full Q-matrix to improve accuracy and reduce
negative effects from “masking.” Estimation success is determined by comparing
the final Q-matrix to the true Q-matrix.

4.6 Results

JE Algorithm Results: Tables 1-4 present JE results for 30- and 15-item tests
under error types I and II. Performance is influenced by sample size, test length,
and number of misspecified items. Simulations were run on cloud servers with
dual Xeon E5-2697 CPUs, 64GB DDR5 RAM, and 512GB SSD. Despite reduced
search spaces, execution times remain substantial (minimum ~24 hours). Test
length dramatically affects accuracy: reducing items from 30 to 15 decreases
success rates by an average of 61.67%.

Key Findings: Success rates increase with sample size and test length, but
decrease with more misspecified items. For 30-item tests, success rates exceed
80% across conditions; for 15-item tests, maximum success rates are below 60%.
Iterations increase with test length (average <2.5 for 15 items, >3 for 30 items).
Error Type II yields slightly lower success rates and more iterations than Error
Type I due to larger attribute vector search spaces.

OE Algorithm Results: Tables 5-6 show OE performance. Required anchor
item counts vary by sample size: for Qs, 1,000 examinees need 10 anchor items
for 90% success, while 2,000-4,000 need only 8; for 95% success, 1,000-2,000
need $ $13 anchors, while 4,000 need 12. For Q;5, all sample sizes require
$ $9 anchors for 80% success. OE performs better with 30 items than 15 items
because longer tests improve attribute pattern estimation accuracy. Execution
time decreases with more anchor items (e.g., for Qs, with 1,000 examinees: 8
anchors = 176,481.88s; 15 anchors = 23,545.31s), as most time is consumed by
joint estimation iterations (1.78 vs. 0.22 average iterations).

5 Empirical Data Analysis

We applied both algorithms to data from a high school monthly mathematics
exam focusing on probability. The test assessed four attributes: random events,
sample space, classical probability, and frequency-based probability estimation.
Each attribute had five ordered categories: unaware, aware, understand, master,
and apply (coded 0-4). Twenty items were administered to 1,960 examinees.

Using the expert-defined initial Q-matrix (Table 7) as input, JE terminated after
4 iterations (more than in simulations, reflecting real-data complexity). The sug-
gested Q-matrix (Appendix Table A3) modified 6 items involving 7 attributes,
all representing level mis-specifications (Error Type I). Parameter estimation
revealed 76 distinct attribute mastery patterns, indicating non-uniform distri-
bution.

For OE, we selected 5 anchor items (highlighted in Appendix Table A4) with
unanimous expert agreement and JE validation. The remaining 15 items were
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treated as “new” and estimated incrementally. After OE completion, JE was
applied to the full Q-matrix, yielding the suggested Q-matrix in Appendix Table
A4. OE recommended modifying 6 items involving 6 attributes. Except for
item 19, JE and OE produced identical suggestions. For item 19, the initial
vector was (2,0,0,0); JE suggested (3,0,0,0) while OE suggested (0,0,0,2).
After discussion with five practicing teachers, four favored OE’ s suggestion of
changing attribute 4 from level 2 to level 3.

6 Discussion and Future Directions

This study extends S-statistic-based Q-matrix estimation from binary to polyto-
mous attributes, enabling objective validation and estimation. Two algorithms
—JE and OE—address different practical scenarios. Simulations show that de-
spite larger search spaces for polytomous-attribute Q-matrices, both algorithms
achieve high success rates under appropriate conditions.

However, several limitations warrant future research. For JE, we only consid-
ered cases with few errors; performance with more extensive misspecification
and the maximum tolerable error rate require investigation. For OE, we ran-
domly selected anchor items without considering their quality. Future research
should explore optimal anchor item design, such as incorporating reachability
matrices (Chen et al., 2015; Ding et al., 2019; Peng et al., 2016, 2018; Gu et
al., 2018; Gu & Xu, 2021) to facilitate new item estimation. We also limited
error types to two categories; other error patterns need examination. Realistic
testing scenarios often involve multiple solution strategies (Huang et al., 2019)
and attribute hierarchies (Yu et al., 2021); Q-matrix estimation under these
complex conditions merits further study.

A notable limitation of S-statistic-based methods is computational time, which
may hinder practical application. Future work should improve efficiency or de-
velop faster alternatives. Yu and Cheng (2020) showed residual-based statistics
outperform S statistics in binary CDA; extending residual-based methods to
polytomous attributes is promising. Nonparametric methods requiring smaller
samples and offering computational advantages (Liu et al., 2021) and deep learn-
ing approaches (Zhang et al., 2021; Li et al., 2022) also warrant exploration.

Empirical analysis suggests experts more commonly mis-specify attribute levels
(over- or under-estimation) than omit or add attributes. A valuable byproduct
of OE is simultaneous parameter estimation for new items on the same scale
as anchor items. Future research should incorporate attribute relationships and
apply these algorithms to other diagnostic models (Zhan et al., 2020).
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Appendix

Table Al. Q-matrix for 30 items
Table A2. Q-matrix for 15 items
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Table A3. Suggested Q-matrix for probability data from JE algorithm
Table A4. Suggested Q-matrix for probability data from OE algorithm

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.
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