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Abstract

To enhance the solution efficiency for the Multi-Depot Vehicle Routing Prob-
lem (MDVRP), we propose an end-to-end deep reinforcement learning frame-
work. First, MDVRP is formulated as a Markov Decision Process (MDP), en-
compassing definitions of state, action, and reward. Additionally, we propose
an improved Graph Attention Network (GAT) as the encoder to perform fea-
ture embedding encoding on the graph representation of MDVRP, and design
a Transformer-based decoder. An improved REINFORCE algorithm is adopted
to train the model. The model is agnostic to graph size; that is, once training
is completed, it can be applied to solve problem instances with arbitrary num-
bers of depots and customers. Finally, the feasibility and effectiveness of the
proposed framework are validated through both randomly generated instances
and publicly available benchmark instances. Even for MDVRP instances with
100 customer nodes, the trained model requires only 2 milliseconds on average
to obtain solutions superior to those of existing methods.
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Abstract: This paper proposes an end-to-end deep reinforcement learning
framework to improve the efficiency of solving the Multi-Depot Vehicle Routing
Problem (MDVRP). First, the MDVRP is formulated as a Markov Decision Pro-
cess (MDP), including definitions of its state, action, and reward. An improved
Graph Attention Network (GAT) is proposed as the encoder to perform feature
embedding on the graph representation of the MDVRP, and a Transformer-
based decoder is designed. The model is trained using an improved REIN-
FORCE algorithm. The model is not constrained by graph size; once trained,
it can solve problem instances with arbitrary numbers of depots and customers.
Finally, the feasibility and effectiveness of the proposed framework are veri-
fied through randomly generated instances and publicly available benchmark
instances. Even when solving MDVRP with 100 customer nodes, the trained
model requires only 2 milliseconds on average to obtain solutions superior to
existing methods.

Keywords: multi-depot vehicle routing problem; deep reinforcement learning;
graph neural network; REINFORCE algorithm; Transformer model

0 Introduction

With the continuous growth of e-commerce and transportation industries, logis-
tics has developed rapidly, experiencing explosive growth for over a decade in
China and worldwide. For instance, in 2021, major logistics companies such as
Cainiao, JD.com, and SF Express handled over 108.3 billion parcels nationwide.
As the construction of new development patterns accelerates and logistics de-
mand continues to grow, China’ s logistics business volume will maintain rapid
growth in the future. Meanwhile, the high-speed development of the logistics in-
dustry imposes higher requirements on large-scale real-time logistics scheduling
systems. However, transportation and warehousing costs generated by logis-
tics distribution remain high. Given the current state of logistics distribution
and contemporary demands, seeking efficient logistics distribution models has
attracted widespread attention from both academia and industry.

The Multi-Depot Vehicle Routing Problem (MDVRP) has extensive application
scenarios, including transportation, logistics distribution, and express delivery.
Exploring efficient solution methods for this problem holds important theoretical
and practical significance for the development of China’ s supply chain. The
MDVRP is a variant of the Capacitated Vehicle Routing Problem (CVRP).
Since CVRP is already NP-hard, MDVRP has an even larger solution space
and thus also belongs to the NP-hard class.

Traditional methods for solving MDVRP mainly include exact algorithms,
polynomial-time approximation algorithms, and metaheuristic algorithms.
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Exact algorithms can obtain optimal solutions but are difficult to apply to
problems with more than 50 customers due to their NP-hard nature [1].
Polynomial-time approximation algorithms can usually obtain solutions with
quality guarantees, but their optimality guarantees are weak, and they may
not even achieve locally optimal solutions. Metaheuristic algorithms, such
as the wolf pack algorithm [2], ant colony optimization [3], bat algorithm
[4], and variable neighborhood search [5], are widely used due to their high
performance but typically require customization for specific problems and
professional domain knowledge [6], and struggle to find good solutions for
large-scale problems within polynomial time. The above three methods rarely
exploit common features of optimization problems and often repeatedly solve
instances of the same problem type, where the coefficient values in the objective
function or constraints can be considered as sampled from the same underlying
distribution [7]. Despite numerous solution strategies, there remains room
for improvement in solution efficiency and a need for more efficient solution
frameworks. Therefore, introducing learning-based methods to efficiently find
near-optimal solutions is particularly important.

In recent years, increasing research has applied Deep Reinforcement Learn-
ing (DRL) techniques to solve combinatorial optimization problems, achiev-
ing breakthrough progress. Table 1 summarizes existing reinforcement learning
methods for solving routing problems. Reinforcement learning can be further
divided into model-based and model-free methods. Model-free reinforcement
learning can be categorized into Value-based and Policy-based methods or their
combination (Actor-critic). Additionally, routing problems can be classified into
the Traveling Salesman Problem (TSP), CVRP, and MDVRP.

Table 1 Survey of deep/reinforcement learning methods in solving routing prob-
lems

Routing Problem Literature Network Structure RL Method

TSP 8] Transformer Model-free
RL,
Actor-Critic
TSP [9] NN Model-free
RL,
Policy-Based
TSP [10] LSTM+Attention Model-free
hierarchical
RL,
Policy-Based
TSP [11] GAT+Attention Model-free
RL,
Actor-Critic
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Routing Problem Literature Network Structure RL Method

TSP [12] GAT+GRU Model-free
RL,
Actor-Critic
TSP [13] GAT+Attention Model-free
RL,
Actor-Critic
TSP [14] Transformer Model-free
RL,
Policy-Based
TSP [15] LSTM+Attention Model-free
RL,
Policy-Based
TSP [16] LSTM+Attention Model-free
RL,
Actor-Critic
CVRP 8] Transformer Model-free
RL,
Actor-Critic
CVRP [16] LSTM+Attention Model-free
RL,
Actor-Critic
CVRP [17] LSTM+Attention Model-free
RL,
Actor-Critic
CVRP [18] LSTM+Attention Model-free
RL,
Actor-Critic
CVRP [19] GAT+GRU Model-free
RL,
Actor-Critic
CVRP [20] GAT+GRU Model-free
RL,
Actor-Critic
CVRP [13] GAT+Attention Model-free
RL,
Actor-Critic
CVRP [21] GAT+GRU Model-free
RL,
Actor-Critic
MDVRP [22] Transformer Model-free
RL,
Actor-Critic
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Routing Problem Literature Network Structure RL Method
MDVRP [23] Transformer Model-free
RL,
Actor-Critic
MDVRP This paper RE- Model-free
GAT+Transformer RL,

Actor-Critic

Note: In the Network Structure column, LSTM: long short-term memory; NN:
neural networks; GRU: gate recurrent unit; GPN: graph pointer network.

Most DRL applications focus on routing problems such as TSP and VRP.
Vinyals et al. [24] introduced a supervised learning framework using the
sequence-to-sequence Pointer Network (PtrNet) model to solve combinatorial
optimization problems like TSP. This model uses a recurrent architecture
with Softmax attention mechanism (pointer) to select elements from the input
sequence as output. Bello et al. [25] introduced an Actor-Critic style deep
reinforcement learning algorithm to train PtrNet in an unsupervised manner for
solving TSP, and its performance outperformed most previous approximation
algorithms on TSP instances with up to 100 nodes. Nazari et al. [16] extended
Bello’ s framework to solve VRP.

Most combinatorial optimization problems, including VRP, have graph struc-
tures [6] that can be easily modeled using existing graph embedding or graph
network embedding techniques to embed graph information into continuous
node representations. Recent developments in Graph Neural Networks (GNN)
can be used for network design due to their strong capabilities in informa-
tion embedding and belief propagation over graph topologies [6]. However, the
sequence-to-sequence neural network structures used in the above works cannot
fully utilize and extract the graph structure information of the problem, such as
node information containing customer location and demand, and edge informa-
tion containing weight. As a powerful tool for processing non-Euclidean data
and capturing graph structure information, GNN has been extensively studied
in recent years.

In recent years, GNN-based approximate solvers have demonstrated significantly
better algorithmic time complexity than traditional operations research algo-
rithms after training. Li et al. [26] applied Graph Convolutional Network (GCN)
models [27] with guided tree search algorithms to solve graph-based combina-
torial optimization problems such as maximum independent set and minimum
vertex cover. Dai et al. [7] encoded problem instances using GNN, which, com-
pared to sequence-to-sequence models, has node order invariance and better
reflects the combinatorial structure of TSP. They used DQN [28] to train the
structure2vec graph embedding model [29]. Motivated by the Transformer archi-
tecture [30], Kool et al. [8] proposed an attention model to solve various combi-
natorial optimization problems and significantly improved results for small-scale
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routing problems using Rollout baselines in policy gradient algorithms. Nowak
et al. [31] used deep GCN in a supervised learning manner to construct effec-
tive TSP graph representations and output tours through highly parallel beam
search in a non-autoregressive way. Drori et al. [13] developed a new framework
for solving combinatorial optimization problems on graphs using Graph Atten-
tion Networks (GAT) for numerous graph combinatorial optimization problems,
claiming their framework has generalization capabilities from training on small
graphs to testing on large graphs and from training on random graphs to testing
on real-world graphs.

However, most machine learning methods focus on solving single-depot vehicle
routing problems, with limited research on multi-depot vehicle routing prob-
lems. Wang et al. [23] designed a multi-agent reinforcement learning framework
based on multi-head attention mechanism to solve MDVRP and trained it using
policy gradient algorithms. Their experimental results demonstrated that the
proposed multi-agent deep reinforcement learning model, combined with search
strategies, could quickly obtain high-quality solutions. However, [23] did not
verify the performance of their trained model in generalizing to instances of dif-
ferent scales or to real-world instances (standard benchmarks). In contrast, the
encoder-decoder model proposed in this paper is not constrained by problem
scale (i.e., number of depots and customers), meaning the trained model can be
applied to instances with arbitrary numbers of depots and customers and can
provide solutions within milliseconds. This framework possesses strong gener-
alization performance. Its effectiveness is verified through testing on randomly
generated datasets. Additionally, its generalization capability from training on
random instances to testing on real-world instances is validated through VR-
PLIB standard benchmarks.

The above GNN-based learning methods motivate this paper to explore their
potential in solving MDVRP. We propose an end-to-end deep reinforcement
learning framework for efficiently solving MDVRP. In this framework, MDVRP
is first modeled as a Markov Decision Process (MDP). We propose a Residual
Edge Graph Attention Network (RE-GAT) model as the encoder to extract
and embed state features from the graph representation of MDVRP, which
is an improvement over Graph Attention Network (GAT). GAT only considers
node information while neglecting edge information during graph structure infor-
mation extraction, whereas edge features can provide more direct information
related to optimization objectives (such as weighted distances). Additionally,
simultaneously inputting node and edge information facilitates mining spatial
adjacency relationships between different nodes. The proposed RE-GAT model
fuses and updates information from both nodes and edges (such as weights) in
the MDVRP graph representation and adds residual connections between layers
to effectively prevent gradient vanishing and model degradation in deep models.
Furthermore, a decoder based on the Transformer model is designed to efficiently
predict nodes during the solution process. The proposed encoder-decoder model,
once trained, can be applied to instances with arbitrary numbers of depots and
customers and can provide route optimization solutions within milliseconds. In
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other words, this framework can serve as a real-time optimization framework
with offline training and online testing.

To verify the feasibility and effectiveness of the framework, we design randomly
generated instances for training and testing. Additionally, the framework’ s
generalization performance is tested using VRPLIB standard benchmarks and
compared with state-of-the-art machine learning methods and metaheuristic
algorithms to verify its superiority. Finally, experiments validate and analyze
the time complexity of the framework during training and testing phases.

1 Problem Description

Generally, MDVRP can be described as a capacitated vehicle delivering goods
to multiple customers with limited demand. The vehicle returns to the depot
when its load is exhausted or cannot meet customer demand, with the objective
of minimizing total route length while satisfying all customer demands. Figure
1 illustrates an MDVRP with two depots. This paper defines MDVRP through
an undirected graph G = (V, E, W), where nodes include customers and mul-
tiple depots V' = {vg, vy, ..., v,, }, and v, represents the depot node. Customer
nodes {vy,...,v,,} have demand ¢,, where §, represents the depot’ s demand.
Edge e,; € E represents the edge from node i to node j, and W denotes the
distance information. Both depot and customer node coordinates are randomly
generated from the unit square [0, 1] x [0, 1]. For problems with customer node
counts of 20, 30, and 50, this paper randomly generates three corresponding
vehicle capacities of 30, 40, and 50, respectively. Fach customer node demand
is randomly generated in [0, 1], and customer node demands are normalized to
[0, 1], with vehicle capacity D correspondingly transformed to 3, 4, and 5.

This paper introduces a permutation 7 of all nodes. The objective is to find a
solution 7 for a given problem instance such that each customer node is visited
exactly once (depot nodes can be visited multiple times, i.e., 7, = 7,/ for some
t #+ t’), and the total route length is minimized. The length of permutation
7 is defined as L(7), representing the solution to the problem. The encoder
in this paper contains L layers of RE-GAT. Figure 3 describes how a single-
layer RE-GAT integrates edge information into node information and updates
each node’ s information. The attention coefficient «,; represents the weight
coefficient (attention coefficient) of node i relative to node j in layer I, where
{l = 1,...,L}. The graph-attention model defines a stochastic policy p(7|s)
for MDVRP instance s. Based on the chain rule of probability, the selection
probability of sequence 7 can be calculated based on the parameter set 8 of the
graph-attention model:

m

p(#ls) = [[ ol 1y, 5:6)

t=1

where 7, denotes the node selected at time step ¢.

chinarxiv.org/items/chinaxiv-202205.00136 Machine Translation


https://chinarxiv.org/items/chinaxiv-202205.00136

ChinaRxiv [$X]

2 Markov Decision Process Definition for MDVRP

This section models the Markov Decision Process (MDP) for MDVRP, including
definitions of state, action, and reward:

a) State: At time step ¢, the state consists of the visited nodes that constitute
the partial solution 7,,_;.

b) Action: At time step ¢, the action is an unvisited customer node or depot
node T, € {1,...,m}.

c) Reward: First, calculate the distance between the two nodes visited from
time step ¢ — 1 to time step ¢, (7,_;,7;). Then define the agent’ s immediate
reward as:

Ty = =7 — 7elo

where | - |, denotes the 2-norm. The reinforcement learning objective is to
maximize cumulative reward, hence the negative value.

3.1 Encoder

The encoder takes graph G = (V, E, W) as input, with its structure shown in
Figure 2. Input node features are z;, and input edge features are Euclidean
distances e;;. These two features are embedded into d-dimensional and d,-
dimensional features through fully connected layers (FC layers in Figure 2),
respectively, and then fed into RE-GAT for encoding. Equations (3) and (4)
describe the embedding processes for nodes and edges:

2V = BN(W, 2, +by), i=0,1,...,m

eg;) = BN(WBei]‘ +bg), 4,j=1,..,m

where W, and W are learnable weight matrices, b4 and by are learnable weight
vectors, and BN(-) denotes batch normalization [32].

RE-GAT’ s each layer updates each node’ s feature vector through the atten-
tion mechanism described by Equations (5) and (7). The model uses residual
connections between every two layers (represented by Equation (6)). That is,
the output of layer [ is calculated as:

m
l‘gl) = xilil) + BN (Z ai?Wl(l)xyl)>
j=1

O]

where the attention coefficient a;; is computed as:
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l -1 -1 l
o e (o (g2 lel]))

o =

m l I— — l
Yoo exp (o (g 2V 2V el)) )

where Wl(l> and Wz(l) are learnable weight matrices, ¢(-) is the LeakyReLU acti-
vation function, and | denotes the concatenation operator.

The L-th layer RE-GAT outputs the final embedded feature vector ng) for each
node. These are used to compute the final graph embedding vector h and the
final node embeddings. For each node i, the final embedding is represented by
Equation (8):

h; = BN(Wyal" + bs)
where W5 and b; are learnable parameters. The encoder embeds the raw features
of all input nodes into high-dimensional features.

3.2 Decoder

The decoder selects a node at each time step t based on the encoder’ s output,
thereby generating a permutation 7 of input nodes. The decoding process pro-
ceeds sequentially. At time step ¢, the context vector ¢, is first calculated using
the graph embedding vector h, the embedding vector of the node selected at
time ¢t — 1, and the vehicle’ s remaining capacity D,:

_ (L)
¢, = Welhlzz” [ D]
where W, is a learnable weight matrix, and D, represents the vehicle’s remaining
capacity at two consecutive decoding steps. The update formula for D, is:

D, = {Dt1 — 0z ., if m_y is a customer node

D, if 7,_; is a depot node
The first layer of the decoder takes the context vector cim as input and produces
a new context vector ci”. Specifically, this context vector is obtained through
a multi-head attention mechanism with H heads. Equation (11) describes the
multi-head attention mechanism, which computes query vectors g;, key vectors
k;, and value vectors v; using the node embedding vectors output by the encoder
and the context vector:

q; = chio), k; = kaEL), v; = vaEL), 1=1,2,...,m

where W, W, and W, are learnable weight matrices.
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The first decoding layer’ s attention coefficients u, ; are computed using the
query vectors ¢; and key vectors k; from the encoder’ s node embeddings. For
each head h € {1,..., H}, the attention coefficient is calculated as:

YTl
ulHh (q;')" k;

it m

These are then concatenated and passed through a fully connected layer to

(1),
7 (Z softmax(ug,lt)’h)v?) ’
=1

obtain the final context vector ¢,
where W, is a learnable weight matrix. This multi-head attention mechanism
helps improve the stability of the attention learning process [33].

Cil) == Wf

The second layer of the decoder is based on single-head attention, taking the
context vector cim as input. The attention coefficient at time ¢ for the second

decoding layer is calculated using Equation (15):

U; ¢ =

() Tk; - . .
) tanh i) if node ¢ is feasible
= k

—00, otherwise

Based on the work of Bello et al. [25], the tanh activation function is used to clip
the coefficient within [—C, C] (this paper selects C' = 10). Then, the selection
probability p; ;, for each node is obtained using the Softmax activation function
via Equation (16):

2
p _ 7,t
i,t T 2
ST exp(ul))

exp(u

Finally, based on the policy probability distribution p; ;, the next node to visit
(depot or customer) is predicted using sampling or greedy decoding (described
below).

Masking is used to avoid repeatedly selecting customer nodes, selecting cus-
tomer nodes that exceed vehicle remaining capacity, and selecting depot nodes
consecutively (i.e., selecting a depot node at time ¢ when 7, ; is also a depot).
Specifically, in Equation (12), the attention coefficients for these cases are set
to —oo to mask them. Then, the attention coefficients uglg are normalized using
the Softmax activation function via Equation (13).

Traditional heuristic algorithms typically adopt a “cluster-first-route-second”
approach [23] to solve MDVRP, which has the following disadvantages [23]: (a)
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different clusters are routed separately, leading to a lack of overall correlation be-
tween clusters; (b) the quality of grouping in heuristic methods often determines
the quality of overall planning, and the formulation of grouping rules requires ex-
pert domain knowledge, making it difficult for manually selected grouping rules
to achieve optimal results. In contrast, deep reinforcement learning agents can
interact with the scheduling environment in a data-driven manner, continuously
evolving their strategies to maximize reward (the negative of total route length
for routing problems). That is, during the decoding process, the reinforcement
learning policy can select scheduling centers without relying on manual heuristic
intervention.

4 Deep Reinforcement Learning Algorithm Based on Policy
Gradient

This paper introduces an improved REINFORCE algorithm to train the pro-
posed model. The loss function is defined as:

Loss(0) = E

a~p(-|s;0

J[L(7) = b]

where b is the baseline. The improved REINFORCE algorithm has an actor-
critic style but differs from traditional critics that use state-value estimation
functions. Compared to the original version, this implementation adds the Roll-
out baseline method [8] to accelerate convergence and enhance optimization
performance. The gradient calculation process for the loss function is:

VyLoss(0) = [EﬁNp(-\s;G)[(LO?) —b)Vylogp(7|s; 0)]

In the proposed REINFORCE algorithm with Rollout baseline, the critic net-
work is replaced by a baseline actor. The algorithm’ s flow diagram is shown
in Figure 4. The algorithm can be described as having a structure with two
actors. The baseline actor’ s policy network m, ~ (where 0, is the parameter
set) is fixed within each epoch (i.e., its parameters are not updated), similar to
the fixed target Q-network in DDQN [34]. At the end of each epoch, greedy
decoding is used to compare the results of the current training actor and the
baseline actor. The baseline actor’s policy network parameters are only updated
when there is significant improvement on test instances (tested with a t-test at
significance level &« = 5%). During training, “code-level optimization” strategies
are also employed to improve algorithm performance, including learning rate
decay for the Adam optimizer and reward normalization.

Effective combinatorial optimization search algorithms mainly include beam
search, neighborhood search, and tree search. Bello et al. [25] proposed search
strategies such as sampling, greedy search, and active search. This paper uses
the following two decoding strategies:
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a) Greedy Decoding: Generally, greedy algorithms construct locally optimal
solutions and provide fast approximations of global optimal solutions. At each
decoding step, the node with the highest probability is selected greedily. The
search terminates when all customer demands are satisfied, thereby constructing
a valid solution.

b) Sampling Decoding: Nodes are selected randomly according to the prob-
ability distribution to construct valid solutions. During testing, Bello et al. [25]
utilized a temperature hyperparameter A to modify Equation (16) to ensure
sampling diversity. The modified formula is:

. exp(uy’y /\)
it "
S exp(ui/A)

Through grid search of the temperature hyperparameter, values of 2.5, 1.8, and
1.2 were found to work best for MDVRP20 (20 customer nodes), MDVRP50,
and MDVRP100, respectively.

During training, the model typically needs to explore the environment to achieve
better performance, so a random sampling decoding strategy is adopted. Dur-
ing testing, this paper uses greedy decoding. Additionally, following existing
research testing methods [8][25], 1280 solutions are obtained through random
sampling and the best one is reported.

5 Computational Experiments

This section verifies the feasibility and effectiveness of the proposed framework
through experiments. Experiments include training and testing phases. Since
training requires large amounts of data, training data is generated from uniform
random distributions. Test datasets include randomly generated instances and
publicly available standard benchmarks (proposed by Cordeau et al. [35, 36]),
which are used to test the effectiveness and generalization performance of the
framework, respectively. The proposed framework is also compared with other
learning-based methods, Google OR-tools, and metaheuristic algorithms.

5.1 Dataset and Hyperparameter Selection

For readability, MDVRP scale is represented in the format “number of
customers-number of depots.” The datasets used include randomly generated
training data, validation data, and random test data. MDVRP instances are
randomly generated from the unit square [0,1] x [0,1] for scales 20-2, 50-2,
and 100-2. The training set contains 819,200 instances for scale 20-2 and
768,000 instances each for scales 50-2 and 100-2, with each model trained for
100 epochs. For validation and random test data, the same distribution as
training data is used, generating 10,000 instances for each scale. Additionally,
publicly available standard benchmarks (proposed by Cordeau et al. [35, 36])
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are used to evaluate the model’ s generalization performance from training on
random instances to testing on real-world instances and across different scales
(varying numbers of depots and customers). All experiments are conducted on
a computer with an Intel Turbo HT (100W) DDR4-2400 CPU and an Nvidia
GeForce RTX 3090 GPU. Table 2 lists other relevant hyperparameter values for
the training process. The model is constructed using PyTorch and implemented
with Python 3.7.

Table 2 Value of hyper-parameters

Hyperparameter Value

Encoder layers 3
Learning rate decay factor ~ 0.96
Multi-head attention heads 8
Node embedding dimension 128
Edge embedding dimension 64

5.2.1 Random Instance Analysis

Table 3 lists the test results of the proposed framework (denoted as
“Greedy,” “Samplingl28,” and “Sampling1280” based on different decod-
ing strategies), Google OR-tools, and another DRL method [23] on randomly
generated MDVRP instances of different scales. The distances (lower is
better) and relative optimality gap values are averages over 10,000 instances.
Additionally, the average computation time for all test instances is provided.

Table 3 Results of the proposed framework, a reinforcement learning method
and Google OR-tools on random generated MDVRP instances

Method MDVRP20-2 MDVRP50-2 MDVRP100-2
Distance Gap Time

Greedy[23] 6.23 13.68% 43.9 ms
Greedy (Ours) 5.52 1.711% 0.18 ms
OR-tools 5.54 1.711% 19 ms
Sampling128[23] 5.89 8.23% 1.8 ms
Sampling128 (Ours)  5.44 0.00% 0.21s
Sampling1280 (Ours) 5.44 0.00% 91 ms

The table shows that sampling decoding strategies obtain the best solutions
among all methods. This strategy performs 128 or 1280 samplings per instance,
constructing 128 or 1280 solutions and reporting the best one. In contrast,
greedy decoding constructs a single solution by greedily selecting the node with
the highest probability at each decoding step using the trained model. Addi-
tionally, neural network-based parallel computation enables batch processing of
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multiple instances, making the trained model extremely fast with greedy decod-
ing. For example, for 10,000 MDVRP instances of scale 100-2, the proposed
method requires only 1.8 ms per instance with greedy decoding, while the sam-
pling decoding approach requires 1.58 s.

Google OR-tools is an efficient solver based on local search, and [23] is a deep
reinforcement learning method. However, on all scales of MDVRP, the pro-
posed framework outperforms both OR-tools and the method in [23] regardless
of whether greedy or sampling decoding is used, and greedy decoding is far su-
perior in running time. Furthermore, Figure 5 shows the convergence curves for
MDVRP of various scales during training, demonstrating that all scales converge
well after 80 epochs.

5.2.2 Public Benchmark Analysis

To evaluate the proposed framework’ s generalization from randomly gener-
ated instances to real-world instances and across different scales (i.e., different
numbers of customers and depots), the trained model (trained on randomly
generated MDVRP instances of scale 100-2) is used to solve publicly available
standard benchmarks for MDVRP proposed by Cordeau et al. [35, 36] (with
50-160 customers). All results are listed in Table 4. To further evaluate perfor-
mance, comparisons are made with a state-of-the-art metaheuristic algorithm
(improved ACO [38]), with results also shown in Table 4. Gap values for both
methods are calculated based on the best known solutions (BKS).

Table 4 Results of the proposed framework and improved ACO on benchmarks

Greedy Greedy Improved Improved
Problem CustomersGap Time ACOI38] Gap ACOI38] Time
pO1 50 6.23% 0.06 s 5.34% 1.7s
p02 50 4.18% 0.06 s 4.61% 1.8s
p03 50 6.63% 0.09 s 4.62% 4.3 s
p04 100 10.28% 0.10 s 1.97% 28.4 s
p05 100 7.96% 0.10 s 0.09% 25.6 s
p06 100 9.72% 0.09 s 3.01% 31.9s
p07 100 10.64% 0.09 s 2.46% 30.9 s
p08 160 0.82% 0.04 s 0.00% 154 s
p09 160 0.82% 0.04 s 0.00% 16.0 s
pl0 160 0.00% 0.04 s 0.41% 16.9 s
pll 160 3.24% 0.15s 1.94% 167.1 s
pl12 160 0.56% 0.15s 1.32% 188.1 s
pl3 160 0.00% 0.15s 0.00% 147.3 s
Average 4.97% 0.09 s 1.98% 51.59 s

Although the improved ACO algorithm outperforms the proposed framework on
most instances and has a better average gap (1.98% vs. 4.97%), the improved
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ACO method runs 100 times per instance and reports the best result, with times
shown as averages. In contrast, the proposed framework uses greedy decoding
to solve each instance once. The proposed framework is far superior in running
time (0.09 s vs. 51.59 s). Therefore, the proposed framework achieves a good
balance between solution quality and running time. Moreover, the framework
can serve as a real-time solver with offline training and online testing.

5.2.3 Extended Computational Analysis (CVRP)

To further evaluate the proposed framework’ s performance and generalization
capability for vehicle routing problems in different scenarios, the framework is
applied to solve the single-depot CVRP. This section uses random instances
for experimental verification, generating 10,000 instances from uniform distri-
butions (consistent with [8][16]). The proposed framework is compared with
existing learning-based methods (both “PtrNet” and “AM?” in Table 5 are deep
reinforcement learning methods), Google OR-tools, the Gurobi exact solver, and
the LKH3 solver to verify its effectiveness on single-depot CVRP. Test results
for different scales of CVRP instances are listed in Table 5.

Table 5 Results of different methods on random generated CVRP instances

Method Type  VRP20 VRP50 VRP100
Gap Time Gap
Gurobi Solver  0.00%  7.2ms  0.00%
Concorde Solver  0.58%  0.1ms 9.78%
LKH3 Solver 8.03% 0.2ms 5.86%
PtrNet [16] SL,BS 497% 36 ms 4.81%
AM [§] RL, G 541% 84ms  9.01%
Greedy (Ours) RL,G 492% 02ms 7.46%
OR Tools H, G 2.49%  0.1ms 2.40%

PtrNet [16] Sampling RL,S  1.47% 0.1ms 1.54%

Note: In the Type column, RL: reinforcement learning, H: heuristic, SL: su-
pervised learning, S: sampling/search, G: greedy search, BS: beam search, “-" :
cannot solve in reasonable time.

The results in Table 5 are categorized into three groups: solvers, greedy methods,
and sampling/search methods. Except for the results of the proposed model,
all other results are taken from Kool et al. [8]. In terms of model performance,
the proposed framework achieves better results than other listed learning-based
methods under both sampling and greedy decoding strategies. These results
demonstrate that the proposed framework has good generalization performance
in single-depot CVRP scenarios and verifies its potential for transfer to other
VRP scenarios.
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5.2.4 Framework Computational Time Complexity Analysis

Next, the relationship between the proposed model’ s running time and graph
scale (i.e., number of nodes) during training and testing phases is evaluated by
solving TSP problems (most literature [7][13] analyzes time complexity through
TSP; for comparison, this paper also uses TSP). All instances used in this section
are randomly generated from uniform distributions (consistent with [7][13]).

For the training phase, training time depends not only on graph scale but also
on the amount of training data and batch size. For generality, the running time
for a single epoch is tested with 10,000 training instances and the same batch
size (128) while increasing the number of nodes from 1 to 100. Figure 6(a) shows
that the proposed framework’ s running time grows linearly with the number
of graph nodes during training.

For the testing phase, the running time of the entire encoder-decoder model is
tested as the graph scale (number of nodes) increases from 1 to 500. Figure
6(b) shows that the proposed model’ s running time grows linearly with graph
scale during testing. Table 6 summarizes the time complexity, running time
(average), and average optimality gap for several methods including exact al-
gorithms, heuristic algorithms, and learning-based methods on TSP with 100
nodes. Except for the proposed framework’ s results, all others are taken from
Table 1 in Drori et al. [13]. The proposed framework’ s results are listed in bold.

Table 6 Running time complexity of each method

Method Time Complexity Running Time (ms) Gap
Gurobi O(n?) 3,220 0.00%
Concorde O(n?) 254.1 0.58%
Christofides O(n?) 5,002 24.5%
2-0pt O(n?) 2,879 30.08%
Farthest Insertion  O(n?) 8.35 8.4%
Nearest Insertion  O(n?) 9.35 8.4%
S2V-DQN [7] O(n?) 61.72 8.4%
GAT [13] O(n) 1.17 1.06%
Greedy (Ours) O(n) 1.06 1.06%

Exact algorithms, approximation algorithms, and heuristic algorithms have at
least quadratic time complexity in graph scale. S2V-DQN [7] is a reinforce-
ment learning method with O(n?) time complexity and a large optimality gap
(8.4%). The proposed framework has O(n) time complexity, achieving signifi-
cant improvements in both running time and optimality gap compared to O(n?)
methods. GAT [13] has the same time complexity as the proposed framework
but with a larger optimality gap.
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6 Conclusion

This paper proposes an end-to-end deep reinforcement learning framework to
improve the efficiency of solving MDVRP. The MDVRP is modeled as a Markov
Decision Process, an improved graph attention network is designed as the en-
coder to encode state information during the solution process, and a decoder
model based on the Transformer is designed. An improved REINFORCE algo-
rithm is designed to train the proposed encoder-decoder model. The designed
framework is not constrained by problem scale; once trained, it can be applied
to instances of different scales (different numbers of customers and depots). To
verify feasibility and effectiveness, numerical experiments are conducted on ran-
domly generated instances and publicly available standard benchmarks, with
comparisons to existing learning-based methods, Google OR-tools, and meta-
heuristic algorithms. Computational results demonstrate the feasibility and
efficiency of the proposed framework for solving vehicle routing problems of
different scales and scenarios.

This paper considers MDVRP in static environments. However, in actual logis-
tics transportation, the environment is constantly changing, facing situations
with dynamically arriving orders. Based on the rapid solution capability of the
proposed framework, it has potential for real-time vehicle scheduling in dynamic
environments. Therefore, future research will focus on building an end-to-end
deep reinforcement learning framework for dynamic environments, solving rout-
ing problems through offline training and online testing.
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