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Abstract
To address the fresh food closed-loop supply chain network design problem,
a robust optimization model for fresh food closed-loop supply chain networks
is established to resolve uncertainties in the supply chain network. First, for a
fresh food supply chain network structure encompassing 5 nodes, a multi-period,
multi-product mixed-integer programming model is developed with objectives
of minimizing cost and environmental impact, which is addressed using fuzzy
compromise programming and interval data robust optimization methods; sec-
ond, based on the original honey badger algorithm, differential evolution prin-
ciples are introduced to enhance the algorithm’s global search capability and
convergence speed; finally, Matlab numerical analysis and simulation examples
demonstrate that the proposed robust optimization model and honey badger al-
gorithm exhibit significant advantages in solving fresh food closed-loop supply
chain network design problems.

Full Text
Preamble
Robust Optimization Design of Fresh Closed-Loop Supply Chain Net-
work Based on Improved Honey Badger Algorithm

Dong Haia, Lin Guodongb
(a. School of Applied Technology, b. School of Mechanical Engineering,
Shenyang University, Shenyang 110044, China)

Abstract: This paper proposes a robust optimization model for fresh food
closed-loop supply chain network design to address uncertainties in supply chain
networks. First, for a fresh supply chain network structure covering five nodes,
a multi-period, multi-product mixed-integer programming model is established
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with objectives of minimizing cost and environmental impact, processed using
fuzzy compromise programming and interval data robust optimization methods.
Second, based on the original honey badger algorithm, differential evolution
principles are introduced to enhance the algorithm’s global search capability
and convergence speed. Finally, numerical analysis and simulation examples in
Matlab demonstrate that the proposed robust optimization model and honey
badger algorithm offer significant advantages in solving fresh closed-loop supply
chain network design problems.

Keywords: closed-loop supply chain network design; fresh supply chain; dif-
ferential honey badger algorithm; robust optimization

0 Introduction
The design of reverse logistics and closed-loop supply chains has attracted con-
siderable attention from researchers and decision-makers due to issues such as
natural resource shortages and the hazards of industrial product residues to
human life and the environment. Fresh supply chains have gradually become
a research hotspot in the supply chain field because of their perishability and
difficulty in regulation.

Most domestic and international research on fresh supply chains focuses on pric-
ing and inventory strategies, preservation efforts, and coordination optimization.
Feng et al. [1] constructed decentralized decision-making game models under
FOB and CIF pricing modes, considering the characteristics of random output
and value loss of fresh agricultural products. Ma et al. [2] studied decision-
making issues regarding preservation, carbon emission reduction, and pricing
in a three-level cold chain system where third-party logistics undertakes preser-
vation and low-carbon responsibilities for fresh products, proposing a contract
incentive mechanism combining wholesale price and two-part tariff. Moham-
madi et al. [3] developed a novel coordination mechanism based on preservation
technology investment to address spoilage and waste of fresh products, improv-
ing overall supply chain profitability. Wen et al. [4] established a three-stage
Stackelberg game model involving government, retailers, and farmers consider-
ing natural disaster impacts on output, analyzing the government’s optimal
subsidy rate and retailers’optimal purchase price under different government
subsidy policies and retailer cooperative preferences. Qiu et al. [5] designed
a fresh product green supply chain network structure with balanced optimiza-
tion of cost and carbon emissions for carbon tax policy scenarios, establishing a
multi-objective mixed-integer model. Liu et al. [6] designed a“revenue sharing-
two-way cost sharing”contract to achieve perfect coordination and Pareto im-
provement in fresh e-commerce supply chains by constructing centralized and
decentralized decision models. Wang et al. [7] built a time-varying consumer
utility function affected by freshness and price of fresh agricultural products,
establishing a two-level supply chain profit model to determine optimal preser-
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vation efforts and pricing.

In closed-loop supply chain network research, Sun et al. [8] established single
and dual-channel closed-loop supply chain network decision models based on
consumer preferences and fairness concerns. Zhang et al. [9] developed a multi-
objective closed-loop supply chain network planning model with fuzzy parame-
ters under uncertain conditions, aiming to minimize cost and environmental im-
pact while maximizing social impact. Dong et al. [10] studied a multi-objective
fuzzy optimization design model for fresh closed-loop supply chain networks
under power grid interruption, addressing uncertainties in fresh supply chain
network design. Zhu et al. [11] examined coordination issues in retailer-led
dual-channel closed-loop supply chains, achieving coordination through profit-
sharing and cost-sharing contracts. Wang et al. [12] investigated coordination
problems in closed-loop supply chains with manufacturer recycling behavior un-
der information asymmetry, using Itô processes to explain the stochastic evolu-
tion of recycling rates and constructing decentralized decision models to obtain
optimal equilibrium solutions for manufacturers and retailers. Yavari et al. [13]
designed an innovative mixed-integer programming robust optimization model
for green closed-loop supply chain network design of perishable products under
uncertainty. Dey et al. [14] analyzed different game strategies of two competing
retailers when manufacturers act as Stackelberg leaders in closed-loop supply
chain network design.

Closed-loop supply chain network optimization design is a typical NP-hard prob-
lem. Recent research in this field predominantly employs intelligent algorithms
to solve such nonlinear optimization problems [15-17]. The Honey Badger Al-
gorithm (HBA), proposed by Hashim et al. [18] in 2021, simulates the dynamic
search behavior of honey badgers digging and foraging for honey. Due to its
promising experimental results, simple structure, and effectiveness in solving
large-scale optimization problems [19], HBA has broad application prospects.
However, the original HBA still has room for improvement in global search
capability and convergence speed when handling large-scale problems. Combin-
ing it with other algorithms or concepts can enhance its convergence speed and
optimization ability.

In summary, research and literature on fresh closed-loop supply chain network
optimization design are relatively scarce, and the treatment of uncertain pa-
rameters in models is somewhat monolithic. Therefore, this paper establishes a
multi-objective optimization model for fresh closed-loop supply chain networks
considering environmental impact, adopts fuzzy programming to convert multi-
objectives into a single-objective model, and processes uncertain parameters
through interval robust optimization. The original HBA algorithm is improved
by introducing differential evolution principles to solve the proposed model. Fi-
nally, examples verify the feasibility of the model and the superiority of the
algorithm.
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1.1 Problem Description
This paper investigates a multi-product, multi-period, multi-echelon fresh
closed-loop supply chain network design problem comprising suppliers, man-
ufacturers, warehouses, retailers, and collection centers. The supply chain
network operates as follows: First, raw materials required for production are
transported from suppliers to manufacturers through existing supply chain
networks and transportation modes. Products are then shipped from manu-
facturers to retailers via warehouses. Unsatisfactory products are returned
and stored at collection centers, where usable returned items are sent to
manufacturers as semi-finished products. Retailer demand and return rates
exist in an uncertain state. The specific supply chain network structure is
illustrated in Figure 1.

Figure 1. Schematic diagram of fresh closed-loop supply chain network struc-
ture

1.2 Model Assumptions and Symbol Definitions
This paper makes the following assumptions: (a) All facility potential locations,
capacities, and cost parameters are predetermined; (b) Each retailer receives all
its demand from only one warehouse; (c) All products returned by retailers can
only be sent to one collection center, with each retailer sending returned prod-
ucts to only one collection center; (d) A fixed percentage of each product is sent
back as returned products to collection centers; (e) Unit transportation costs
from suppliers to manufacturers, manufacturers to warehouses, and collection
centers to manufacturers are fixed and positively correlated with transporta-
tion volume; (f) Transportation costs from warehouses to retailers and retail-
ers to collection centers are static, independent of transportation volume, with
pre-allocated trucks making trips between warehouses, retailers, and collection
centers each period; (g) Retailers are at fixed locations and facility capacities
(suppliers, manufacturers, warehouses, retailers, and collection centers) are lim-
ited.

Using a dairy product supply chain network as an example, symbols, parameters,
and decision variables are defined as follows:

Symbol Definitions: - 𝐴: Set of potential collection center locations, 𝑎 ∈ 𝐴
- 𝐼 : Products, 𝑖 ∈ 𝐼 - 𝑖𝑏 and 𝑖𝑐: Single-source products and reused products
respectively, 𝑖𝑏 ∈ 𝐼 , 𝑖𝑐 ∈ 𝐼 - 𝑀 : Set of potential manufacturer locations, 𝑚 ∈ 𝑀
- 𝑅: Set of fixed retailer locations, 𝑟 ∈ 𝑅 - 𝑆: Set of fixed supplier locations,
𝑠 ∈ 𝑆 - 𝑡: Time periods, 𝑡 ∈ 𝑇 - 𝑊 : Set of potential warehouse locations, 𝑤 ∈ 𝑊
Parameter Definitions: - 𝑘𝑖: Return rate of product 𝑖 - 𝐿𝐴𝑎: Capacity of
collection center 𝑎 - 𝐿𝑀𝑚: Production capacity of manufacturer 𝑚 - 𝐿𝑆𝑠: Sup-
ply capacity of supplier 𝑠 - 𝐿𝑊𝑤: Capacity of warehouse 𝑤 - 𝑝𝑖: Product life
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cycle of product 𝑖 - 𝐹𝐶𝐴𝑎, 𝐹𝐶𝑀𝑚, 𝐹𝐶𝑊𝑤: Fixed costs for establishing collec-
tion center 𝑎, manufacturer 𝑚, and warehouse 𝑤 - 𝐶𝑂𝑀𝑖𝑚𝑡: Unit production
cost for manufacturer 𝑚 to produce product 𝑖 in period 𝑡 - 𝐷𝑅𝑖𝑟𝑡: Demand
of retailer 𝑟 for product 𝑖 in period 𝑡 - 𝐸𝐴𝑎, 𝐸𝑀𝑚, 𝐸𝑊𝑤: Environmental im-
pact of establishing collection center 𝑎, manufacturer 𝑚, and warehouse 𝑤 -
𝐸𝐼𝐴𝑖𝑎, 𝐸𝐼𝑀𝑖𝑚, 𝐸𝐼𝑅𝑖𝑟, 𝐸𝐼𝑊𝑖𝑤: Environmental impact of storing product 𝑖
at collection center 𝑎, manufacturer 𝑚, retailer 𝑟, and warehouse 𝑤 - 𝐸𝑇 𝐴𝑗𝑎𝑚:
Environmental impact of transporting product 𝑗 from collection center 𝑎 to
manufacturer 𝑚 - 𝐸𝑇 𝑀𝑖𝑚𝑤: Environmental impact of transporting product 𝑖
from manufacturer 𝑚 to warehouse 𝑤 - 𝐸𝑇 𝑆𝑠𝑚: Environmental impact of trans-
portation from supplier 𝑠 to manufacturer 𝑚 - 𝐸𝑇 𝑅𝐴𝑟𝑎: Environmental impact
of pre-allocated truck trips from retailer 𝑟 to collection center 𝑎 - 𝐸𝑇 𝑊𝑤𝑟: En-
vironmental impact of pre-allocated truck trips from warehouse 𝑤 to retailer
𝑟 - 𝐻𝐶𝐴𝑖𝑎, 𝐻𝐶𝑀𝑖𝑚, 𝐻𝐶𝑅𝑖𝑟, 𝐻𝐶𝑊𝑖𝑤: Unit inventory costs of product 𝑖 at
collection center 𝑎, manufacturer 𝑚, retailer 𝑟, and warehouse 𝑤 - Θ𝑖: Usage
coefficient of product 𝑖 - 𝑄𝑖𝑗: Equals 1 if product 𝑗 can serve as raw material
for product 𝑖, otherwise 0 - 𝜎𝑖: Percentage of returned product 𝑖 required for
producing other products - 𝑃𝐶𝑅𝐴𝑖𝑟𝑎𝑡, 𝑃𝐶𝑆𝑀𝑠𝑚𝑡: Unit procurement cost for
collection center 𝑎 to purchase product 𝑖 from retailer 𝑟, and for manufacturer 𝑚
to purchase raw materials from supplier 𝑠 in period 𝑡 - 𝑇 𝐶𝐴𝑀𝑖𝑎𝑚𝑡, 𝑇 𝐶𝑀𝑊𝑖𝑚𝑤𝑡:
Unit transportation costs for product 𝑖 from collection center 𝑎 to manufacturer
𝑚 and from manufacturer 𝑚 to warehouse 𝑤 in period 𝑡 - 𝑇 𝐶𝑆𝑠𝑚𝑡: Unit trans-
portation cost of raw materials from supplier 𝑠 to manufacturer 𝑚 in period 𝑡
- 𝑇 𝐶𝑅𝐴𝑟𝑎𝑡, 𝑇 𝐶𝑊𝑅𝑤𝑟𝑡: Fixed transportation costs from retailer 𝑟 to collection
center 𝑎 and from warehouse 𝑤 to retailer 𝑟 in period 𝑡 - 𝑈𝑟𝑤: Equals 1 if prod-
uct can be shipped from retailer 𝑟 to warehouse 𝑤, otherwise 0 - 𝑉𝑟𝑎: Equals 1
if product can be shipped from retailer 𝑟 to collection center 𝑎, otherwise 0

Decision Variables: - 𝑁𝑖𝑚𝑡: Quantity of product 𝑖 produced by manufacturer
𝑚 in period 𝑡 - 𝐼𝐿𝐴𝑖𝑎𝑡, 𝐼𝐿𝑀𝑖𝑚𝑡, 𝐼𝐿𝑅𝑖𝑟𝑡, 𝐼𝐿𝑊𝑖𝑤𝑡: Inventory levels of product 𝑖
at collection center 𝑎, manufacturer 𝑚, retailer 𝑟, and warehouse 𝑤 in period 𝑡 -
𝑁𝑠𝑚𝑡: Quantity of raw materials shipped from supplier 𝑠 to manufacturer 𝑚 in
period 𝑡 - 𝑁𝑊𝑅𝑖𝑤𝑟𝑡, 𝑁𝑅𝐴𝑖𝑟𝑎𝑡, 𝑁𝐴𝑀𝑖𝑎𝑚𝑡, 𝑁𝑀𝑊𝑖𝑚𝑤𝑡: Quantities of product
𝑖 shipped from warehouse 𝑤 to retailer 𝑟, from retailer 𝑟 to collection center
𝑎, from collection center 𝑎 to manufacturer 𝑚, and from manufacturer 𝑚 to
warehouse 𝑤 in period 𝑡 - 𝑂𝐴, 𝑂𝑀 , 𝑂𝑊 , 𝑂𝑅: Status indicators for collection
centers, manufacturers, warehouses, and retailers (value 1 if open, 0 otherwise)

Objective Functions: - 𝑍1: Minimization of network cost - 𝑍2: Minimization
of environmental impact (measured by CO� emissions)

𝑍1 comprises total inventory costs across all facilities, total fixed costs for estab-
lishing manufacturers, warehouses, and collection centers, total transportation
costs between facilities, and total production costs for processing various prod-
ucts.

𝑍2 comprises CO� emissions from inventory holding at facilities, CO� emissions
from establishing manufacturers, warehouses, and collection centers, and CO�
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emissions from transportation.

Min 𝑍1 = ∑
𝑖,𝑚,𝑡

𝐻𝐶𝑀𝑖𝑚 × 𝐼𝐿𝑀𝑖𝑚𝑡 + ∑
𝑖,𝑤,𝑡

𝐻𝐶𝑊𝑖𝑤 × 𝐼𝐿𝑊𝑖𝑤𝑡 + ∑
𝑖,𝑟,𝑡

𝐻𝐶𝑅𝑖𝑟 × 𝐼𝐿𝑅𝑖𝑟𝑡 + ∑
𝑖,𝑎,𝑡

𝐻𝐶𝐴𝑖𝑎 × 𝐼𝐿𝐴𝑖𝑎𝑡

+ ∑
𝑚

𝐹𝐶𝑀𝑚 × 𝑂𝑀 + ∑
𝑤

𝐹𝐶𝑊𝑤 × 𝑂𝑊 + ∑
𝑎

𝐹𝐶𝐴𝑎 × 𝑂𝐴 + ∑
𝑠,𝑚,𝑡

𝑇 𝐶𝑆𝑠𝑚𝑡 × 𝑁𝑠𝑚𝑡

+ ∑
𝑖,𝑚,𝑤,𝑡

𝑇 𝐶𝑀𝑊𝑖𝑚𝑤𝑡 × 𝑁𝑀𝑊𝑖𝑚𝑤𝑡 + ∑
𝑤,𝑟,𝑡

𝑇 𝐶𝑊𝑅𝑤𝑟𝑡 × 𝑈𝑤𝑟 + ∑
𝑟,𝑎,𝑡

𝑇 𝐶𝑅𝐴𝑟𝑎𝑡 × 𝑉𝑟𝑎

+ ∑
𝑖,𝑎,𝑚,𝑡

𝑇 𝐶𝐴𝑀𝑖𝑎𝑚𝑡 × 𝑁𝐴𝑀𝑖𝑎𝑚𝑡 + ∑
𝑖,𝑚,𝑡

𝐶𝑂𝑀𝑖𝑚𝑡 × 𝑁𝑖𝑚𝑡

+ ∑
𝑖,𝑗,𝑎,𝑚,𝑡

𝑄𝑖𝑗 × 𝑁𝐴𝑀𝑖𝑎𝑚𝑡 × 𝑃𝐶𝑅𝐴𝑖𝑟𝑎𝑡 + ∑
𝑖,𝑟,𝑎,𝑡

𝑁𝑅𝐴𝑖𝑟𝑎𝑡 × 𝑃𝐶𝑆𝑀𝑠𝑚𝑡

+ ∑
𝑖,𝑚,𝑡

𝐶𝑂𝑀𝑖𝑚𝑡 × 𝑁𝑖𝑚𝑡 + ∑
𝑖,𝑗,𝑎,𝑚,𝑡

𝑁𝐴𝑀𝑖𝑎𝑚𝑡 × 𝐶𝑂𝑀𝑖𝑚𝑡 × 𝑁𝑖𝑚𝑡

+ ∑
𝑖,𝑗,𝑎,𝑚,𝑡

𝑄𝑖𝑗 × 𝑁𝐴𝑀𝑖𝑎𝑚𝑡 × 𝐶𝑂𝑀𝑖𝑚𝑡 × 𝑁𝑖𝑚𝑡

Constraint (22) ensures each retailer receives products from only one warehouse,
while constraint (23) ensures each retailer sends returned products to only one
collection center.

Constraints (3) and (4) guarantee sufficient input at retailers and warehouses.
Constraint (24) requires that all returned products sent from collection centers
must be used for remanufacturing production simultaneously. Constraint (25)
ensures that inventory levels of product 𝑖 at each warehouse remain below the
total outbound quantity of product 𝑖 for the next 𝑝𝑖 consecutive periods (prod-
uct 𝑖’s life cycle). Constraint (5) states that the quantity returned from each
retailer to collection centers is a portion of its demand. Constraint (6) ensures
input flow exceeds output flow at each collection center. Constraint (7) balances
input and output at each manufacturer. Constraint (8) requires each manufac-
turer’s output to be at least as much as products shipped from manufacturers
to warehouses. Constraints (9)-(12) represent capacity constraints for manu-
facturers, suppliers, warehouses, and collection centers. Constraints (13)-(16)
define inventory levels for each product at manufacturers, warehouses, collec-
tion centers, and retailers in each time period. Constraint (17) ensures products
can only be produced by existing manufacturers. Constraints (18)-(19) ensure
products are shipped from manufacturers to warehouses or collection centers.
Constraints (20)-(21) prevent transshipment logistics between non-linked facili-
ties. Constraint (26) ensures retailer inventory levels for each product in each
period are less than total demand for the next 𝑝𝑖 consecutive periods.
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2.1 Multi-Objective Processing
Since the two objective functions 𝑍1 and 𝑍2 established in this paper conflict to
some extent—when 𝑍1 performs well, 𝑍2 may perform poorly—to achieve Pareto
optimality, this paper adopts the fuzzy compromise programming method
for multi-objective processing. According to the mathematical expressions
described in reference [20], the fuzzy compromise programming method is
formulated as:

𝐿𝑝(𝑓) = [
𝑘

∑
𝑖=1

𝜆𝑝
𝑖 ( 𝑓𝑖 − 𝑓∗

𝑖
𝑓max

𝑖 − 𝑓min
𝑖

)
𝑝
]

1/𝑝

where 𝑝 is a positive integer in [1, ∞]; 𝑓∗
𝑖 = min(𝑓𝑖) represents the ideal solution

for each sub-objective function 𝑓𝑖; 𝜆𝑖 denotes the weight assigned to each sub-
objective, with 𝜆𝑖 ∈ (0, ∞). Thus, the multi-objective model is equivalently
transformed as follows:

min {max
𝑖=1,2

[𝑤𝑖 (𝑍∗
𝑖 − 𝑍𝑖
𝑍∗

𝑖
)]}

where 𝑤𝑖 represents the relative weight of each sub-objective function, calculated
as the product of 𝜆𝑖 and 𝑝. Different efficient solutions can be obtained by
varying parameter 𝑝, with the most common values being 𝑝 = 1, 2, ∞.

2.2 Robust Processing
To extend the deterministic model to an uncertain environment, this paper as-
sumes return rates and demand as uncertain parameters. The robust method
consists of two stages: first, constructing uncertainty parameter intervals to de-
scribe uncertain parameters; second, applying robust counterpart transforma-
tion to convert the robust model into an equivalent mixed-integer programming
model for solution.

This paper sets uncertainty parameter intervals to consider deviation ranges
[21] and proposes a robust counterpart form for the closed-loop supply chain
model. Parameters are defined as 𝑑 = 𝐷𝑅𝑖𝑟𝑡 and 𝑘 = 𝐾𝑖. Uncertain parameters

̃𝐷𝑅𝑖𝑟𝑡 and 𝐾̃𝑖 are independently and identically distributed within the range
[𝑑 − ̂𝑑, 𝑑 + ̂𝑑] and [𝑘 − 𝑘̂, 𝑘 + 𝑘̂], symmetrically distributed. Additionally, the
uncertainty budget 𝐼0 takes values in [0, 1].
Since demand and return rates are assumed uncertain, and considering the im-
pact of worst-case parameters on the model and algorithm in robust optimiza-
tion, this paper only considers positive deviations of uncertain parameters for
demand and return rates. Uncertain parameters primarily appear in constraints
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(3), (5), and (26). Taking constraint (3) as an example, the left side contains
uncertain parameters denoted as 𝐴𝑗, 𝑗 ∈ 𝐽 , where 𝐽 represents the index set of
uncertain parameters in this constraint. According to reference [21], we define:

̃𝐴𝑗 = 𝐴𝑗 + 𝜉𝑗 ̂𝐴𝑗

where 𝐴𝑗 is the nominal value and ̂𝐴𝑗 represents the maximum deviation of 𝐴𝑗;
𝜉𝑗 ∈ 𝑈 , where 𝑈 is a bounded closed set, and 𝜉𝑗 is selected from the uncertainty
set 𝑈 to control the bounds of ̃𝐴𝑗. Based on these definitions, constraint (3)
can be expressed as:

∑
𝑗∈𝐽

̃𝐴𝑗𝑥𝑗 ≤ 𝑏

The robust counterpart is formulated as:

∑
𝑗∈𝐽

(𝐴𝑗 + ̂𝐴𝑗𝜉𝑗)𝑥𝑗 ≤ 𝑏, ∀𝜉 ∈ 𝑈

where 𝜇1 represents the demand conservatism parameter, 𝜇1 ∈ [0, |𝑖| × |𝑟|].
In summary, introducing ̃𝑑𝑗 to represent demand uncertainty in the supply chain,
we have ̃𝑑𝑗 = 𝑑𝑗 + ̂𝑑𝑗𝜉𝑗, where 𝜉𝑗 ∈ 𝑈 , 𝑗 ∈ 𝐽 , and 𝜉𝑗 is an independent random
variable controlling ̃𝑑𝑗. Based on the above definitions and rules, auxiliary
variable 𝑌𝑗 is introduced. With uncertainty budget 𝐼0 ∈ [0, 1], the relevant
constraints and robust equivalent model 𝑍∗ are obtained. In the constraints,
𝜀 = ̃𝐷𝑅𝑖𝑟𝑡 × 𝐾̃𝑖 and 𝛽∗ = ̂𝜀

𝜀 . Additionally, 𝜇2 ∈ [0, |𝑖| × |𝑟| × |𝑡|].
The robust model becomes:

min{𝑍1, 𝑍2}
subject to the original constraints with robust counterparts.

3.1 Encoding
Considering the multi-level, multi-period complexity of supply chain network de-
sign problems, this paper adopts matrix real-number encoding. Assume popula-
tion size is 𝑃 ′, the 𝑄-th generation population 𝑊𝑄 = {𝐾1, 𝐾2, … , 𝐾𝑃 ′}, where
𝐾𝑗 represents the 𝑗-th individual in generation 𝑄, 𝑗 ∈ [1, 𝑃 ′], 𝑄 ∈ [1, 𝑡max]. De-
fine 𝐾𝑗 = (𝐶𝑎𝑏)𝑚×𝑛, where 𝐶𝑎𝑏 denotes matrix elements, 𝑎 ∈ [1, 𝑚], 𝑏 ∈ [1, 𝑛].
The matrix size 𝐾𝑗 relates to the number of levels and nodes in the supply
chain network, and matrix elements 𝐶𝑎𝑏 primarily reflect logistics or supply
relationships with upper-level suppliers. For example, if 𝐾𝑗 is a 3 × 4 matrix,
the supply chain network model has 3 levels with a maximum of 4 nodes, and
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𝐶21 = (53, 0, 48, 0) indicates that the first node at level 2 receives 53 units from
the first node and 48 units from the third node of the upper-level supplier.

3.2.1 Population Initialization
The fundamental idea of HBA is optimization through simulating honey bad-
ger foraging behavior. Equation (34) initializes the number of honey badgers
(population size 𝑁) and their respective positions:

𝑥𝑖 = 𝑙𝑏𝑖 + 𝑟1 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖)

where 𝑟1 is a random number in [0, 1], 𝑥𝑖 represents the position of the 𝑖-th
honey badger in population 𝑁 , and 𝑙𝑏𝑖 and 𝑢𝑏𝑖 are the lower and upper bounds
of the search domain, respectively.

3.2.2 Predation Intensity
The predation intensity of honey badgers relates to prey concentration intensity
and distance to the 𝑖-th honey badger. 𝐼𝑖 represents prey odor intensity; higher
intensity results in faster movement, and vice versa. It is defined as:

𝐼𝑖 = 𝑆
4𝜋𝑑2

𝑖

where 𝑆 represents prey concentration and odor intensity, and 𝑑𝑖 denotes the
distance between prey and the 𝑖-th honey badger.

3.2.3 Update Density Factor
The density factor (𝛼) controls time-varying randomness to ensure smooth tran-
sition between algorithm phases. According to equation (36), the decreasing
factor 𝛼 is updated with iteration count to reduce temporal randomness:

𝛼 = 𝐶 × exp (− 𝑡
𝑡max

)

where 𝑡max represents maximum iteration count and 𝐶 is a constant greater
than 1 (default value 2).
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3.2.4 Update Particle Position
As described above, HBA particle position updating employs two modes: “dig-
ging mode”and “honey mode.”The algorithm uses a flag 𝐹 to change search
direction, ensuring more rigorous scanning of the search space to escape local
optima.

1) Digging Mode: In digging mode, honey badger movement follows a heart-
shaped trajectory simulated by equation (37):

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦+𝐹1×𝛽×𝐼𝑖×𝑥𝑝𝑟𝑒𝑦+𝐹2×𝛼×𝑑𝑖×cos(2𝜋𝑟3)×cos(2𝜋𝑟4)×(𝑥𝑝𝑟𝑒𝑦−𝑥𝑖)

where 𝑥𝑛𝑒𝑤 represents the new position, 𝑥𝑝𝑟𝑒𝑦 denotes the global best position
(prey location), 𝛽 ≥ 1 (default 6) describes the honey badger’s food acquisition
ability, 𝑑𝑖 is the distance between prey and the 𝑖-th honey badger, 𝑟3, 𝑟4, and
𝑟5 are three distinct random numbers between 0 and 1, and 𝐹1 is a direction
change flag determined by equation (38):

𝐹1 = {1 if 𝑟6 ≤ 0.5
−1 otherwise

where 𝑟6 is a random number in [0, 1]. In digging mode, honey badgers primarily
rely on prey odor intensity 𝐼𝑖, prey distance 𝑑𝑖, and time search influence factor
𝛼.

2) Honey Mode: In honey mode, honey badgers following honeyguides to
beehives can be simulated by equation (39):

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹1 × 𝛼 × 𝑑𝑖 × 𝑟7

where 𝑟7 is a random number in [0, 1], and 𝛼 and 𝐹1 are determined by equations
(36) and (38). Equation (39) shows that honey badgers search near the currently
discovered prey position 𝑥𝑝𝑟𝑒𝑦 based on distance information 𝑑𝑖. This search
behavior is influenced by the time-varying factor (𝛼).

3.3 Differential Honey Badger Algorithm
To improve the original honey badger algorithm’s tendency to fall into local
optima and slow convergence when handling large-scale problems, this paper in-
troduces the crossover and mutation principles from the Differential Evolution
Algorithm (DEA) into the original HBA, forming the Differential Honey Bad-
ger Algorithm (DHBA). By executing differential evolution crossover and muta-
tion strategies when selecting new positions and individuals, DHBA achieves
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broader global search range and greater population diversity. The specific
DE/rand/1/bin crossover-mutation strategy is as follows:

1) Mutation Strategy:

𝑉𝑖,𝑗 = 𝑋𝑝𝑟𝑒𝑦 + 𝐹2 × (𝑋𝑟8,𝑗 − 𝑋𝑟9,𝑗)

where 𝑋𝑝𝑟𝑒𝑦 represents the current optimal position in the search region, 𝐹2 is
a scaling coefficient (constant in (0, 1)), and 𝑋𝑟8,𝑗, 𝑋𝑟9,𝑗 are random individuals
from the population, with 𝑟8, 𝑟9 being distinct integers from population 𝑁 .

2) Crossover Operation:

𝑈𝑖,𝑗 = {𝑉𝑖,𝑗 if rand(0, 1) ≤ 𝐶𝑅
𝑋𝑖,𝑗 otherwise

where rand(0, 1) is a uniformly distributed random number in (0, 1), and 𝐶𝑅
is the crossover probability in [0, 1]. The DHBA algorithm flow is illustrated in
Figure 2.

4 Example Verification
This paper uses a dairy product manufacturer in Shenyang as an example. The
company’s supply chain network covers five administrative districts within the
city, comprising 5 nodes including 3 suppliers, 5 manufacturing centers, 4 ware-
houses, 17 retailers, and 3 collection centers. The company primarily produces
two types of dairy products, with collection centers only recycling one product
type and considering only a fixed single transportation mode. Based on actual
enterprise conditions, all parameter values follow uniform random distributions:
demand uncertainty ̃𝐷𝑅𝑖𝑟𝑡 ∈ [400, 2000], return rate uncertainty 𝐾̃𝑖 ∈ [0, 1].
Specific parameter settings are shown in Table 1.

4.1 Robust Model Verification
To verify the stability and feasibility of the proposed robust optimization model,
five test problems were generated for demand uncertainty scenarios, with pa-
rameters shown in Table 1. Sensitivity analysis was conducted between demand
uncertainty ̃𝐷𝑅𝑖𝑟𝑡 and supply chain network cost/environmental impact func-
tions, with the range set to [400, 1400]. Considering market competition, supply
chain network design should prioritize enterprise benefits and costs, followed by
environmental impact. Therefore, based on comprehensive practical consider-
ations, weights 𝑤1 and 𝑤2 were set to 0.7 and 0.3, respectively, with retailer
return rate set at 0.2.
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Using DHBA for calculation based on Table 1 and actual case data, the variation
of objective function values with demand uncertainty is shown in Figure 3 (unit:
demand/ton).

Figure 2. DHBA algorithm flow

Table 1. Parameter settings

Parameter Range
𝐿𝑆𝑠, 𝐿𝑀𝑚, 𝐿𝑊𝑤, 𝐿𝐴𝑎 10000~40000
𝐻𝐶𝑀𝑖𝑚, 𝐻𝐶𝑊𝑖𝑤, 𝐻𝐶𝐴𝑖𝑎, 𝐻𝐶𝑅𝑖𝑟, Θ𝑖,
𝐶𝑂𝑀𝑖𝑚𝑡

0.04~1

𝐹𝐶𝑀𝑚, 𝐹𝐶𝑊𝑤, 𝐹𝐶𝐴𝑎 5000~80000
𝑇 𝐶𝑆𝑠𝑚𝑡, 𝑇 𝐶𝑀𝑊𝑖𝑚𝑤𝑡, 𝑇 𝐶𝐴𝑀𝑖𝑎𝑚𝑡,
𝑃 𝐶𝑅𝐴𝑖𝑟𝑎𝑡, 𝑃𝐶𝑆𝑀𝑠𝑚𝑡

10~40

𝑇 𝐶𝑊𝑅𝑤𝑟𝑡, 𝑇 𝐶𝑅𝐴𝑟𝑎𝑡, 𝐷𝑅𝑖𝑟𝑡 500~3000
𝐸𝑇 𝑆𝑠𝑚, 𝐸𝑇 𝑀𝑖𝑚𝑤, 𝐸𝑇 𝑊𝑤𝑟, 𝐸𝑇 𝑅𝑟𝑐, 𝐸𝑇 𝐴𝑗𝑎𝑚,
𝐸𝑀𝑚, 𝐸𝐴𝑎

0.9~4.56

Table 2. Robust model test problems

Test Problem 𝐷𝑅𝑖𝑟𝑡

Table 3 compares objective functions between robust and deterministic models
under demand uncertainty. The results show that the robust model demon-
strates significant advantages over the deterministic model, with average total
cost function 𝑍1 decreasing by 34.37% and average environmental impact func-
tion 𝑍2 decreasing by 22.71%.

Table 3. Comparison of robust and deterministic models under uncertain de-
mand

Model 𝑍1/105 𝑍2/105

Robust Optimization Model [values] [values]
Deterministic Model [values] [values]

4.2 Sensitivity Analysis
To further verify model reliability, sensitivity analysis was conducted on retailer
return rates. As shown in Figure 3, cost and environmental functions exhibit
similar trends within [400, 800]. However, within [800, 1400], as retailer demand
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increases, supplier and manufacturer shipment and production volumes increase
rapidly, causing costs to rise sharply. The environmental cost function shows rel-
atively moderate fluctuation with demand uncertainty, primarily due to weight
settings. In reality, upper-level decision-makers in supply chains can determine
weight allocation based on actual policies and preferences.

Figure 3. Influence of demand on supply chain cost and environmental cost

4.3 Algorithm Performance Testing
To comprehensively evaluate DHBA performance, it was compared with
mainstream algorithms including Non-dominated Sorting Genetic Algorithm-II
(NSGA-II), Improved Whale Optimization Algorithm (IWOA) [22], and origi-
nal Honey Badger Algorithm (HBA) in Matlab R2018b. The computational
environment was: R7-4800H RTX2060 processor, 16GB RAM, Windows 11
operating system.

Five test problems were generated for the objective functions (Table 4), with
node parameters from Table 1. Population size was set to 50 and maximum
iterations to 400. To verify the multi-objective robust optimization model and
avoid randomness, two weight scenarios were tested: (𝑤1, 𝑤2) = (0.5, 0.5) and
(0.8, 0.2). DHBA, NSGA-II, and IWOA were applied to solve the model, with
results shown in Table 5 and algorithm comparison in Figure 4.

Table 4. Test problems

Test Problem Description

Table 5. Optimal solutions under two weight scenarios

Algorithm
(0.5, 0.5)
𝑍1/106

(0.5, 0.5)
Time/s

(0.8, 0.2)
𝑍1/106

(0.8, 0.2)
Time/s

DHBA [optimal] [time] [optimal] [time]
NSGA-
II

[value] [time] [value] [time]

IWOA [value] [time] [value] [time]
HBA [value] [time] [value] [time]

The results show that DHBA’s ability to obtain optimal solutions exceeds NSGA-
II and IWOA under both weight scenarios, demonstrating the effectiveness and
feasibility of the differential evolution honey badger algorithm for solving multi-
objective problems. However, DHBA is not perfect—its local search speed still
has room for improvement compared to NSGA-II.
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Figure 4 reveals that in the initial phase [0, 30], HBA’s convergence speed slightly
exceeds DHBA, NSGA-II, and IWOA, while the other three have similar initial
convergence rates. In interval [32, 51], DHBA converges rapidly, outperforming
the others. In [55, 90], IWOA shows optimal convergence speed, but excessively
fast mid-stage convergence can easily lead to local optima, which could be im-
proved by introducing other global search strategies. NSGA-II’s optimization
capability ranks second to DHBA, with similar convergence speed.

Figure 4. Average function value and iteration solution speed

The results indicate that while HBA’s initial convergence speed exceeds DHBA,
NSGA-II, and IWOA, it falls into local optima. Figure 4 visually demonstrates
the significant difference between HBA and DHBA optimal values, validating
the effectiveness of introducing differential evolution principles to improve HBA’
s global optimization capability. Overall, DHBA performs best in optimal value
selection, though its convergence speed requires further enhancement. Future
research could improve HBA by adjusting parameters and refining the dynamic
search patterns of digging and honey modes.

5 Conclusion
This paper establishes a multi-objective optimization model for fresh closed-loop
supply chain network robust optimization design and solves it using DHBA. Key
conclusions are:

a) A multi-objective function minimizing network cost and environmental
impact was established, processed using fuzzy compromise programming
and interval data robust optimization methods for uncertain parameters.

b) The original HBA algorithm was enhanced by introducing differential evo-
lution mutation and crossover strategies to improve search capability and
convergence speed. Comparison with NSGA-II, IWOA, and original HBA
in Matlab simulations demonstrates that DHBA features fast convergence
and superior optimal value search advantages for multi-objective NP-hard
problems.

c) Real-world fresh closed-loop supply chain networks involve more uncer-
tainty factors. This paper considered demand and return rate uncertain-
ties. Future research will incorporate distribution time and product fresh-
ness impacts on closed-loop supply chain design to ensure greater practical
relevance.
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