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Abstract
Synthetic Minority Over-sampling Technique (SMOTE) is one of the effective
methods for addressing class imbalance problems. However, SMOTE’s lin-
ear interpolation mechanism restricts synthetic samples to the line connecting
original samples, resulting in a lack of diversity in new samples, and this line
may generate noisy samples when it passes through majority class regions. To
address the aforementioned issues, a minority class sample generation mecha-
nism with hyper-rectangle constraints is proposed. This mechanism employs
hyper-rectangles as the generation region for new samples to replace linear in-
terpolation, thereby increasing the difference between synthetic samples and
original samples. Moreover, by detecting whether majority class samples exist
within the hyper-rectangle, it determines whether to adjust this hyper-rectangle,
thus preventing newly synthesized samples from falling into majority class re-
gions. The proposed mechanism is used to replace linear interpolation and
is integrated into three oversampling methods: SMOTE, Borderline-SMOTE,
and ADASYN. Experimental evaluations are then conducted on 11 standard
datasets from KEEL. The results demonstrate that, compared with the original
methods, the integrated methods can help classifiers achieve higher F1-scores
and comparable G-mean values. This indicates that the hyper-rectangle gener-
ation mechanism can significantly improve the classifier’s ability to recognize
minority class samples while also taking majority class samples into account.
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Abstract: Synthetic Minority Oversampling Technique (SMOTE) is one of the
effective methods to solve the class-imbalanced problem. However, the linear
interpolation mechanism of SMOTE restricts the synthesized samples to the
connecting line of the original samples, resulting in a lack of diversity for new
samples, and may generate noisy samples when this line passes through the
majority class region. In response to these issues, this paper proposes a gen-
eration mechanism for minority samples with hypercuboid constraints. This
mechanism constructs a hypercuboid as the generation region of new samples
instead of linear interpolation, thereby increasing the variability between the
synthesized samples and the original samples. Then, it detects whether there
are majority samples in the hypercuboid to determine whether to adjust the
hypercuboid, which aims at preventing the new samples from falling into the
region of the majority class. This paper integrated the proposed mechanism into
three oversampling methods—SMOTE, Borderline-SMOTE, and ADASYN—by
using it to replace linear interpolation, and then experimentally evaluated the
integrated methods on 11 benchmark datasets from KEEL. The results showed
that compared to the original methods, the integrated methods could help the
classifier to obtain higher F1 and comparable G-mean. It verifies that the hyper-
cuboid generation mechanism can significantly improve the classifier’s ability to
recognize minority samples, and meanwhile the majority samples are also taken
into account.

Keywords: imbalanced classification; oversampling technique; SMOTE; gener-
ation mechanism; hypercuboid constraints

0 Introduction
The classification of imbalanced data represents a significant challenge in the
fields of machine learning and data mining [?, ?]. In binary classification prob-
lems, data imbalance means that the number of minority class samples is far
smaller than that of majority class samples [?, ?]. This inter-class imbalance
causes standard classifiers to become biased, pushing the decision boundary
toward the minority class and resulting in some minority class samples being
misclassified [?]. However, in important application domains such as medical
diagnosis [?], software defect prediction [?], and malignant tumor grading [?],
the minority class typically contains more critical information [?]. Therefore,
improving classification performance for minority class samples is a key issue in
imbalanced learning.
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Current methods for addressing data imbalance can be divided into two cat-
egories [?]: algorithm-level methods and data-level methods. Algorithm-level
methods emphasize minority class samples by modifying the classifier itself [?, ?].
Data-level methods preprocess the input samples before classifier intervention to
reduce the impact of data imbalance [?, ?]. Data-level methods mainly include
undersampling and oversampling techniques. Undersampling achieves balance
by removing some majority class samples but may lose important distribution
information [?, ?]. Oversampling balances the dataset by increasing minority
class samples, with the most classic method being the Synthetic Minority Over-
sampling Technique (SMOTE) proposed by Chawla et al. [?]. SMOTE generates
new minority class samples through linear interpolation between original minor-
ity class samples, which can improve the classifier’s generalization ability on
the test set.

In recent years, many SMOTE-based methods have been proposed, focusing
on either inter-class imbalance or intra-class imbalance issues [?]. For inter-
class imbalance, Han et al. [?] argued that minority class samples located at
class boundaries are more easily misclassified and proposed Borderline-SMOTE,
which performs synthetic oversampling only on boundary minority class sam-
ples. He et al. [?] proposed ADASYN, an adaptive synthetic oversampling
technique that determines the synthesis weight for minority class samples based
on the proportion of majority class samples in their neighborhood. However,
both Borderline-SMOTE and ADASYN are heavily influenced by the neighbor
parameter K; when K takes different values, the distribution of newly synthe-
sized samples shows significant differences. Yan et al. [?] proposed CMOTE, an
oversampling technique based on a constructive covering algorithm that selects
root samples according to coverage density. However, the setting of two thresh-
old parameters P and D remains an issue requiring discussion. Wang et al. [?]
proposed AdaN_{SMOTE}, which adaptively determines the neighbor value
for minority class samples based on precision degradation and adjusts neigh-
bor size according to noise and other factors. The new samples synthesized
by this method can preserve the distinct clustering characteristics of minority
class samples while effectively avoiding the influence of noise, small disjuncts,
and complex shapes. Li et al. [?] guided the synthesis of boundary samples by
integrating support degree SD and influencing factor posFac, which not only
avoids the blindness of sample selection in SMOTE but also comprehensively
considers the overall sample distribution. However, the SDRSMOTE algorithm
still requires further optimization to improve its operational efficiency.

For intra-class imbalance issues (where minority class samples exhibit multi-
cluster distribution [?]), Sheng et al. [?] improved density peak clustering using
Box-Cox transformation and criteria, and combined it with the SMOTE algo-
rithm. This method can effectively eliminate various types of noise data, and
the obtained clusters are not limited by spatial shape, avoiding subjective in-
terference from manual parameter input. Bunkhumpornpat et al. [?] divided
the minority class into multiple arbitrarily shaped sub-clusters and then syn-
thesized new samples between randomly selected minority class samples and
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sub-cluster centers. However, this method can easily cause inter-class data
overlap and cannot effectively identify boundary samples with higher oversam-
pling weights. Nekooeimehr et al. [?] proposed A-SUMO, an adaptive semi-
unsupervised weighted oversampling method. After using hierarchical clustering
algorithms, it adaptively determines the oversampling size for each sub-cluster.
Additionally, A-SUMO achieved good results in identifying boundary samples.
However, it should be noted that this method only considers distance factors
during clustering, ignoring sample distribution information, resulting in weak
anti-noise interference capability. Douzas et al. [?] proposed a heuristic oversam-
pling method based on K-Means and SMOTE, which estimates sampling weights
according to the size and density of each cluster. However, the K-Means cluster-
ing algorithm cannot find irregularly shaped clusters, and this method does not
provide a feasible strategy for determining the optimal number of clusters. Tao
et al. [?] used density peak clustering algorithms to improve K-Means’short-
comings in handling intra-class imbalance issues. Based on Euclidean distance
and density distribution, the synthesis weights for minority class samples are
adaptively calculated, with boundary and low-density samples receiving higher
sampling opportunities. Although this method can effectively avoid synthesiz-
ing noise data, the setting of the safe distance threshold depends on a parameter
𝛾 to be tuned, and its reasonable value range can currently only be obtained
through experiments.

In fact, every SMOTE-based method can be decomposed into two mechanisms:
a data selection mechanism and a data generation mechanism. The aforemen-
tioned methods all improve the data selection mechanism while adopting the
same linear interpolation as SMOTE for generating new samples. However,
this linear interpolation approach limits the quality of synthesized samples and
is also a primary reason why some oversampling methods cannot overcome intra-
class imbalance issues [?]. Literature [?] also points out that synthesized new
samples should have the ability to expand the minority class region to em-
phasize the importance of the minority class in the overall data distribution.
Particularly, when minority class samples are multi-cluster distributed, linear
interpolation performs synthesis operations between clusters, causing new sam-
ples to fall into the majority class region and form noise, further aggravating
overlap between the two classes [?].

To address the problems existing in the linear interpolation generation mech-
anism and make new samples more random and diverse, this paper proposes
a data generation mechanism with hypercuboid constraints (referred to as the
hypercuboid generation mechanism). This mechanism first constructs a hyper-
cuboid using the line connecting a minority class root sample and its selected
neighbor as the diagonal; new samples will be generated within this hyper-
cuboid. However, before generation, it is necessary to detect whether majority
class samples exist within the hypercuboid. If they do, the hypercuboid is ad-
justed. Finally, new minority class samples are generated in safe regions without
majority class samples. The hypercuboid generation mechanism is an indepen-
dent module that can replace linear interpolation and be integrated into most
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SMOTE-based methods. Next, this paper will first explain the proposed hyper-
cuboid generation mechanism, then embed it into three oversampling methods
—SMOTE, Borderline-SMOTE, and ADASYN—and conduct experimental com-
parisons with the original methods to evaluate the effectiveness of this mecha-
nism.

1.1 SMOTE and Linear Interpolation
SMOTE iteratively searches and selects one sample from the minority class as
a root sample, calculates the Euclidean distances from the root sample to other
minority class samples, and obtains the k nearest minority class neighbors of the
root sample. Then, between the root sample and a randomly selected neighbor,
SMOTE uses linear interpolation to synthesize new minority class samples.

Given a minority class sample set 𝑋 in d-dimensional Euclidean space ℝ𝑑, as-
sume 𝑥𝑖 ∈ 𝑋 is the currently selected root sample, and when 𝑘 = 5, the obtained
neighbor set is 𝑆𝑛𝑛 = {𝑥𝑛𝑛1

, 𝑥𝑛𝑛2
, 𝑥𝑛𝑛3

, 𝑥𝑛𝑛4
, 𝑥𝑛𝑛5

}. According to SMOTE’s
linear interpolation principle, if 𝑥𝑛𝑛2

is randomly selected (Fig. 1(a)), the new
sample 𝑥𝑠𝑦𝑛 will be synthesized on the line connecting 𝑥𝑖 and 𝑥𝑛𝑛2

, that is:

𝑥𝑠𝑦𝑛 = 𝑥𝑖 + 𝜀 × (𝑥𝑛𝑛2
− 𝑥𝑖)

where 𝜀 is a random number between (0, 1). Intuitively, 𝑥𝑠𝑦𝑛 is restricted to
a line segment, and literature [?] also points out that this linear interpolation
affects the quality of synthesized new samples. Additionally, if the selected
neighbor sample is 𝑥𝑛𝑛5

(Fig. 1(b)), the line connecting 𝑥𝑖 and 𝑥𝑛𝑛5
will pass

through the majority class region, and the new sample 𝑥𝑠𝑦𝑛 will be synthesized
among majority class samples, resulting in noise generation.

1.2 Generation within Hypercuboid
To address the aforementioned problems of linear interpolation, this paper pro-
poses a hypercuboid generation mechanism to expand the distribution range
of minority class samples. Given 𝑥𝑖 ∈ 𝑋 in ℝ𝑑, if its neighbor 𝑥𝑛𝑛2

is ran-
domly selected (Fig. 2(a)), the new sample 𝑥𝑠𝑦𝑛 will be synthesized within the
hypercuboid determined by 𝑥𝑖 and 𝑥𝑛𝑛2

, that is:

𝑥𝑠𝑦𝑛 = 𝑥𝑖 + 𝐴 × (𝑥𝑛𝑛2
− 𝑥𝑖)

where 𝐴 is a d-order diagonal matrix, 𝐴 = diag(𝛼1, 𝛼2, ⋯ , 𝛼𝑑), and
𝛼𝑖(𝑖 = 1, 2, ⋯ , 𝑑) are random numbers between (0, 1). If the minor-
ity class samples are expanded by dimension, 𝑥𝑖 = {𝑥1

𝑖 , 𝑥2
𝑖 , ⋯ , 𝑥𝑑

𝑖 }𝑇 and
𝑥𝑛𝑛2

= {𝑥1
𝑛𝑛2

, 𝑥2
𝑛𝑛2

, ⋯ , 𝑥𝑑
𝑛𝑛2

}𝑇 will be represented as:
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𝑥𝑠𝑦𝑛 =
⎛⎜⎜⎜⎜
⎝

𝑥1
𝑖 + 𝛼1 × (𝑥1

𝑛𝑛2
− 𝑥1

𝑖 )
𝑥2

𝑖 + 𝛼2 × (𝑥2
𝑛𝑛2

− 𝑥2
𝑖 )

⋮
𝑥𝑑

𝑖 + 𝛼𝑑 × (𝑥𝑑
𝑛𝑛2

− 𝑥𝑑
𝑖 )

⎞⎟⎟⎟⎟
⎠

Through Equation (3), it can be seen that compared with linear interpolation,
generation within the hypercuboid increases the randomness and distribution
range of new samples. However, it is worth noting that 𝑥𝑠𝑦𝑛 still has a certain
probability of being synthesized on the line connecting 𝑥𝑖 and 𝑥𝑛𝑛2

, at which
point the hypercuboid generation mechanism degenerates into linear interpola-
tion.

This degeneration probability can be estimated. Assuming 𝛼𝑖 contains 𝑟 dec-
imal places, the probability that the synthesized sample lies on the line con-
necting 𝑥𝑖 and 𝑥𝑛𝑛2

is 𝑃 = 10−𝑟(𝑑−1). From this, it can be obtained that when
high-dimensional data is applied, the probability of the hypercuboid genera-
tion mechanism degenerating into linear interpolation is very low. For example,
when 𝑑 = 2 and 𝑟 = 2, 𝑃 = 0.01; when 𝑑 = 2 and 𝑟 = 4, 𝑃 = 0.0001.

1.3 Noise Prevention Strategy
As shown in Fig. 2(b), when the selected neighbor sample is 𝑥𝑛𝑛5

, the hyper-
cuboid determined by 𝑥𝑖 and 𝑥𝑛𝑛5

overlaps with the majority class region. If
new samples are synthesized within this hypercuboid, they will fall among ma-
jority class samples and form noise. To avoid synthesizing noise, this paper
adds a detection and correction strategy to the hypercuboid generation mecha-
nism. First, it calculates and detects majority class samples falling within the
hypercuboid, obtaining 𝑇 = {𝑦𝑗}. Then, it finds the majority class sample 𝑦𝑝
in 𝑇 that is closest to 𝑥𝑖. Finally, it executes the correction strategy, adjusting
the initial hypercuboid determined by 𝑥𝑖 and 𝑥𝑛𝑛5

to a new hypercuboid deter-
mined by 𝑥𝑖 and 𝑦𝑝, which ultimately serves as the generation region for new
samples.

The formal description of this detection and correction strategy is given below.
Given the majority class sample set 𝑌 , the strategy first detects whether 𝑦𝑗 ∈ 𝑌
is located within the initial hypercuboid 𝐺(𝑥𝑖, 𝑥𝑛𝑛5

). For the 𝑡-th dimension of
𝑦𝑗, the judgment criterion is as shown in Equation (5):

min(𝑥𝑡
𝑖, 𝑥𝑡

𝑛𝑛5
) ≤ 𝑦𝑡

𝑗 ≤ max(𝑥𝑡
𝑖, 𝑥𝑡

𝑛𝑛5
)

If every dimension of 𝑦𝑗 satisfies Equation (5), it indicates that 𝑦𝑗 is located
within the initial hypercuboid, and 𝑦𝑗 is placed into set 𝑇 . The above detection
steps must traverse every sample in 𝑌 . After traversal, if 𝑇 ≠ ∅, the sample 𝑦𝑝
closest to 𝑥𝑖 is found from 𝑇 using Equation (6):

chinarxiv.org/items/chinaxiv-202205.00132 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00132


𝑦𝑝 = arg min
𝑦𝑗∈𝑇

‖𝑥𝑖 − 𝑦𝑗‖

Then, the correction strategy is used to reconstruct the hypercuboid based on
𝑥𝑖 and 𝑦𝑝, and new samples are generated within the corrected hypercuboid. It
should be noted that the correction strategy only needs to be executed once to
ensure that the corrected hypercuboid does not contain majority class samples.
This is because if there exists 𝑦𝑞(𝑞 ≠ 𝑝) falling within the corrected hypercuboid,
then Equation (7) holds:

‖𝑥𝑖 − 𝑦𝑞‖ < ‖𝑥𝑖 − 𝑦𝑝‖

which clearly contradicts Equation (6).

It should be noted that if the hypercuboid generation mechanism is not treated
as an independent module for replacing linear interpolation in SMOTE-based
oversampling algorithms, the correction lookup process in Algorithm 1 can be
further optimized. We can pre-calculate information about majority class sam-
ples contained in hypercuboids formed by any two minority class samples in
the training set, and then use this information during each new sample syn-
thesis. For example, if the hypercuboid formed by minority class samples 𝑥𝑖
and 𝑥𝑛𝑛2

contains majority class samples {𝑦1, 𝑦3, 𝑦7, 𝑦9}, it is represented as
𝐺(𝑥𝑖, 𝑥𝑛𝑛2

) ← {𝑦1, 𝑦3, 𝑦7, 𝑦9}, indicating that the hypercuboid formed by mi-
nority class samples 𝑥𝑖 and 𝑥𝑛𝑛2

contains majority class samples 𝑦1, 𝑦3, 𝑦7, 𝑦9.
Before oversampling, all 𝐺(𝑥𝑖, 𝑥𝑛𝑛) are calculated, so this information can be
directly used when synthesizing new samples, which will greatly shorten the
algorithm’s running time.

Notably, based on 𝐺(𝑥𝑖, 𝑥𝑛𝑛), it is unnecessary to traverse the entire majority
class sample set 𝑌 . Correspondingly, steps b)~l) in Algorithm 1 can be simplified
to a single step: 𝑇 ← 𝐺(𝑥𝑖, 𝑥𝑛𝑛). At this point, the algorithm’s input needs to
include a new parameter 𝐺, and the algorithm’s time complexity will decrease
from 𝑂(|𝑌 |) to 𝑂(1).

1.4 Algorithm Description
The operational steps of the hypercuboid generation mechanism are shown in
Algorithm 1. Steps 4-8 detect whether a majority class sample 𝑦𝑗 is located
within the initial hypercuboid constructed by 𝑥𝑖 and 𝑥𝑛𝑛. If so, 𝑦𝑗 is placed
into set 𝑇 . Steps 13-15 find the sample 𝑦𝑝 in 𝑇 (when 𝑇 is not empty) that
is closest to 𝑥𝑖. Steps 16-18 synthesize new minority class samples. In specific
details, |𝑇 | represents the cardinality of set 𝑇 , and flag serves as a switch for
whether 𝑦𝑗 is stored in 𝑇 .

The time complexity of this algorithm can be estimated as 𝑂(|𝑌 |), which is
higher than the 𝑂(1) of linear interpolation. However, since this mechanism
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needs to be embedded into synthetic oversampling algorithms, and the oversam-
pling process belongs to the data preprocessing stage, which is independent of
the classifier, it does not affect the classifier’s training time.

Algorithm 1: Hypercuboid Data Generation Mechanism
Input: Minority class root sample 𝑥𝑖, neighbor 𝑥𝑛𝑛, majority class sample set
𝑌
Output: A synthesized minority class sample 𝑥𝑠𝑦𝑛

a) Initialize 𝑇 = ∅

b) For 𝑗 = 1 to |𝑌 |

c) flag = 1

d) For 𝑡 = 1 to 𝑑

e) If $y_j^t > \max(x_i^t, x_{nn}^t)$ or $y_j^t < \min(x_i^t, x_{nn}^t)$

f) flag = 0

g) Break

h) End If

i) End For

j) If flag == 1

k) $T \leftarrow T \cup \{y_j\}$

l) End If

m) End For

n) If 𝑇 ≠ ∅

o) 𝑦𝑝 = arg min𝑦𝑗∈𝑇 ‖𝑥𝑖 − 𝑦𝑗‖

p) End If

q) For 𝑡 = 1 to 𝑑
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r) 𝑥𝑡
𝑠𝑦𝑛 = 𝑥𝑡

𝑖 + random(0, 1) × (𝑥𝑡
𝑛𝑛 − 𝑥𝑡

𝑖)

s) End For

2 Experimental Results and Analysis
The proposed hypercuboid generation mechanism is an independent module that
can be embedded into SMOTE-based algorithms to replace linear interpolation
and improve the quality of synthesized data. This paper embeds the proposed
mechanism into three oversampling algorithms—SMOTE, Borderline-SMOTE
(abbreviated as BLSMOTE), and ADASYN—and refers to the embedded algo-
rithms as HC-SMOTE, HC-BLSMOTE, and HC-ADASYN. The effectiveness
of this mechanism is then evaluated through experiments on both artificial syn-
thetic datasets and standard benchmark datasets.

2.1 Artificial Synthetic Dataset Experiments
The artificial synthetic datasets are shown in Fig. 3, where minority class sam-
ples are represented by red stars and majority class samples by gray circles. Figs.
3(a)(c)(e) show the results of using original SMOTE, BLSMOTE, and ADASYN
for oversampling minority class samples, with newly synthesized samples repre-
sented by triangles. Figs. 3(b)(d)(f) show the results of using HC-SMOTE,
HC-BLSMOTE, and HC-ADASYN for oversampling, with newly synthesized
samples represented by diamonds.

From Fig. 3, it can be observed that SMOTE, BLSMOTE, and ADASYN syn-
thesize minority class samples using linear interpolation, and the new samples
are all located on the lines connecting original minority class samples, showing
an obvious linear distribution. After embedding the hypercuboid generation
mechanism, HC-SMOTE, HC-BLSMOTE, and HC-ADASYN synthesize more
uniformly distributed minority class samples and expand the distribution range
of the minority class. Additionally, Figs. 3(a)(c) show cases where synthesized
samples cross the majority class region; these new samples become noise and de-
grade classifier performance. However, after using the noise prevention strategy
in the proposed mechanism, this situation no longer occurs, as shown in Figs.
3(b)(d).

2.2 Standard Dataset Experiments
To ensure objectivity, 11 standard datasets were selected from the KEEL im-
balanced database [?] for experiments. The dataset descriptions are shown in
Table 1. Each dataset has already been divided into training and test sets us-
ing 5-fold cross-validation, and experimental results will report the average of
5 experiments. Experimental parameters are set to default values: SMOTE,
BLSMOTE, and ADASYN use neighbor parameters of 5, 5, and 7 respectively

chinarxiv.org/items/chinaxiv-202205.00132 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00132


when synthesizing samples, and BLSMOTE uses a neighbor parameter of 7 when
determining boundary samples. Classifiers used are C4.5 [?] and AdaBoost [?].

Evaluation metrics include F1 and G-mean. F1 is the harmonic mean of Pre-
cision and Recall, reflecting the classifier’s ability to classify minority class
samples. G-mean is the geometric mean of Sensitivity and Specificity, reflecting
the classifier’s ability to balance both classes. These metrics are calculated
based on the confusion matrix (Table 2) as follows:

Precision = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃 , Recall = Sensitivity = 𝑇 𝑃

𝑇 𝑃 + 𝐹𝑁

Specificity = 𝑇 𝑁
𝑇 𝑁 + 𝐹𝑃 , 𝐹1 = 2 × Recall × Precision

Recall + Precision

𝐺-mean = √Sensitivity × Specificity

Table 3 shows the comparative experimental results between HC-SMOTE and
original SMOTE. C4.5 achieved higher F1 on 9 datasets and higher G-mean on
5 datasets, indicating that after HC-SMOTE oversampling, C4.5’s ability to
recognize minority class samples was significantly improved, though it was still
insufficient in balancing the majority class. AdaBoost achieved higher F1 on all
11 datasets and better G-mean on 8 datasets, demonstrating that HC-SMOTE
had a positive impact on AdaBoost.

Table 4 shows the comparative experimental results between HC-BLSMOTE
and original BLSMOTE. C4.5 achieved higher F1 on 7 datasets and higher
G-mean on 9 datasets, while AdaBoost achieved higher F1 and G-mean on
8 datasets. Since BLSMOTE only oversamples boundary minority class sam-
ples during the data selection stage, the excellent performance after combining
with the proposed mechanism indicates that synthesizing minority class sam-
ples within hypercuboid regions at boundaries can greatly improve the quality
of newly synthesized samples and help enhance the classifier’s generalization
performance.

Table 5 shows the comparative experimental results between HC-ADASYN and
original ADASYN. C4.5 and AdaBoost achieved higher F1 on 11 and 10 datasets
respectively, but only achieved higher G-mean on 6 and 3 datasets respectively.
ADASYN assigns a synthesis weight to each minority class sample, where the
weight increases when more majority class samples are in the neighborhood.
After embedding the hypercuboid generation mechanism, HC-ADASYN pays
more attention to minority class samples with larger weights, but may cause
some majority class samples to be neglected.

Fig. 4 shows boxplots of the above experimental results, where red diamond
points represent the mean and green dashed lines represent the median. SM,
BD, and AD are abbreviations for oversampling methods SMOTE, BLSMOTE,
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and ADASYN, respectively. C45 and Ada are abbreviations for classifiers C4.5
and AdaBoost, respectively. From subplots 4(a)(c)(e), it can be seen that the
improved methods achieved substantial leads in F1, indicating that the proposed
mechanism can significantly improve the classifier’s recognition of the minority
class. Meanwhile, the improved HC-SMOTE and HC-BLSMOTE also outper-
formed the original methods in G-mean. Overall, the performance was best
when the hypercuboid generation mechanism was embedded into Borderline-
SMOTE.

3 Conclusion
This paper proposes a novel data generation mechanism to improve synthetic
oversampling methods. It uses a hypercuboid as the generation region for new
samples instead of linear interpolation to increase the diversity between syn-
thesized and original samples. To prevent new samples from falling into the
majority class region, a detection and correction strategy is added to the hyper-
cuboid generation mechanism, thereby avoiding noise generation.

Experiments on standard datasets show that when this mechanism is integrated
into three oversampling methods—SMOTE, Borderline-SMOTE, and ADASYN
—two standard classifiers achieved higher F1 values on most datasets, demon-
strating that the hypercuboid generation mechanism can significantly improve
the classifier’s ability to recognize minority class samples. On the G-mean
evaluation metric, the integrated methods performed comparably to the origi-
nal methods, indicating that while focusing on minority class samples, they can
also take majority class samples into account.

This work approaches the problem from the perspective of data generation mech-
anisms, providing a new research direction for oversampling methods in imbal-
anced learning. However, the proposed hypercuboid generation mechanism is
heuristic, and its effectiveness is established through experimental evaluation.
Future work will conduct in-depth theoretical research on the impact of data
generation mechanisms on the quality of synthesized samples.
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