
AI translation ・View original & related papers at
chinarxiv.org/items/chinaxiv-202205.00123

A Postprint Study on Goal-based Domain Ran-
domization Methods for Robot Manipulation
Authors: Zhang Xiayu, Chen Xiaoping

Date: 2022-05-18T16:08:25+00:00

Abstract
Employing reinforcement learning to address robot manipulation problems offers
numerous advantages; however, traditional reinforcement learning algorithms
encounter challenges associated with sparse rewards, and the policies obtained
are difficult to directly deploy in real-world environments. To enhance the suc-
cess rate of policy transfer from simulation to reality, we propose a goal-oriented
domain randomization methodology: utilizing goal-based reinforcement learning
algorithms for model training, which can effectively mitigate the sparse reward
problem in robot manipulation tasks, yielding policies that perform well in sim-
ulated environments. Concurrently, the algorithm incorporates a goal-driven
domain randomization approach, which proves effective in improving policy
generalization and bridging the gap between simulation and real-world envi-
ronments, thereby facilitating the transfer of policies from simulation to reality
for successful execution. Experimental results demonstrate that reinforcement
learning algorithms employing the goal-oriented domain randomization method
contribute to improving the success rate of policy transfer from simulation to
reality.

Full Text
Research on Goal-Based Domain Randomization Method
in Robot Manipulation
Zhang Xiayu†, Chen Xiaoping
(University of Science & Technology of China, Hefei 230026, China)

Abstract: Reinforcement learning offers numerous advantages for solving robot
manipulation problems. However, traditional reinforcement learning algorithms
face the challenge of sparse rewards, and the learned policies are difficult to
apply directly to real-world environments. To improve the success rate of pol-
icy transfer from simulation to reality, this paper proposes a goal-based do-

chinarxiv.org/items/chinaxiv-202205.00123 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00123
https://chinarxiv.org/items/chinaxiv-202205.00123

main randomization method. The approach employs goal-based reinforcement
learning algorithms for model training, which effectively addresses the sparse
reward problem in robot manipulation tasks. The resulting policies perform
well in simulation environments. Simultaneously, the algorithm incorporates
goal-conditioned domain randomization, which demonstrates excellent effective-
ness in improving policy generalization and bridging the gap between simulation
and reality. Policies trained in simulation can be easily transferred to real-world
environments and executed successfully. Results show that the reinforcement
learning algorithm using the goal-based domain randomization method helps
improve the success rate of policy migration from simulation to reality.

Key words: reinforcement learning; domain randomization; robot manipula-
tion; sim-to-real transfer

0 Introduction
With the development of artificial intelligence technology and the proliferation
of automation equipment, robot manipulation plays an increasingly important
role in real-world applications. Unlike traditional task planning methods, re-
inforcement learning enables agents to discover optimal policies autonomously
through interaction with the environment and feedback from reward functions,
without requiring designers to concern themselves with specific implementation
details. This provides a natural advantage for solving robot manipulation prob-
lems. For instance, the OpenAI team has achieved complex manipulation tasks
with dexterous robotic hands, while domestic research teams have implemented
object grasping on Kinova robotic arms using reinforcement learning.

Robot manipulation tasks involve enormous state spaces and sparse rewards,
while complex manipulation tasks are difficult to equip with manually defined
reward functions. Consequently, reinforcement learning-based algorithms still
face significant challenges in practical applications. Moreover, applying rein-
forcement learning in real-world manipulation tasks presents numerous difficul-
ties. Direct sampling and training in real environments is often impractical due
to low sampling efficiency and safety risks to personnel and equipment during
training and testing. While transferring policies learned in simulation to real-
world scenarios appears feasible, modeling errors between simulators and phys-
ical environments, along with discrepancies between simulated and actual data
acquisition, render such policies unusable. Therefore, addressing the mismatch
between simulation and real-world environments and overcoming the “Reality
Gap”represents a key direction for solving robot manipulation tasks through
reinforcement learning.

Various methods exist to address this reality gap. The problem of transferring
control policies from simulation to reality can be viewed as an instance of do-
main adaptation, where a model trained in a source domain is transferred to
a new target domain. These methods rely on a key assumption: different do-

chinarxiv.org/items/chinaxiv-202205.00123 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00123

mains share common features, enabling representations and behaviors learned
in one domain to be leveraged in another. Domain adaptation methods learn a
mapping from simulation and real-world states to a shared latent space. Train-
ing occurs in simulation using the mapped state space, and when transferring
to reality, states are similarly mapped to the latent space before applying the
simulation-trained model. Domain randomization, conversely, randomizes in-
formation or parameters in the simulation environment. From a theoretical
perspective, Chen Xiaoyu et al. provide a theoretical explanatory model for
the classic sim-to-real transfer problem, particularly explaining why and when
domain randomization algorithms are effective. Through POMDP model anal-
ysis, they demonstrate that domain randomization effectively solves sim-to-real
transfer problems in robot manipulation and offers excellent performance guar-
antees, with well-designed methods theoretically capable of training without
any real-world data. Peng et al. randomize physical parameters, optimizing the
expected cumulative return across numerous virtual environments with differ-
ent physical parameters to produce more robust policies. Chebotar et al. build
upon this by using existing policies to generate trajectories in both virtual and
real environments from the same initial state, then adjusting randomized phys-
ical parameters by comparing trajectory differences. Tobin et al. apply domain
randomization to visual representations of environments. Niu et al. use do-
main randomization to improve the robustness of autonomous driving training
in simulation.

These methods primarily focus on objective environmental differences (typically
physical parameter variations) while paying less attention to differences in the
driven entities within the environment. In fact, robot manipulation itself is an
underactuated system, where actual control outcomes often deviate from model
expectations. This discrepancy primarily stems from actuator driving methods
and sensor feedback biases rather than environmental parameter errors. While
higher-precision actuators can reduce this gap, they cannot eliminate it entirely,
and randomization of environmental parameters often proves ineffective in this
regard.

Beyond domain-related methods, Andrei et al. extend a special type of pro-
gressive neural network to reinforcement learning for model training, while
Christiano et al. employ inverse dynamics models. However, these methods are
relatively model-dependent and exhibit limited generalization across different
manipulation tasks.

In summary, existing methods each have strengths in overcoming simulation-
reality discrepancies, yet none can guarantee transfer success rates while simul-
taneously maintaining training speed and algorithm generalization across tasks.
Therefore, this paper proposes a goal-based domain randomization method that
addresses sparse rewards in reinforcement learning through experience replay
while improving policy adaptability to differences between real and simulated
environments via domain randomization. This approach not only outperforms
other domain randomization algorithms in training efficiency but also ensures

chinarxiv.org/items/chinaxiv-202205.00123 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00123

high success rates when executing tasks in real-world environments.

1.1 Reinforcement Learning Formulation for Robot Manip-
ulation
Based on the above, this paper first formulates robot manipulation as a reinforce-
ment learning problem. In robot manipulation tasks, a standard reinforcement
learning model can be described as a process where an agent maximizes returns
through interaction with the environment. For convenience in subsequent de-
scriptions, this paper assumes fully observable environments. A deterministic
policy maps from state space 𝑆 to action space 𝐴, with each policy query sam-
pling actions from a specific distribution. The reward function 𝑟 ∶ 𝑆×𝐴×𝑅 → 𝑆
represents the value of executing a specific action in a given state. The state
transition probability 𝑝(⋅|𝑠𝑡, 𝑎𝑡) denotes the probability distribution of transi-
tioning to state 𝑠𝑡+1 after executing action 𝑎𝑡 in state 𝑠𝑡. At each time step 𝑡,
the agent generates an action from the policy based on the current state:

𝑎𝑡 ∼ 𝜋(⋅|𝑠𝑡)

and receives a new state from the state distribution 𝑠𝑡+1 ∼ 𝑝(⋅|𝑠𝑡, 𝑎𝑡). The
agent’s objective is to maximize its expected return 𝐺𝑡 = ∑𝑇

𝑖=𝑡 𝛾𝑖−𝑡𝑟(𝑠𝑖, 𝑎𝑖),
where 𝛾 ∈ [0, 1] is the discount factor. The action-value function is defined as
𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼𝑠𝑡,𝑎𝑡

[𝑅𝑡|𝑠𝑡, 𝑎𝑡]. A policy 𝜋∗ is considered optimal if for any 𝜋,
we have 𝑄𝜋∗(𝑠, 𝑎) ≥ 𝑄𝜋(𝑠, 𝑎) for all 𝑠, 𝑎. All optimal policies share the same
𝑄 function, called the optimal 𝑄 function and denoted as 𝑄∗. The optimal
function satisfies the following Bellman equation:

𝑄∗(𝑠, 𝑎) = 𝔼𝑠′ [𝑟 + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)|𝑠, 𝑎]

1.2 Hindsight Experience Replay
Due to the large task space and sparse rewards in robot manipulation, conven-
tional reinforcement learning algorithms struggle to converge. Learning success-
ful policies from sparse binary rewards poses a significant challenge for most
reinforcement learning algorithms. Consider the simple bit-flipping task as an
example: the state is a binary sequence {0, 1}𝑛, and actions flip any one of the
𝑛 positions. If the reward function is set to 0 when the sequence is correct and
−1 otherwise, traditional reinforcement learning algorithms fail to train when
the sequence length exceeds 20 using binary rewards.

Another example is the common pushing task in robot manipulation. In typical
simulation environments, the state space 𝑆 is defined as all reachable positions
of the agent, while the action space is a 2D tuple (𝑥, 𝑦) representing the distance

chinarxiv.org/items/chinaxiv-202205.00123 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00123

traveled in the 𝑥 and 𝑦 directions, usually with a step size of 0.01 seconds and a
maximum of 200 steps. A simple and easily constructed reward function is the
binary reward 𝑟(𝑠, 𝑔), which only indicates whether the given state satisfies the
goal. For each episode, both initial and goal states are sampled uniformly. The
policy receives a −1 reward until reaching the goal state:

𝑟(𝑠, 𝑔) = {0, if goal
−1, otherwise

In the pushing task, using this reward function means rewards are only obtained
when the box is pushed to the target position, resulting in excessively sparse
rewards that prevent most algorithms from converging when the task space is
large.

For tasks that can be fully modeled, reinforcement learning algorithms can guide
agents toward the overall objective through carefully designed reward functions.
For instance, in the aforementioned bit-flipping task, if the reward function is
designed as 𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) = −‖𝑠𝑡+1 − 𝑔‖2

2, general reinforcement learning algo-
rithms can demonstrate excellent performance. However, for complex problems,
designing reward functions is often extremely difficult and may lead to sub-
optimal behaviors. Real-world robot manipulation environments are complex,
making it impractical to construct specialized reward functions for most tasks.
Therefore, this paper utilizes Hindsight Experience Replay (HER) to address
this issue, enabling policy training with sparse and non-specialized binary re-
ward functions.

The HER algorithm is based on a simple idea: training in sparse reward spaces
generates numerous failure trajectories. If these failed trajectories can be lever-
aged to improve learning efficiency, it becomes possible to train viable policies
using simple, non-specialized reward functions. In a failed trajectory, the true
goal 𝐺 remains unachieved throughout. Since the trajectory fails to reach the
goal, the agent cannot update its policy from such reward information, as each
time step only provides a −1 reward that is difficult for general reinforcement
learning algorithms to utilize.

During replay, for trajectories that fail to reach the goal, the algorithm extracts
achieved states from these trajectories as virtual goals. Using these virtual goals,
it computes rewards and trains with reinforcement learning methods. Although
the trajectory is unsuccessful for the original goal, it becomes successful under
the new virtual goal. Consequently, rewards computed based on virtual goals
are not limited to −1. By replaying past experiences, the agent can train with
more successful examples than originally recorded.

HER is a goal-based reinforcement learning algorithm that augments the input
state with a goal 𝑔, representing the state as (𝑠, 𝑔). The strategy for selecting
new goals involves randomly choosing 𝑘 states from the same trajectory after

chinarxiv.org/items/chinaxiv-202205.00123 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00123

state 𝑠𝑡 as the goal 𝑔′. After setting the goal, the algorithm generates new
rewards using the corresponding trajectory.

HER employs the Deep Deterministic Policy Gradient (DDPG) algorithm as
the off-policy reinforcement learning method. DDPG is designed for continu-
ous control problems and maintains two neural networks: a Critic network for
evaluating Q-values and an Actor network for generating the target policy.

Algorithm 1: Hindsight Experience Replay (HER)
Input: Off-policy reinforcement learning algorithm 𝒜; goal selection strategy
𝜋𝑔; reward function 𝑟
Output: Trained policy network 𝜋

1. Initialize 𝒜, replay buffer ℛ
2. for episode in range do

3. Obtain initial state 𝑠0 and goal 𝑔
4. for 𝑡 in range (0, 𝑇 − 1) do

5. Compute next action a_t based on current state s_t and goal g

6. Execute action a_t to obtain new state s_{t+1}

7. end for

8. for 𝑡 in range (0, 𝑇 − 1) do

9. Store $(s_t, a_t, r_t, s_{t+1}, g)$ in buffer \mathcal{R} for experience replay

10. end for

11. Optimize policy using 𝒜 and ℛ
12. end for

2 Goal-Based Domain Randomization Algorithm
However, policies obtained through experience replay alone exhibit poor gener-
alization and are difficult to apply in real-world environments. Training fails to
converge for complex tasks with varying objectives. Furthermore, current tech-
nology cannot create simulators that perfectly model real environments. Differ-
ences between simulation and reality lead to low success rates when transferring
policies to physical execution. Using the pushing task as an example, simulation
environments can obtain accurate coordinates of objects and robot end-effectors,
but in real-world experiments, such coordinates can only be acquired through
positioning systems like MCS, whose data is susceptible to environmental noise
and sampling errors. Moreover, physical properties of real environments are dif-
ficult to replicate completely in simulation. Executing identical actions from the

chinarxiv.org/items/chinaxiv-202205.00123 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00123

same state may yield different outcomes than simulation predictions, with vari-
ations occurring across repeated executions. Specifically, sampling frequency,
latency, jitter during policy execution, and subtle unmodeled environmental
differences all introduce interference.

This paper addresses these issues using domain randomization: a complemen-
tary adaptation technique that models differences between source and target
domains as variability within the source domain. Considering that discrepan-
cies between real and simulated environments result from multiple factors that
ultimately affect task states during execution, this work randomizes goals dur-
ing training to simulate errors between actual states and targets caused by the
reality gap, thereby producing more generalizable and robust policies.

To enhance policy generalization and improve success rates in real-world execu-
tion, this paper proposes a goal-based domain randomization algorithm. The
objective is to train a policy that performs effectively in both real and simulated
environments. Given the difficulty of sampling in real environments, training
occurs in simulation where success rates and training speed are tested before
transferring the learned policy to real-world environments for further evalua-
tion. The policy is represented by trained neural networks, with real-world
execution involving feeding sampled environmental states into the network to
obtain action strategies at each step.

2.1 Domain Randomization Method

In sim-to-real transfer problems, the physical characteristics of target real envi-
ronments are difficult to simulate completely with current technology. This has
led to physics-based randomization methods that randomize dynamics-related
parameters including robot link masses, joint damping, object masses, friction
coefficients between objects and tables, table height, position sensor data, and
time steps between actions. Randomizing these parameters aims to reduce
dynamics-related differences between simulation and reality, thereby improving
task success rates.

The proposed method recognizes that simulation environments can never be per-
fectly identical to real ones. Goal-conditioned algorithms involve goals similar
to those in human operation. Randomizing these goals within the operational
space according to specific distributions enables trained policies to better ac-
commodate discrepancies between achieved results and intended targets during
task execution.

Vision-based randomization methods randomize visual information including
clutter shapes and quantities, object textures and positions, background tex-
tures of tables and floors, simulated camera positions and orientations, light-
ing sources, and surface reflectance properties. Such randomization acknowl-
edges that agents have limited observation capabilities and cannot access mate-
rial properties that significantly impact training effectiveness. These methods
share a similar fundamental approach with dynamics randomization—expand-

chinarxiv.org/items/chinaxiv-202205.00123 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00123

ing datasets to narrow the simulation-reality gap, which currently cannot be
eliminated entirely.

This paper randomizes goals in goal-conditioned reinforcement learning, which
represent unique states distinct from previously randomized environmental pa-
rameters. Goal randomization fully leverages the characteristics of goal-driven
algorithms with practical significance: robot manipulation is inherently an un-
deractuated system where actual control outcomes often deviate from model ex-
pectations. This discrepancy arises not only from physical parameter differences
but also from actuator motion strategies. While higher-precision actuators can
reduce this gap, they cannot eliminate it completely. Randomizing goals enables
learned policies to adapt to underactuation-induced errors, thereby improving
manipulation success rates. Additionally, since simulation errors in physical pa-
rameters typically compound with system underactuation to produce final goal
errors, goal randomization addresses this combined effect.

2.2 Goal Randomization Method

HER is naturally a goal-conditioned algorithm, making it possible to improve
policy generalization by processing training goals. During training, the goal 𝑔 in
each episode is randomized with parameters drawn from a specific distribution
to simulate real-world conditions. The operation involves generating a new goal
for each sampled state transition: given that this paper focuses on robot manip-
ulation tasks where goals are object coordinates (e.g., the endpoint coordinate
where the object should be manipulated, or the midpoint coordinate of a door
handle axis for door-opening tasks), the new goal selection employs future state
prediction (using a state several steps ahead in the trajectory as the new goal
for that transition).

The purpose of introducing goal randomization parameters is to process the
generated new goals in a specific manner (since manipulation task goals are
object state coordinates, randomization involves multiplying coordinate values
in the goal by a random coefficient). The randomized goals should follow a
specific distribution relative to the original goals within the task space.

Finally, the randomized goals are combined with state transitions and stored in
the buffer for training. The experience replay component uses DDPG, an off-
policy algorithm for continuous control. The following describes the sampling
and training process in simulation with goal domain randomization, as shown
in Algorithm 2.

Algorithm 2: Goal-Based Domain Randomization Algorithm
Input: Off-policy reinforcement learning algorithm 𝒜; goal randomization pa-
rameter strategy 𝜋𝑔; reward function 𝑟
Output: Trained policy network 𝜋

1. Initialize 𝒜, replay buffer ℛ
2. for episode in range do

chinarxiv.org/items/chinaxiv-202205.00123 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00123

3. Obtain initial state 𝑠0 and final goal 𝑔
4. for 𝑡 in range (0, 𝑇 − 1) do

5. Compute next action a_t based on current state s_t and goal g

6. Execute action a_t to obtain new state s_{t+1}

7. $r_t = r(s_t, a_t, s_{t+1}, g)$

8. end for

9. for 𝑡 in range (0, 𝑇 − 1) do

10. Obtain goal 𝑔′ via HER

11. Generate randomization coefficient

12. for 𝑘 in range do

13. $g'' = g' \times \text{randomization coefficient}$

14. end for

15. Store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑔″) in buffer ℛ
16. end for

17. Optimize policy using 𝒜 and ℛ
18. end for

3 Experiments and Performance Evaluation
This section evaluates the proposed algorithm through comparative experiments
in both simulation and real-world environments, assessing success rates in simu-
lation tasks, training convergence speed, algorithm generalization under varying
task parameters, and success rates after real-world transfer.

3.1 Environment Configuration

The simulation environment is built on Ubuntu using PyTorch for network con-
struction and Mujoco as the physics engine. To ensure that trained policies can
be tested in real-world environments, the simulation models the physical setup
including the UR5e robotic arm, electric gripper, experimental platform, and
objects. The simulation scenarios are visualized in Figure 1.

For goal randomization during sampling, this paper employs normally dis-
tributed random numbers. Specifically, goals sampled during off-policy training
are randomized following an 𝑁(0, 0.1) distribution.

chinarxiv.org/items/chinaxiv-202205.00123 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00123

3.2 Simulation Results Analysis

To evaluate the proposed algorithm’s performance, comparisons are made with
three reinforcement learning algorithms: standard reinforcement learning (RL),
Hindsight Experience Replay (HER), and Dynamics Randomization. Standard
RL algorithms perform poorly in large search spaces, with near-zero success
rates for complex tasks without carefully designed initial states. While HER
addresses the search space issue, it cannot adapt well when initial states vary
randomly. Both dynamics randomization and the proposed goal-based random-
ization improve upon HER, with the goal-based method demonstrating stronger
adaptability to complex tasks through its focus on goal analysis.

To further compare generalization performance across tasks, the initial state
randomness coefficient is increased to 2.5. Table 2 shows the resulting success
rates for different algorithms.

The algorithm is evaluated through three distinct task scenarios:

1. Pushing: The scene contains a table, an object on the table surface, and
a robotic arm. The goal is to push the object to a designated position
on the table. Since grasping is not involved, the gripper remains closed
throughout the task.

2. Pick-and-Place: Similar to pushing, but the goal is to grasp the object
and move it to a specified position in the air. This task involves gripper
control for grasping. To ensure training success, the initial state is set
with the gripper already holding the object.

3. Door-Opening: This more complex task involves a fixed door frame and
a robotic arm. The objective is to grasp the door handle, pull it down to
unlatch the door, and then pull the door open to a certain angle. Given
the task complexity, the initial state is set with the gripper already holding
the door handle.

Sampled states include the robotic arm end-effector position in the Mujoco
environment and coordinates of all objects. Algorithm 2’s key operation is
the goal randomization during iteration. In each iteration, the goal 𝑔′ is first
obtained via HER, then randomized into set 𝑔″ according to the task space
(distribution range of actuators and objects) and randomization coefficients (e.g.,
Gaussian distribution functions). The resulting set 𝑔″ follows the randomization
coefficient’s probability distribution relative to the initial goal 𝑔 within the task
space, while being constrained by the task space to prevent extreme values from
affecting training. This randomization of 𝑔′ partially reflects underactuated
system errors, improving success rates after real-world transfer. Finally, the
randomized elements from set 𝑔″ are combined with sampled trajectories (𝑠𝑡, 𝑎𝑡)
and stored in buffer ℛ for policy optimization.

chinarxiv.org/items/chinaxiv-202205.00123 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00123

3.3 Real-World Environment Validation

To validate the reliability of policies trained in simulation, real-world experi-
ments use identical hardware configuration (UR5e, Universal Robots). To ac-
curately obtain object coordinates, a multi-camera system (Opti-track) is em-
ployed, with markers placed at key positions on object surfaces and edges. For
the door-opening task, multiple markers are placed on the door frame, panel,
and handle to overcome occlusion issues. To unify the MCS and robot coordi-
nate systems, the robotic arm is fixed at the experiment’s start, and markers
are placed on critical arm positions and the end-effector to calibrate the arm’s
coordinates in the MCS system.

Real-world testing focuses on the door-opening task with randomized initial po-
sitions. The gripper’s initial state matches simulation, already holding the door
handle. To improve experimental success rates, a flexible grasping mechanism
is used, with a 3D-printed structure at the gripper-flange connection that can
be replaced in case of serious accidents, preventing damage to critical equip-
ment. Table 3 shows task success rates under different initial state randomness
coefficients.

Results demonstrate that when executing simulation-trained policies in real en-
vironments, success rates remain high with small initial state variations. How-
ever, when initial state variations are large, real-world success rates drop signifi-
cantly compared to simulation. This occurs because door handles and doors are
constrained rigid structures; manipulation errors cause sharp increases in force
feedback, triggering the robot’s protection mechanisms and causing task failure.
Without such protection, the door and gripper would be easily damaged during
operation.

4 Conclusion
This paper proposes a goal-based domain randomization algorithm that com-
bines experience replay with goal-based domain randomization. The approach
demonstrates good convergence speed, better adaptation to environmental
changes, maintains strong performance with large initial state variations, and
achieves notable success rates after real-world transfer.

The method fully leverages the characteristics of goal-based algorithms, which
not only improve training efficiency in sparse reward environments but also
enhance adaptability and robustness across different tasks when combined with
domain randomization. This environmental difference adaptability effectively
improves policy transfer success rates from simulation to reality.

However, real-world manipulation tasks often involve more complex procedural
steps, and task goals may extend beyond specific coordinate points, making
them difficult to define. In such cases, goal-based algorithms may struggle.
Defining task goals appropriately and selecting suitable randomization methods

chinarxiv.org/items/chinaxiv-202205.00123 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00123

for complex scenarios remains a primary challenge. Extending the proposed
method to more diverse robot manipulation tasks represents the main direction
for future work.

References
[1] Jens, Kober, J, et al. Reinforcement learning in robotics: A survey [J]. The
International Journal of Robotics Research, 2013.

[2] Kroemer O, Niekum S, Konidaris G D. A review of robot learning for ma-
nipulation: Challenges, representations, and algorithms [J]. Journal of machine
learning research, 2021, 22 (30).

[3] Andrychowicz M, Baker B, Chociej M, et al. Learning dexterous in-hand
manipulation [J]. The International Journal of Robotics Research, 2020, 39 (1):
3-20.

[4] 张智广. 基于深度强化学习的机械臂抓取方法研究 [D]. 哈尔滨工业大学, 2021. (Zhang
Zhiguang. Research on manipulator grasp based on deep reinforcement learning
[D]. Harbin Institute of Technology, 2021.)

[5] Gupta A, Devin C, Liu Y X, et al. Learning invariant feature spaces to
transfer skills with reinforcement learning [J]. arXiv, 2017.

[6] Chen X, Hu J, Jin C, et al. Understanding Domain Randomization for Sim-
to-real Transfer [J]. arXiv, 2021.

[7] Peng X B, Andrychowicz M, Zaremba W, et al. Sim-to-real transfer of robotic
control with dynamics randomization [C]// 2018 IEEE international conference
on robotics and automation (ICRA). IEEE, 2018: 3803-3810.

[8] Chebotar Y, Handa A, Makoviychuk V, et al. Closing the sim-to-real loop:
Adapting simulation randomization with real world experience [C]// 2019 Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2019: 8973-
8979.

[9] Tobin J, Fong R, Ray A, et al. Domain randomization for transferring deep
neural networks from simulation to the real world [C]// 2017 IEEE/RSJ in-
ternational conference on intelligent robots and systems (IROS). IEEE, 2017:
23-30.

[10] Niu H, Hu J, Cui Z, et al. DR2L: Surfacing corner cases to robustify au-
tonomous driving via domain randomization reinforcement learning [C]// The
5th International Conference on Computer Science and Application Engineering.
2021: 1-8.

[11] Rusu A A, Večerík M, Rothörl T, et al. Sim-to-real robot learning from
pixels with progressive nets [C]// Conference on Robot Learning. PMLR, 2017:
262-270.

chinarxiv.org/items/chinaxiv-202205.00123 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00123

[12] Christiano P, Shah Z, Mordatch I, et al. Transfer from simulation to real
world through learning deep inverse dynamics model [J]. arXiv preprint arXiv:
1610. 03518, 2016.

[13] Sutton R S, Barto A G. Reinforcement learning: An introduction [M]. MIT
press, 2018.

[14] Andrychowicz M, Wolski F, Ray A, et al. Hindsight experience replay [J].
Advances in neural information processing systems, 2017, 30.

[15] Ding Y, Florensa C, Abbeel P, et al. Goal-conditioned imitation learning
[J]. Advances in neural information processing systems, 2019, 32.

[16] Dhiman V, Banerjee S, Siskind J M, et al. Learning goal-conditioned
value functions with one-step path rewards rather than goal-rewards [J]. arXiv
preprint arXiv: 1906. 02170, 2019.

[17] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep
reinforcement learning [J]. arXiv preprint arXiv: 1509. 02971, 2015.

[18] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,”in IROS, 2012, pp. 5026–5033.

[19] 吴璞, 夏长林, 景鸿翔. UR5 机器人运动学分析与轨迹规划研究 [J]. 煤矿机械, 2021,
42 (04): 55-58. DOI: 10. 13436/j. mkjx. 202104018. (Wu Pu, Xia Changlin,
Jing Hongxiang Research on kinematics analysis and trajectory planning of UR5
robot [J] Coal Mine Machinery, 2021, 42 (04): 55-58.)

[20] Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization
algorithms [J]. arXiv preprint arXiv: 1707. 06347, 2017.

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202205.00123 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00123

	A Postprint Study on Goal-based Domain Randomization Methods for Robot Manipulation
	Abstract
	Full Text
	Research on Goal-Based Domain Randomization Method in Robot Manipulation
	0 Introduction
	1.1 Reinforcement Learning Formulation for Robot Manipulation
	1.2 Hindsight Experience Replay
	2 Goal-Based Domain Randomization Algorithm
	2.1 Domain Randomization Method
	2.2 Goal Randomization Method

	3 Experiments and Performance Evaluation
	3.1 Environment Configuration
	3.2 Simulation Results Analysis
	3.3 Real-World Environment Validation

	4 Conclusion
	References

