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Abstract
Bone age assessment is a commonly used method for detecting endocrine and
growth abnormalities in children; however, low-quality hand X-ray images in
deep learning methods reduce the final assessment accuracy. To address this is-
sue, we propose an alignment network that increases the region of interest (ROI)
area in hand X-ray images. This network employs the Swin Transformer struc-
ture as its backbone to learn hand similarity from images and obtain affine coeffi-
cients, and does not require large-scale hand annotations during training. In the
bone age assessment network, we propose improvements to the Efficient Chan-
nel Attention and Spatial Attention mechanisms, specifically a Dual-Pooling
Efficient Channel Attention and an Asymmetric Convolution Spatial Attention
method. These two methods are combined with the Xception network in a
dual-attention manner to propose DA-Xception. Tested on the RSNA dataset,
this bone age assessment method achieves a mean absolute error of 5.37 months,
and compared with other deep learning methods, it can extract features more
comprehensively and optimize assessment results.
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Abstract: Bone age assessment is a common method for detecting endocrine
and growth abnormalities in children. However, low-quality hand X-ray images
in deep learning methods reduce final evaluation accuracy. To address this prob-
lem, this paper proposes an alignment network that increases the region of inter-
est (RoI) area in hand X-ray images. This network uses the Swin Transformer
structure as the backbone to learn hand similarity and obtain affine coefficients,
and does not require large-scale hand annotation during training. In the bone
age assessment network, we propose improvements to efficient channel atten-
tion and spatial attention mechanisms: dual-pooling efficient channel attention
and asymmetric convolution spatial attention. Combining these two methods
with the Xception network in a dual-attention form, we propose DA-Xception.
Tested on the RSNA dataset, this bone age assessment method achieves a mean
absolute error of 5.37 months. Compared with other deep learning methods, it
can extract features more fully and optimize evaluation results.

Keywords: bone age assessment; X-ray image alignment; dual attention; deep
learning

0 Introduction
Human developmental age can be divided into chronological age and biological
age, with biological age more objectively reflecting actual human growth and
development. The primary basis for biological age is the degree of maturation
of hand bones [?] and tooth growth [?].

Hand bone age assessment is widely used in modern pediatric clinical diagnosis.
Physicians analyze X-ray images of the subject’s non-dominant hand to deter-
mine the corresponding bone age. By comparing this with chronological age,
they can assess children’s growth potential and skeletal maturity. Additionally,
bone age assessment provides a reference for children’s height development [?].

Current traditional bone age assessment methods include the atlas method and
scoring method. The atlas method compares a subject’s hand X-ray image
with a standard atlas, using the label of the closest matching standard image
as the subject’s bone age. The common Greulich-Pyle atlas method [?] has
an average error of 11.5 months [?]. The scoring method evaluates several
representative bones in the hand X-ray separately, then calculates a total score
and converts it to the corresponding bone age using a formula. Common scoring
methods include the TW scoring method [?] and the China-05 scoring method
[?]. However, both methods have obvious drawbacks: the atlas method’s results
are subjectively influenced by the evaluator, leading to large errors, while the
scoring method is time-consuming and inefficient due to the need to score wrist
bones, epiphyses, and other hand regions separately.

With the rise of computer vision technology, automated bone age assessment
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methods have developed. Early automated methods automatically extracted fea-
tures used in manual assessment. For example, Thodberger et al. [?] designed
the BoneXpert system as commercial bone age assessment software, which ana-
lyzes the region of interest (RoI) in the hand and scores the RoI area to obtain
bone age results.

In recent years, Spampinato et al. [?] adopted deep learning methods for auto-
mated bone age assessment, proposing an end-to-end BoNet system built with
convolutional neural networks, achieving a final error of 9.5 months. Since then,
various deep learning-based bone age assessment methods have been proposed
[?], with many evaluated on the publicly available hand X-ray image dataset
provided by the Radiological Society of North America.

In 2019, Wu et al. [?] first used a Mask R-CNN network to segment hand
X-ray images, removing interfering noise, then employed a residual attention
subnet (RAS) for bone age regression, achieving a final mean error of 7.38
months. However, this method required extensive manual annotation of hand
regions during image segmentation, affecting assessment efficiency. Liu et al. [?]
proposed the VGG-U-Net network for hand segmentation, replacing U-Net [?]
downsampling layers with a VGG16 [?] pretrained network model to improve
segmentation accuracy on small-sample datasets, subsequently leveraging inter-
label correlations to achieve 6.05 months error on the dataset.

In 2020, Hao et al. [?] proposed the OCNet bone age multi-classification method
instead of regression, and based on the continuity of hand development, obtained
three different bone age range values through the bone age assessment model,
finally calculating the overlapping range to determine bone age, achieving a final
error of 5.84 months. In 2021, He et al. [?] first performed lossless compression
of hand X-ray images, then used an SE-ResNet network to extract features for
bone age assessment, achieving a mean absolute error of 6.04 months. This
method increased the hand proportion in input images but did not process
interfering information, leaving image quality unimproved. Salim et al. [?] added
a ridge regression layer to the bone age assessment model on the basis of image
segmentation, proposing the ridge regression network (RRNet), which achieved
an absolute error of 6.38 months.

From these methods, we learn that the quality of hand X-ray images affects
final bone age assessment accuracy, while processing large-scale low-quality im-
age segmentation reduces assessment efficiency. To address this problem, this
paper processes dataset images to reduce image noise and unify contrast. Given
that different images have varying hand RoI, we introduce an alignment network
to make original dataset images have consistent hand structure with standard
hand X-ray images, reducing the impact of different hand sizes and angles in
the dataset. To strengthen the feature extraction capability of the bone age as-
sessment network, we design a dual-attention Xception network (DA-Xception)
in bone age regression assessment. This network learns hand RoI in image space
and channels through parallel dual branches, finally performing feature fusion
regression to obtain bone age assessment results.
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Compared with current bone age assessment methods, our main contributions
are: 1) Introducing a hand image alignment network that, based on hand struc-
ture similarity, ensures consistent hand RoI regions in bone age assessment.
Compared with image segmentation, hand alignment does not require large-scale
image annotation and increases the effective RoI area in bone age assessment. 2)
Designing the DA-Xception network in the bone age regression network, propos-
ing dual-pooling efficient channel attention (DPECA) to strengthen overall and
texture features in image channels. 3) Proposing asymmetric convolution spatial
attention (ACSA) to extract fine-grained features in image space. Dataset ex-
periments demonstrate that our method outperforms other bone age assessment
methods.

1 Research Methods
Our bone age assessment method consists of two main backbone networks, as
shown in Figure 1. The first is a hand alignment network that improves original
image quality and calibrates hand position, followed by a bone age regression
network that extracts hand RoI information. Inspired by the excellent perfor-
mance of Vision Transformer (ViT) [?] networks in computer vision tasks in
recent years, we introduce the Swin Transformer network [?] as the backbone
in the alignment network to extract features. The network then reduces image
feature dimensions and connects to a fully connected layer to finally obtain the
affine relationship between the original input image and the standard image. Us-
ing affine coefficients, the original image is transformed to have standard hand
structure, reducing the impact of hand size and angle variations in X-ray im-
ages on final assessment results. In the regression network, hand images sized
299$×$299 are input into the DA-Xception network to extract hand RoI feature
information. After global average pooling reduces channel dimensions, features
are fused with encoded gender features, then connected to a fully connected layer
with 512 neurons and a dropout layer. Finally, a single-neuron fully connected
layer regresses to obtain the image bone age result.

1.1 Hand Alignment Network

Hand regions in original X-ray images from bone age datasets typically exhibit
rotation, translation, and scaling variations, which also exist in other X-ray
datasets [?]. To address these issues, we introduce a hand alignment network
to reduce morphological variations of hands in original images and enhance
feature extraction capability in subsequent bone age regression. The alignment
network workflow is shown in Figure 2. First, original images are input into the
Swin Transformer network to extract hand features for training, with standard
images as labels, outputting image affine coefficients. The original input images
are then aligned to standard images through affine transformation.

For a given input image 𝐼 and standard image 𝑇 , the alignment network obtains
affine coefficients 𝜙 such that the affine-transformed image 𝜙(𝐼) has a standard
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hand structure similar to the standard image. During network training, the
structural loss can be defined as 𝐿𝑆 = 𝑓(𝜙(𝐼), 𝑇 ).
Hand X-ray images input to the alignment network yield affine coefficients 𝜙
consisting of five parameters: 𝜙 = (𝑡𝑥, 𝑡𝑦, 𝑠𝑥, 𝑠𝑦, 𝜃). Here, 𝑡𝑥 and 𝑡𝑦 represent
displacement in horizontal and vertical directions, 𝑠𝑥 and 𝑠𝑦 represent scaling
in horizontal and vertical directions, and 𝜃 is the rotation angle. The affine
transformation relationship for original images using these coefficients is shown
in Equation (1):
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where 𝐺 represents image rasterization and 𝐵 represents bilinear interpolation,
both reducing feature information loss during affine transformation.

Convolutional Neural Networks (CNNs) extract image features hierarchically,
enhancing feature extraction capability and reducing network parameters
through local connectivity and parameter sharing, but they lack attention
to global image information. ViT networks introduce multi-head attention
from Natural Language Processing (NLP) to compensate for this deficiency.
However, due to differences between natural language and image input scales,
ViT networks have high computational complexity. The Swin Transformer
network uses different sampling values hierarchically to reduce computational
load and proposes a shifted window method to allow cross-window connections
of local features, improving efficiency and increasing network receptive field.

Our Swin Transformer backbone network consists of 4 stages, each comprising
2, 2, 6, and 2 Swin Transformer Blocks respectively. Figure 3 shows two succes-
sive basic blocks, containing shifted window Multi-head Self Attention (MSA),
Multilayer Perceptron (MLP), and LayerNorm (LN) layers.

We introduce cosine similarity as the structural loss for the alignment network.
Cosine similarity between images converts two images into vectors and calculates
the cosine of the angle between vectors as the image similarity relationship.
Therefore, the alignment network loss function is shown in Equation (2):

𝐿𝑆 = 1 − ∑𝑛
𝑖=1 𝐼𝑖𝑇𝑖

√∑𝑛
𝑖=1 𝐼2

𝑖 √∑𝑛
𝑖=1 𝑇 2

𝑖

where 𝐼 is the original image vector and 𝑇 is the standard image vector.

1.2 Bone Age Regression Network

Our bone age regression network is DA-Xception, proposed by combining the
Xception convolutional neural network [?] with a dual attention mechanism.
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The original Xception structure is shown in Figure 4.

1.2.1 Dual Attention Xception The original Xception network model con-
sists of multiple depthwise separable convolutional layers. Except for the net-
work’s beginning and end, all other convolutional modules use linear residual
connections. According to the processing order of data input to Xception, the
network structure in Figure 4 is mainly divided into three modules: entry flow,
middle flow, and exit flow. Compared with the Inception V3 network [?], both
have similar parameter counts, but Xception uses depthwise separable convolu-
tions to reduce computational load. This architecture uses model parameters
more effectively and achieves better feature extraction performance.

Although the original Xception structure has residual connection modules, it
is overall a linear neural network where the model can only extract features
sequentially. This approach cannot fully extract channel and spatial informa-
tion from features. Fu et al. [?] proposed Dual Attention Network (DA-Net) to
strengthen feature correlations in semantic segmentation, using parallel spatial
and channel attention structures to simultaneously extract features in image
channels and positions. Lin et al. [?] proposed Bilinear models for image classi-
fication, dividing the network into two branches and using different branches to
extract image features in parallel, finally using bilinear pooling to fuse features
from both branches and output classification results. Liu et al. [?] proposed
Center Boundary Dual Attention Network (CBDA-Net) for object detection in
remote sensing images, generating center region attention and boundary region
attention in a dual structure to eliminate background noise interference and
detect key objects.

Inspired by these works and combining Xception network structure characteris-
tics, we designed the DA-Xception network shown in Figure 5.

In DA-Xception, the original Xception network’s middle flow structure, which
repeats 8 linear residual blocks, is replaced with a bilinear structure where left
and right branches each repeat 4 times. DPECA and ACSA modules are added
multiple times to residual blocks in each branch. In the left branch, DPECA
strengthens feature information between image channels, while the right branch
learns spatially correlated features. The bilinear structure in middle flow ex-
tracts channel and spatial feature information in parallel, with features from
both branches fused in the exit flow structure before connecting to a fully con-
nected layer to obtain bone age assessment results.

Compared with DA-Net, which adds dual attention only once before the output
structure, our proposed DA-Xception network adds channel and spatial atten-
tion mechanisms multiple times on dual branches in middle flow, guiding the
two branches to extract channel and spatial features separately. Bilinear models
[?] use dual-branch learning, but both branches have identical structures, which
may cause redundancy during final feature fusion. Our proposed bilinear fusion
method effectively extracts hand region features during bone age assessment
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and eliminates background noise interference.

1.2.2 Dual Pooling Efficient Channel Attention Attention mechanisms
increase the weight of feature tensors in regions of interest during training while
reducing the weight of meaningless backgrounds to improve network feature
extraction capability.

Wang [?] proposed the Efficient Channel Attention (ECA) module shown in
Figure 6(a), which avoids reducing channel dimensions when focusing on inter-
channel attention and captures cross-channel interactions in a lightweight man-
ner.

However, ECA only performs Global Average Pooling (GAP) on input features,
extracting only overall background information while losing texture feature ex-
traction. Based on this, we propose the DPECA structure shown in Figure 6(b),
performing both GAP and Global Maximum Pooling (GMP) on input features
to strengthen the bone age assessment network’s ability to fully extract both
overall and texture features from hand regions in images.

For DPECA input features 𝐹𝑖𝑛 ∈ ℝ𝑊×𝐻×𝐶 , the image features after GAP and
GMP are defined as 𝐹𝑔𝑎𝑝 and 𝐹𝑔𝑚𝑝, with corresponding formulas (3) and (4):

𝐹𝑔𝑎𝑝 = 1
𝑊 × 𝐻

𝐻−1
∑
𝑖=0

𝑊−1
∑
𝑗=0

𝐹𝑖𝑛(𝑖, 𝑗)

𝐹𝑔𝑚𝑝 = max
𝑖,𝑗

𝐹𝑖𝑛(𝑖, 𝑗)

where max(⋅) represents taking the maximum value in the corresponding channel
of the feature map, and 𝑊 , 𝐻, and 𝐶 represent the length, height, and number
of channels of input features respectively. The pooled features are concatenated
and pass through the same 1D convolutional layer to share weight parameters,
as shown in Equation (5):

𝑀 = 𝜎(Conv1D([𝐹𝑔𝑎𝑝, 𝐹𝑔𝑚𝑝]))

where Conv1D represents 1D convolution operation and 𝜎 is the HSigmoid non-
linear activation function. HSigmoid uses piecewise fitting to implement the
Sigmoid function but computes faster during network training, with the specific
formula shown in Equation (6):

HSigmoid(𝑥) =
⎧{
⎨{⎩

0, 𝑥 ≤ −3
0.5 × 𝑥 + 1.5, −3 < 𝑥 < 3
1, 𝑥 ≥ 3
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Finally, the two features are aggregated through a fully connected layer to gen-
erate inter-channel attention relationships.

To achieve appropriate cross-channel interactions, the convolution kernel size 𝑘
is adaptively selected based on the number of channels 𝐶 in the feature map,
with their relationship shown in Equation (7):

𝑘 = |𝜓(𝐶)|odd = | log2(𝐶) + 𝛾|odd

where | ⋅ |odd represents taking the closest odd number to the operation result.

1.2.3 Asymmetric Convolution Spatial Attention Sanghyun proposed
the Convolutional Block Attention Module (CBAM) [?]. Based on the Spatial
Attention (SA) in CBAM structure, we propose the ACSA structure shown in
Figure 7.

In ACSA, average pooling and max pooling operations are first per-
formed on image features to aggregate spatial information, generating
two weight matrices 𝐹𝑎𝑣𝑔 ∈ ℝ𝑊×𝐻×1 and 𝐹𝑚𝑎𝑥 ∈ ℝ𝑊×𝐻×1. Then,
1$×7𝑎𝑛𝑑7×1𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙𝑘𝑒𝑟𝑛𝑒𝑙𝑔𝑟𝑜𝑢𝑝𝑠𝑎𝑟𝑒𝑢𝑠𝑒𝑑𝑖𝑛𝑠𝑡𝑒𝑎𝑑𝑜𝑓𝑡ℎ𝑒7×$7 convo-
lutional kernel in CBAM, maintaining the same receptive field while extracting
fine-grained information in image space and reducing computational load. The
two weights are combined to obtain spatial attention 𝑀𝑠(𝐹), with specific
calculation shown in Equation (8):

𝑀𝑠(𝐹) = 𝜎(𝑓7×7([AvgPool(𝐹); MaxPool(𝐹)]))

where 𝑓7×7 represents the asymmetric convolutional kernel group. This spa-
tial attention mechanism selectively aggregates spatial feature similarity with
weighted attention. Attention weights for features at different spatial positions
are determined by feature similarity between two positions, with similar features
showing stronger correlation.

1.3 Model Loss Function and Evaluation Metrics

Bone age assessment is a regression task where the model’s final output is a
specific real value. Therefore, we select Root Mean Square Error (RMSE) as
the loss function, with calculation formula shown in Equation (9):

RMSE =
√√√
⎷

1
𝑁

𝑁
∑
𝑖=1

( ̂𝑦𝑖 − 𝑦𝑖)2

where 𝑁 is the number of samples, ̂𝑦𝑖 is the model’s predicted bone age result,
and 𝑦𝑖 is the corresponding ground truth annotation. As shown in Equation (9),
as the RMSE value decreases, the model optimizes assessment results.
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The RMSE loss function exhibits nonlinear loss value reduction in regression
compared to Mean Absolute Error (MAE) loss. When the loss is large, the
network model’s gradient descent is fast, enabling rapid convergence. When
the loss is small, RMSE and MAE values are similar, and the network model
reduces loss linearly.

In bone age assessment, MAE is used as the metric, as shown in Equation (10):

MAE = 1
𝑁

𝑁
∑
𝑖=1

| ̂𝑦𝑖 − 𝑦𝑖|

2 Experimental Results and Analysis
2.1 Dataset

Our bone age assessment dataset is taken from the publicly available dataset of
the 2017 Pediatric Bone Age Challenge competition held by the Radiological So-
ciety of North America (RSNA). The dataset contains 12,811 images, including
6,933 male and 5,878 female hand bone X-ray images. Each image corresponds
to skeletal age divided with monthly precision. The bone age distribution in the
RSNA dataset is shown in Figure 8.

During bone age assessment result optimization, the training set is used for
model weight update and optimization, the validation set monitors the training
process and provides real-time performance feedback, and the test set provides
final evaluation of model generalization capability. In our experiments, 800
images were randomly selected from the dataset for validation, 200 images for
testing, and the remaining images for network model training.

2.2 Experimental Configuration

All network model training was completed on hardware with an Intel(R)
Core(TM) i7-10700KF CPU, NVIDIA GeForce RTX 3070 GPU, and
4$×8𝐺𝐵𝑚𝑒𝑚𝑜𝑟𝑦.𝑇 ℎ𝑒𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑢𝑠𝑒𝑑𝑇 𝑒𝑛𝑠𝑜𝑟𝐹 𝑙𝑜𝑤2.5.0𝑎𝑠𝑡ℎ𝑒𝑑𝑒𝑒𝑝𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑓𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘𝑎𝑛𝑑𝐾𝑒𝑟𝑎𝑠2.6.0𝐴𝑃𝐼𝑓𝑜𝑟𝑚𝑜𝑑𝑒𝑙𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑤𝑖𝑡ℎ𝑃𝑦𝑡ℎ𝑜𝑛3.8.12𝑎𝑠𝑡ℎ𝑒𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒.𝑊𝑒𝑢𝑠𝑒𝑑𝑡ℎ𝑒𝐴𝑑𝑎𝑚[?]𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟𝑤𝑖𝑡ℎ𝑎𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒𝑜𝑓0.001, 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑡ℎ𝑒𝑚𝑜𝑑𝑒𝑙𝑓𝑜𝑟100𝑒𝑝𝑜𝑐ℎ𝑠.𝐷𝑢𝑟𝑖𝑛𝑔𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑤𝑒𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑙𝑜𝑠𝑠𝑎𝑛𝑑𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝑡ℎ𝑒𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒𝑖𝑓𝑛𝑜𝑙𝑜𝑠𝑠𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑𝑓𝑜𝑟𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑒𝑝𝑜𝑐ℎ𝑠.𝐵𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒𝑤𝑎𝑠𝑠𝑒𝑡𝑡𝑜16, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖𝑛𝑝𝑢𝑡𝑖𝑚𝑎𝑔𝑒𝑠𝑖𝑧𝑒𝑤𝑎𝑠299×$299,
RMSE was used as the network model loss, and MAE was used as the evaluation
metric to measure the gap between bone age assessment values and ground
truth.

2.3 Image Preprocessing

Due to differences in acquisition equipment and exposure methods, hand X-ray
images have varying resolutions and non-uniform grayscale distributions, leading
to larger assessment errors. We performed contrast unification and denoising
on X-ray images. First, histogram equalization was applied to adjust image
grayscale distribution to an appropriate range, enhancing local contrast without
affecting overall contrast. Then, adaptive gamma transformation was applied
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to stretch contrast, increasing low-brightness pixel values and suppressing high-
brightness pixels. To eliminate noise interference, bilateral filtering was used for
smoothing, as shown in Figure 9.

2.4 Image Alignment Results

Dataset images were affine-transformed after alignment to obtain standard im-
ages, as shown in Figure 10. Figure 10(a) shows that original images have
differences in hand position and size, causing inconsistent hand RoI regions in
each image. Figure 10(b) shows hand X-ray images after alignment. It can be
seen that aligned images adjust hand tilt angles and hand region proportions in
images, making hand regions of interest more obvious and consistent, reducing
interference from erroneous information in subsequent bone age regression, and
enabling more effective extraction of hand features.

2.5 Baseline Network Comparison

To select an appropriate network structure for bone age assessment, we chose five
classic network structures: EfficientNetB4, ResNet101, DenseNet201, Inception
ResNet V2, and Xception for bone age assessment and observed evaluation
metrics. In baseline network evaluation, no processing was applied to network
structures or datasets. Images were uniformly resized to 299$×$299 and input
into the five networks, yielding the bone age assessment results shown in Table 1.
Using the original Xception network achieved the best performance among the
five networks with a mean absolute error of 7.41 months and moderate parameter
count. Therefore, subsequent bone age assessment work selected the Xception
network structure for improvement to optimize final regression accuracy.

Table 1. MAE and Parameters of Different Baseline Networks

Network MAE (months) Parameters (10^7)
ResNet101
DenseNet201
EfficientNetB4
Inception ResNet V2
Xception 7.41

2.6 Ablation and Gender Experiments

To verify the effectiveness of our bone age assessment method, we conducted
ablation experiments on various modules in the assessment process to measure
the role of different structures. First, we verified the effectiveness of different
network structure modules; then we explored and compared our dual attention
method with other attention improvement mechanisms; finally, we investigated
the impact of gender factors on bone age regression results.
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2.6.1 Results of Different Module Ablation Experiments Our bone
age assessment work mainly consists of three parts: image preprocessing, Swin
Transformer network alignment, and DA-Xception network for bone age re-
gression. Ablation experiments were conducted on these three modules, with
comparison methods including: 1) Using only Xception network for bone age re-
gression; 2) Adding image preprocessing; 3) Adding image alignment; 4) Adding
DPECA and ACSA modules to the regression network. The bone age assess-
ment accuracy of each experiment is shown in Table 2.

Table 2. MAE of Ablation Experiments

Method Xception Preprocessing Alignment
Dual
Attention

MAE
(months)

In Table 2, the mean absolute error after image preprocessing is 6.67 months.
After further adding image alignment, the bone age assessment error decreases
to 5.72 months. Finally, feeding aligned images into the DA-Xception network
structure combining Xception network and dual attention yields a final error
result of 5.37 months. The three modules reduce error by 0.74 months, 0.95
months, and 0.35 months respectively. Therefore, in the bone age assessment
process, image preprocessing effectively reduces noise in original images, aligning
hand images of different angles and sizes increases the proportion of effective
hand regions in images and ensures consistent hand RoI. Adding dual attention
to the Xception network structure enables the network to focus on richer key
features in images, improving final bone age assessment accuracy.

Neural network iteration reflects model performance. We selected the optimal
model with a bone age assessment error of 5.37 months and plotted its training
process curves in Figure 11, where the blue curve represents training set MAE
and the red curve represents validation set MAE. It can be seen that as the
number of epochs increases, the mean absolute error values for both training
and validation sets continuously decrease, slowing down after 20 epochs and
gradually stabilizing. When training reaches 100 epochs, the training set loss
curve decays slowly, indicating the network has fully extracted effective features
and bone age regression results have stabilized.

2.6.2 Dual Attention Effectiveness Validation Experiment To verify
the effectiveness of our proposed dual attention mechanism, this subsection
compares our method with other attention improvement mechanisms, as shown
in Table 3.

Table 3. Results of Different Attention Mechanism Methods
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Methods MAE (months)
Xception
Xception + Bilinear
Xception + DA-Net
Xception + ECA + SA
Xception + DPECA + ACSA (Ours)

It can be seen that in the second experiment, the bilinear structure has insuf-
ficient attention to hand regions in bone age assessment, thus increasing the
error compared to the original Xception network structure. The third experi-
ment combines Xception network with DA-Net, and its heatmap shows that the
network extracts not only hand region features but also hand edge background
information, with background features reducing bone age assessment results.

The fourth and fifth experiments compare original dual attention with our im-
proved dual attention in the Xception network structure. In Figure 12, both
network structures show similar attention regions, but the fifth group focuses
on larger hand region areas and more critical regions. The final bone age re-
gression results show that our proposed method reduces error by 0.28 months.
Therefore, using DPECA and ACSA modules can extract hand features more
effectively.

2.6.3 Gender Factor Comparison Experiment In human growth and
development, male and female hand development maturity differs at the same
age. The impact of gender factors on bone age assessment results is shown in
Figure 13.

The experiment is divided into four parts: 1) Bone age assessment on male
hand X-ray images alone from the RSNA dataset; 2) Bone age assessment on
female images alone; 3) Bone age assessment after removing gender information
from the RSNA dataset; 4) Bone age assessment with added gender information.
The mean absolute errors for male-only and female-only assessments are 5.43
months and 5.65 months respectively. The error without gender information is
6.52 months, while adding gender information yields an MAE of 5.37 months.
Compared with no gender information, single-gender assessment reduces errors
by 1.09 months and 0.87 months respectively, while adding gender information
reduces error by 1.15 months. Therefore, adding gender information in bone age
assessment can effectively reduce error values and improve regression accuracy.

2.7 Comparative Analysis of Different Deep Learning Methods

To better demonstrate the advancement of our method in bone age assessment,
we compared it with other recent bone age assessment methods. Table 4 shows
the mean absolute error values of bone age assessment under different methods.

Table 4. Results of Different Bone Age Assessment Methods
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Methods MAE (months)
VGG16 [?] 9.97
RAS [?] 7.38
RRNet [?] 6.39
Ranking CNN [?] 6.05
SE-ResNet [?] 6.04
OCNet [?] 5.84
DA-Xception (ours) 5.37

In Table 4, reference [?] divides bone age assessment into two stages: first seg-
menting images to remove background interference from hand X-ray images,
then using VGG16 network for bone age regression, achieving a final regression
error of 9.97 months. References [?, ?] adopt the same approach of first seg-
menting hand regions to remove interfering label information, then inputting
segmented images into bone age regression networks, achieving final regression
errors of 7.38 months, 6.05 months, and 6.39 months respectively. Image segmen-
tation methods effectively remove background interference and optimize bone
age assessment results but require extensive manual annotation of hand regions
in dataset images. Compared with these segmentation methods, our proposed
image alignment method only requires weak annotation of a small number of
images, using the alignment network to automatically extract hand RoI features
and make hand RoI regions consistent across images. Additionally, our image
preprocessing work can suppress noise interference in images.

Reference [?] proposes adding a lossless compression module to the bone age
assessment network to maintain stable image quality when reducing image size,
then inputs images into a bone age regression network combining SE attention
mechanism and ResNet network, achieving a final bone age assessment error of
6.04 months. Reference [?] adds residual attention to make the network focus
more on RoI regions. Compared with single attention mechanisms, we adopt a
dual-branch approach with parallel channel and spatial attention mechanisms,
achieving a bone age assessment error of 5.37 months, superior to other methods
in Table 3, further improving assessment accuracy.

In summary, our method in bone age assessment requires only lightweight image
annotation to complete alignment work, without excessive manual processing,
making it more clinically feasible. Moreover, using a dual attention structure for
bone age regression can extract hand feature information more fully than linear
networks with attention mechanisms, further improving accuracy and reducing
bone age assessment error.

3 Conclusion
Addressing the issues of low-quality hand X-ray images and variations in hand re-
gion size and angle in current bone age assessment, this paper improves X-ray im-
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age quality, aligns hand images, and innovatively proposes the DA-Xception net-
work that combines Xception network with two attention mechanisms through
a dual-branch parallel structure.

Our bone age assessment method consists of two parts: first, preprocessing X-ray
images to unify contrast and brightness, and using Swin Transformer network to
extract features to align hand region of interest in X-ray images; second, using
the DA-Xception network to extract hand RoI features for bone age regression
to obtain assessment results. Experiments demonstrate that our method can
effectively reduce the impact of image quality on assessment results. Compared
with current methods, it achieves higher precision and provides important ref-
erence value for subsequent bone age assessment work, better helping prevent
adolescent growth and development diseases.
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