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Abstract

To address issues such as low registration efficiency and large errors in the reg-
istration of two partially overlapping point clouds, we propose a point cloud
registration algorithm based on mixed features sampled from the overlapping
region. First, we predict the overlap score for each point through encoding and
feature interaction to obtain richer point cloud features. Second, we extract
local geometric features of overlapping points and retain overlapping keypoints
based on overlap scores and the saliency of point features. Finally, we construct
a mixed feature matrix using the geometric and spatial information of over-
lapping keypoints, calculate the matching similarity of the matrix, and adopt
weighted singular value decomposition to obtain the registration result. Ex-
perimental results show that the proposed method has strong generalization
capability and can significantly improve point cloud registration accuracy while
ensuring registration efficiency.
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Abstract: This paper proposes a point cloud registration algorithm based on
mixed-features sampling for overlapping domain to address the low efficiency
and large errors in registering two partially overlapped point clouds. First, the
algorithm predicts the overlap score of each point through encoding and feature
interaction to obtain richer point cloud features. Second, it extracts local geo-
metric features of overlapping points and retains overlapping keypoints based on
overlap scores and the significance of point features. Finally, it constructs a hy-
brid feature matrix using the geometric and spatial information of overlapping
keypoints, calculates the matching similarity of the matrix, and obtains regis-
tration results through weighted singular value decomposition. Experimental
results demonstrate that the proposed method possesses strong generalization
ability and can significantly improve point cloud registration accuracy while
ensuring registration efficiency.

Keywords: machine vision; point cloud registration; overlapping areas; hybrid
feature

0 Introduction

Point cloud registration is a critical task in computer vision that aims to find a
rigid transformation aligning one 3D source point cloud with another 3D target
point cloud [?]. It finds extensive applications in pose estimation [?], 3D re-
construction [?], object localization [?], and has attracted widespread attention
from scholars domestically and internationally. The registration problem can
be described as follows: given source point cloud X = {z,;}¥; € R**V and tar-
get point cloud Y = {yj jj‘il € R3*N  the goal is to find a rigid transformation
{R,t} that aligns the two point clouds, where R € SO(3) is the rotation matrix
and t € R3 is the translation vector.

In practical applications, camera motion between consecutive frames typically
produces partially overlapped 3D point clouds [?]. Partial point cloud regis-
tration is a common real-world scenario. Due to inconsistent data scales and
low feature density in partially overlapped point clouds, they face challenges
such as low registration efficiency and large errors. Among traditional registra-
tion methods, the Iterative Closest Point (ICP) algorithm [?] is most commonly
used, but it is sensitive to initial positions and prone to local optima. The Fast
Global Registration (FGR) algorithm [?] accelerates global registration through
Fast Point Feature Histograms [?] and alternating optimization techniques, yet
it remains sensitive to noise. The Globally Optimal ICP (Go-ICP) algorithm
[?] solves the local minima problem through branch-and-bound methods, but it
remains sensitive to initial positions.

With the dramatic increase in point cloud data scale, traditional registration
methods can no longer meet practical demands in terms of efficiency and accu-
racy. In recent years, deep learning-based point cloud registration algorithms
and scheme designs have become research hotspots. Compared with traditional
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methods, deep learning approaches offer higher precision and stronger robust-
ness. Aoki et al. [?] proposed a robust and efficient point cloud registration
algorithm, PointNetLK, which combines the PointNet deep learning network
[?] with an improved Lucas-Kanade algorithm [?], improving registration ac-
curacy under moderate-scale transformations and noise conditions. Wang et
al. [?] proposed the Deep Closest Point (DCP) network, which uses dynamic
graph convolutional neural networks [?] to extract point cloud features and em-
ploys attention mechanisms to compute point correlations. Wang et al. [?] pro-
posed the Partial-to-Partial Registration (PRNet) deep learning network using
self-supervised learning, which uses Gumbel-Softmax [?] and a direct gradient
estimator to sample keypoint correspondences. Li et al. [?] proposed the Iter-
ative Distance-Aware Similarity Matrix Convolution (IDAM) network, which
fuses local geometric features and distance features of point clouds while using
mutually supervised hybrid elimination to improve registration accuracy. Yew
et al. [?] combined hybrid features with annealing algorithms to reduce the
influence of initial position on final registration results and enhance network
generalization, though at slower computational speeds.

However, the aforementioned methods do not explicitly handle non-overlapping
points. Compared with overlapping points, non-overlapping points offer limited
extractable features, while registration accuracy heavily depends on feature ex-
traction quality. Non-overlapping points have minimal impact on the effective
receptive field of fully convolutional point feature descriptors [?, ?]. Therefore,
changing feature extraction methods yields limited improvement for partially
overlapped point cloud registration performance. For partially overlapped point
clouds, learning where to sample feature points can effectively enhance registra-
tion performance. Xiong et al. [?] proposed a keypoint extraction method based
on normal vector projection covariance analysis. Huang et al. [?] supplemented
previous keypoint extraction methods and extended them to low-overlap sce-
narios [?]. Zhang et al. [?] combined clustered region segmentation with con-
vex optimization to improve registration performance for point clouds with low
overlap. Li et al. [?] retained point pairs with greater contribution through
downsampling and threshold separation. Xu et al. [?] learned an overlapping
mask to reject non-overlapping regions, converting partial-to-partial registration
into same-shape point cloud registration and achieving excellent performance.
However, due to noise points and non-overlapping points, sampling overlapping
points may remove correct correspondents in the target point cloud, leading to
degraded registration performance.

To address this, we propose a point cloud registration algorithm based on mixed-
features sampling for overlapping domain. Our approach effectively extracts
overlapping points while reducing the probability of removing correct correspon-
dents in the target point cloud. First, we extract interactive features within each
point cloud through encoding and feature interaction, enhancing the network’ s
ability to describe local geometric structures, extracting overlapping keypoints
with rich features, and improving registration efficiency. Second, we combine
local geometric features and distance features of point clouds, leveraging inter-
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actions between different point pair features to reduce the influence of initial
position on registration performance and improve accuracy. Finally, to balance
performance and efficiency, we propose a validity score computation network
that reduces the impact of incorrectly removing corresponding point pairs in the
target point cloud during keypoint sampling, thereby improving the precision
and robustness of point cloud registration, especially for partially overlapped
cases.

1 Point Cloud Registration Framework and Algorithm De-
sign

We propose a deep learning-based point cloud registration algorithm whose
structure is illustrated in Figure 1, consisting of four main components: (1)
overlap score prediction, (2) salient feature sampling, (3) mixed feature extrac-
tion, and (4) similarity and validity score computation. First, we use PointNet
to encode point clouds, feed the encoded features into a feature interaction mod-
ule, and decode the overlap scores using PointNet. We sample K overlapping
points with high overlap scores. Second, we extract local geometric features of
overlapping points, retain L salient feature points, compute distance features for
these salient points, and combine local geometric and distance features to con-
struct a mixed feature matrix. We then compute similarity and validity scores,
assign different weights to each point based on validity scores, and solve for the
rigid transformation using weighted singular value decomposition.

1.1 Overlap Score Prediction

Notably, non-overlapping portions have minimal impact on fully convolutional
feature point descriptors, while overlapping portions contain more data and
richer features [?, ?]. Therefore, points in overlapping regions can effectively
improve registration performance. We treat the overlap problem as a binary
classification task [?] and propose a feature interaction module, shown in Figure
2, to compute overlap scores for points in source and target point clouds and
sample K points with high overlap scores.

We use a modified PointNet to extract global features Fx and Fy from source
and target point clouds, respectively. We apply max pooling to F'y and Fy
to obtain pooled features F% and FL. Next, we stack and expand F§ and
FP to match the dimensions of Fy and Fy, as shown in Figure 2. Overlap
score prediction can be viewed as a binary classification problem. Therefore,
we concatenate global features, expanded pooled features, and their differences,
then decode them using a modified PointNet to obtain overlap scores Oy and
Oy for source and target point clouds:

Ox = d(FXacat(FﬁvFX 7F)€))a Oy = d(FYacat(FigaFYiF)P}))

where d(-) denotes the decoding PointNet, cat(-) represents concatenation, and
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e(-) denotes the stacking expansion operation. After obtaining overlap scores,
we sample K points based on these scores to obtain sampled source point cloud
X' = {z;}[, € R*¥ and sampled target point cloud Y’ = {y,;} <, € R¥*X.

1.2 Salient Feature Sampling

Using all point features for correspondence search requires substantial mem-
ory and time. Non-salient features degrade registration performance, whereas
salient features contain richer information and stronger discriminability. There-
fore, we propose a salient feature sampling module, shown in Figure 3. First,
we use Graph Neural Networks (GNN) [?] to extract local geometric features
f(z;) and f(y;) for points z; in source point cloud and y; in target point cloud.
Second, we apply multi-layer perceptrons to feature vectors to obtain saliency
scores s; and s; for source and target point cloud features. Finally, we retain
the L data points with highest saliency scores and remove those with low scores.
The sampled source point cloud is denoted as X” = {z,}£, € R3>*L and the
sampled target point cloud as Y” = {yj}le € R3*L,

1.3 Mixed Feature Extraction

Most existing learning-based methods use only local geometric features for corre-
spondence matching. Since the matching approach between different point pairs
is identical, using only local geometric features has limited ability to identify
similarity between two points. ICP uses distance features for correspondence
matching, which is sensitive to initial point cloud positions. Combining local
and distance features to fully utilize geometric and spatial information of point
clouds can achieve higher registration accuracy and reduce the influence of initial
position on performance. We compute distance features for points in sampled
point clouds and concatenate them with local geometric features obtained in
Section 1.2 to obtain mixed features:

H (2,15) = cat (£(2), F@)), 2] = vz, |2; — 200, ) — 901
where cat(-) denotes concatenation and n represents the number of iterations
for updating distance features within mixed features.

We define the loss function for mixed feature matching supervision as follows:

>t s, 1)

J=1

L
LH ==
=1

=
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where s, is the saliency score of the i-th point in source point cloud. Local geo-
metric features are more important than distance features in early registration
stages. Therefore, we only use the keypoint sampling loss function in the first
iteration.
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2.2 Validity Score Computation

Sampling salient data points from source and target point clouds can signifi-
cantly improve registration efficiency but may also eliminate correct correspon-
dents for some source points in the target point cloud. Therefore, we propose
a validity score computation network to calculate the credibility of matching
results, as shown in Figure 4.

First, we compute a validity score for each point in the source point cloud by
applying 1D convolution to the mixed feature matrix, taking the maximum
value, and passing it through a fully connected layer:

v, = sigmoid (MLP (max H%”))
J

Validity scores can be viewed as the probability of correct matching between
points in source and target point clouds. Based on validity scores, we compute
weights for each point:

m; = 1 (v; > median(v)) - v,
where [(+) is an indicator function that assigns 1 if the condition is satisfied and
0 otherwise. After obtaining weights for each point, we use weighted Singular
Value Decomposition (SVD) to compute the rotation matrix R and translation
vector ¢:

R,t = argné%pzi:mi Rz} +t — x|

where z is the point in target point cloud Y” with maximum correspondence
probability to z;.

2.3 Loss Function

The network loss function consists of four components using multi-supervision.
The overlap score prediction loss is L. Since overlap prediction only has two
cases (overlap or non-overlap), we treat it as a binary classification task super-
vised by cross-entropy loss:

Ly = %Z (Of]( log OAf]( + O} log @3;)

,J

where Of; and O}; are ground truth overlap scores for source and target point

clouds. The keypoint sampling loss is defined as:
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L, = i3 Zlog (Si 'Hfj)
i=1

where j* is the index of the point in Y closest to the ground truth correspon-
dence of z}, and g;; is an indicator function for whether the distance between
two points satisfies correspondence criteria:

. J1U it Ral+t =yl <7
9710 otherwise

The credibility supervision loss is defined as:

1

L
L,= 7Y (~logv;-g; —log(l—v;)- (1 —gp))
i=1

il

where g7 is the ground truth indicator function under true transformation.
The total supervised loss function uses multi-supervision and is defined as the
weighted sum of four loss functions:

where « and (3 are adjustable hyperparameters, with § = 1 during the first
iteration and S = 0 otherwise.

3.1 Experimental Environment and Design

Our experiments use Python with the PyTorch deep learning framework. The
hardware environment consists of an Intel(R) Core(TM) i9-12900KF 3.19GHz
CPU and an RTX3080 GPU. We evaluate the proposed algorithm on the syn-
thetic ModelNet40 dataset and the real Stanford 3D scanning dataset, both
widely used for point cloud registration. ModelNet40 contains 12,311 CAD
models across 40 categories, divided into training (9,843 objects) and test (2,468
objects) sets. For each object, we randomly sample 1,024 points to generate ob-
ject point clouds. Each point cloud is randomly rotated within [0°, 45°] and
translated within [-0.5, 0.5] along each axis. The initial point cloud serves as
the source, and the transformed version as the target. To generate partially
overlapped point clouds, we randomly fix a point far from both point clouds
and retain the nearest 768 points for each point cloud.
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3.2 Experimental Parameter Settings

In implementation, we sample the top 717 points by overlap score, set mixed
feature iteration count to 3, retain 128 salient feature points, and set hyperpa-
rameter « for overlap score prediction loss to 0.6. We train the model using
the Adam optimizer for 40 epochs with an initial learning rate of 0.0001, weight
decay of 0.001, and multiply the learning rate by 0.1 every 30 epochs.

3.3 Experimental Evaluation

We compare our method with traditional algorithms (ICP [?], FGR [?], Go-
ICP [?]) and deep learning-based methods (PointNetLK [?], DCP [?], PRNet
[?], IDAM [?]). All deep learning methods are trained on the same training
set. Evaluation metrics include Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) for rotation matrix and translation vector. For rotation,
RMSE(r) and MAE(r) are measured in degrees; for translation, RMSE(t) and
MAE(t) are used.

3.4 Unseen Shape Point Cloud Registration

For unseen shape experiments, we train and test our algorithm on the Model-
Net40 dataset. ModelNet40 contains 9,843 training objects and 2,468 test ob-
jects across 40 categories. Figure 5 compares registration performance between
our method and IDAM on the test set. IDAM reaches optimal performance at
11 iterations with RMSE(r) = 1.52°, while our method achieves optimal perfor-
mance at 13 iterations with RMSE(r) = 0.87°. Final results are shown in Table
1.

Due to poor initial position, ICP exhibits inferior registration performance. Go-
ICP solves local minima through branch-and-bound but remains sensitive to
initial position. FGR utilizes geometric shape features for registration, yield-
ing more accurate results but still with higher errors compared to deep learn-
ing methods. Deep learning methods DCP and PRNet use geometric features,
while IDAM uses mixed features, achieving better performance than other deep
learning methods. However, IDAM does not handle non-overlapping points, re-
sulting in extracted features containing less informative data. Our algorithm
combines geometric and distance features while considering overlapping regions,
sampling overlapping keypoints with richer features than non-overlapping points,
and removing non-overlapping points to eliminate redundant information. This
converts partial-to-partial registration into same-shape registration, assigning
higher weights to overlapping points with rich feature information during regis-
tration. Compared with IDAM and other deep learning methods, our approach
demonstrates stronger descriptive capability for local geometric structures.

Experimental results show our method outperforms compared traditional and
deep learning methods across all four metrics, achieving RMSE(r) = 0.87° and
RMSE(t) = 0.004, significantly improving point cloud registration accuracy.

chinarxiv.org/items/chinaxiv-202205.00120 Machine Translation


https://chinarxiv.org/items/chinaxiv-202205.00120

ChinaRxiv [$X]

Figure 6 visualizes our registration results, where the green point cloud is the
source, and the red point cloud is the target obtained by randomly rotating [0°,
45°] and translating [-0.5, 0.5] along each axis. Figure 6(b) shows our method
achieves precise registration for unseen shapes.

3.5 Unseen Category Point Cloud Registration

For generalization experiments on unseen categories, we train on the first 20
categories and test on the remaining 20. Figure 7 compares registration per-
formance. IDAM reaches optimal performance at 24 iterations with RMSE(r)
= 1.59°, while our method achieves optimal performance at 26 iterations with
RMSE(r) = 0.95°. Final results are shown in Table 2. Traditional algorithms
(ICP, Go-ICP, FGR) do not require training, thus are less affected by category
differences. Deep learning methods experience performance degradation when
training and testing on different categories. However, our algorithm outperforms
all comparison methods across all metrics, demonstrating good generalization
capability for unseen category point cloud data.

Figure 8 visualizes registration results for unseen categories. Our method
achieves precise registration for unseen categories, as clearly shown in Figure
8(b).

3.6 Noisy Unseen Shape Point Cloud Registration

Real-world scanned models often contain noise due to camera motion between
consecutive frames. We add random Gaussian noise with standard deviation
0.01 to all shapes, clipping the noise to [-0.05, 0.05], while keeping other set-
tings consistent with Section 3.4. Table 3 shows the results. Gaussian noise
significantly affects FGR’ s performance due to its impact on shape features.
ICP and Go-ICP demonstrate certain robustness to noise. Deep learning meth-
ods (DCP, PRNet, IDAM, and ours) show less performance degradation than
noise-free cases because noise augmentation during training improves local fea-
ture descriptor robustness. Our method uses feature interaction to filter noise
and non-overlapping points, assigning lower weights to mismatched noise points
during registration, thereby enhancing robustness. Our method outperforms
comparison methods on RMSE(r), MAE(r), and MAE(t), and is slightly infe-
rior to PRNet on RMSE(t), demonstrating good noise-resistant generalization.

3.7 Algorithm Time Complexity

We evaluate computational performance on the ModelNet40 test set, comparing
average runtime for processing a point cloud. We sample 512, 1,024, and 2,048
points, with results shown in Table 4. Deep learning methods are generally faster
than traditional methods. Feature extraction-based deep learning algorithms in-
evitably extract geometric features from non-overlapping and non-salient points,
resulting in low efficiency. Our method filters non-overlapping and non-salient
points through double-layer sampling, significantly reducing computational load
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and improving runtime efficiency. Table 4 shows our method is second only to
DCP in speed, 4-5 times faster than FGR, 2-3 times faster than PRNet and
PointNetLK, and significantly superior to ICP and IDAM.

3.8 Stanford Dataset Registration Experiments

We conduct experiments on the Stanford 3D scanning dataset to further validate
our algorithm’s generalization capability. Compared with ModelNet40, Stanford
dataset point clouds have non-uniform distribution, making registration more
challenging. We select bunny and hand models, downsampled to 2,048 points.
Each point cloud is randomly rotated [0°, 45°] and translated [-0.05, 0.05] along
each axis to generate target point clouds. We create partially overlapped point
clouds using a similar approach to ModelNet40. We compare with DCP, PRNet,
and IDAM, which perform well on ModelNet40. Final results are shown in Table
5.

Figure 9 visualizes the results, with red as source and blue as target. For non-
uniformly distributed point clouds, our method eliminates redundant informa-
tion by predicting overlap and saliency scores, retains more feature information,
and assigns higher weights to overlapping points with rich features. Experimen-
tal results show our method achieves lower registration errors than comparison
methods, demonstrating good generalization for non-uniformly distributed point
clouds.

3.9 Noisy Stanford Dataset Registration Experiments

We add random Gaussian noise with standard deviation 0.01 to real data mod-
els, clipping to [-0.05, 0.05], while keeping other settings consistent with Section
3.8. Table 6 shows the results. Due to noise impact on shape features, all
models experience performance degradation. Our method uses feature inter-
action to filter noise and non-overlapping points, assigning lower weights to
mismatched noise points. Consequently, our method outperforms comparison
methods on RMSE(r), MAE(r), and MAE(t), demonstrating robustness to noisy
point clouds.

3.10 Visualization Analysis

For partially overlapped point clouds, we address issues such as inconsistent
data scale and low feature density by sampling equal numbers of overlapping
keypoints and extracting their mixed features. Figure 10 visualizes the results,
with green as source, red as target, and blue as extracted overlapping keypoints.
Using only overlapping keypoints for registration allows us to fully utilize rich
feature information from overlapped regions, reduce computational load, and
improve registration efficiency.

Figure 11 compares registration results of our method with ICP and FGR, with
green as source and red as target. For partially overlapped point clouds with in-
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consistent data scale and low feature density, ICP easily falls into local optima,
while FGR fails to efficiently identify similarity between points. Our method
achieves higher registration accuracy for partially overlapped point clouds, out-
performing comparison methods both quantitatively and visually.

4 Conclusion

This paper proposes a point cloud registration algorithm based on mixed-
features sampling for overlapping domain. The method effectively extracts
overlapping points while reducing the probability of removing correct corre-
spondents in the target point cloud. First, feature interaction and salient
feature sampling obtain richer point cloud features, enhancing the algorithm’ s
ability to learn feature information and reducing computational load. Second,
combining geometric and spatial information constructs a mixed feature matrix
that leverages interactions between different point pair features, reducing the
influence of initial position on registration performance. Finally, a validity score
computation network assigns appropriate weights to each point, enhancing the
network’ s ability to identify important information. Experimental results
on synthetic ModelNet40 and real point cloud datasets demonstrate that
our method achieves higher registration accuracy for partially overlapped
point clouds while maintaining efficiency, with improved robustness and
generalization capability.
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