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Abstract

Signal detection theory is widely employed to explain individuals’ decision-
making processes across various types of cognitive tasks. However, a significant
limitation of classical signal detection theory is its difficulty in further elucidat-
ing the intrinsic psychological mechanisms that underlie the process by which
individuals set their reporting criteria. This article, from the perspective of
Bayesian decision theory, provides an in-depth examination of individuals’ deci-
sion rules in signal detection tasks. Initially, based on Bayestheorem, this article
introduces the fundamental tenets of Bayesian decision theory. Subsequently,
it explores how Bayesian decision theory accounts for the decision rules of an
ideal observer, as well as the divergence between individuals’ decision outcomes
and those of the ideal observer in practical signal detection tasks. Following
this, the article investigates the distinctions between classical signal detection
theory and Bayesian decision theory within the unequal-variance signal detec-
tion model. Finally, this article briefly presents empirical research evidence
supporting Bayesian decision theory.
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Abstract: Signal detection theory (SDT) has been widely applied to explain
decision-making processes in various cognitive tasks. However, a significant limi-
tation of classical SDT is its difficulty in elucidating the underlying psychological
mechanisms by which individuals set their response criteria. This article exam-
ines decision rules in signal detection tasks from the perspective of Bayesian
decision theory (BDT). We first introduce the fundamental concepts of BDT
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based on Bayes’ theorem. Next, we discuss how BDT explains the decision rules
of an ideal observer and characterizes deviations between actual participants
and the ideal observer in empirical signal detection tasks. We then examine the
differences between classical SDT and BDT in unequal-variance signal detection
models. Finally, we briefly review empirical research supporting BDT.

Keywords: signal detection theory; Bayesian decision theory; prior probability;
likelihood function; response criterion

1 Introduction

Signal detection theory (SDT) is one of the most widely applied computational
models in experimental psychology. Since psychologist John A. Swets and his
collaborators systematically introduced SDT into psychology (Green & Swets,
1966; Tanner & Swets, 1954), researchers have extensively used SDT models
to explain the underlying mechanisms of perception, memory, reasoning, and
other psychological processes (Banks, 1970; Mamassian, 2016; Wixted, 2020).
A search for “signal detection theory”in the PsycArticles and PsycInfo databases
yields over 4,000 publications, with 500 appearing between 2020 and 2022 alone,
demonstrating that SDT not only holds an important place in the history of
psychological research but remains highly active today.

In SDT-based experimental designs, researchers present participants with two
types of stimuli: “signal”stimuli and “noise”stimuli. Participants must determine
which stimuli are signals and which are noise (Wickens, 2001). For example,
in an auditory task, participants might hear white noise alone or white noise
with a specific tone added as a signal; they must judge on which trials the
signal appears (Egan et al., 1959). Similarly, in recognition memory tasks,
participants first learn and memorize a list of words, after which researchers
present “old” words (studied items) as signals and “new” words (unstudied items)
as noise; participants must judge whether each word is old or new (Mickes et al.,
2007; Wixted, 2007). Typically, SDT assumes that signal and noise stimulus
intensities follow normal distributions, with the signal distribution having a
higher mean than the noise distribution. The difference between these means
is called the discriminability index (d” ), which reflects an individual’ s ability
to discriminate signals from noise—higher d’ indicates greater discriminability
(Wickens, 2001).

A central question in SDT concerns how individuals decide which stimuli are
signals and which are noise. Classical SDT posits that individuals set a response
criterion C directly on the stimulus intensity axis. If the current stimulus in-
tensity exceeds C, the individual judges it as a signal; otherwise, it is judged
as noise (Wixted, 2020). Figure 1 illustrates an SDT model example where the
noise distribution has a mean of 0, the signal distribution has a mean of d’ , and
both distributions have a standard deviation of 1. When a stimulus’ s intensity
exceeds C, it is judged as a signal; otherwise, it is judged as noise. In signal
detection tasks, responses can be classified into four types: hits (signal correctly
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identified as signal), false alarms (noise incorrectly identified as signal), misses
(signal incorrectly identified as noise), and correct rejections (noise correctly
identified as noise) (Wickens, 2001). The probabilities of these four outcomes
are represented by the areas under the normal distributions for signal or noise
to the left or right of C (see Figure 1).

The advantage of SDT is its ability to separate discriminability index d’ and
response criterion C from accuracy data, allowing researchers to examine how
task difficulty (d° ) and response bias (C) independently affect performance
(Wickens, 2001). However, classical SDT (i.e., models using C directly to reflect
decision criteria) has an important limitation: it cannot adequately explain the
underlying psychological mechanisms of the decision process. While classical
SDT simply assumes individuals compare current stimulus intensity directly to
criterion C, it cannot explain why C is set at a particular location or why C
varies across individuals or experimental conditions (Glanzer et al., 2009, 2019).

In fact, when SDT was first introduced, Swets and collaborators began using
Bayesian decision theory (BDT) to explain decision processes in signal detec-
tion tasks (Green & Swets, 1966). Recently, the relationship between BDT
and SDT has received increasing attention (Fleming & Daw, 2017; Glanzer et
al., 2019; Maloney & Zhang, 2010). BDT proposes that individuals observe
stimulus intensity and complete a Bayesian inference process to decide whether
the stimulus is signal or noise (Fleming & Daw, 2017; Maloney & Zhang, 2010;
Pouget et al., 2016). Compared to classical SDT, BDT provides a deeper theo-
retical explanation of decision-making in signal detection tasks (Glanzer et al.,
2019; Lau, 2007).

This article examines individual decision rules within the SDT framework from
a BDT perspective. We first introduce BDT” s basic concepts—how individuals
make decisions through Bayesian inference in signal detection tasks. Next, we
address the “ideal observer” problem in SDT, explaining how BDT accounts for
deviations between real participants and ideal observers within equal-variance
SDT models. We then discuss unequal-variance SDT models and examine dif-
ferences between classical SDT and BDT in these models. Finally, we review
empirical evidence supporting BDT.

2 Bayesian Decision Theory

Bayesian decision theory is founded on Bayes’ theorem, which derives from the
formula for joint probability (#8&M#8 et al., 2018). Consider two events, A and B.
The probability of both occurring is called joint probability, denoted P(A, B).
The joint probability can be expressed as:

P(A, B) = P(B|A)P(A) (1)

This means the probability of both A and B occurring equals the probability
of A occurring, P(A), multiplied by the conditional probability of B given A,
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P(B|A). Here, P(A) is also called marginal probability—the probability of an
event occurring regardless of other events—while P(BJA) is the conditional prob-
ability of B occurring given that A has occurred. The joint probability can also
be written alternatively as:

P(A,B) = P(A|B)P(B) (2)

Based on equations (1) and (2), we obtain:

P(A|B)P(B) = P(B|A)P(A) 3)
Equation (3) is typically written as:

P(BJ|A)P(A)

Equation (4) is the general form of Bayes’ theorem. Initially proposed to char-
acterize mathematical relationships between marginal and conditional probabil-
ities, psychologists soon recognized that Bayes’ theorem could model human
reasoning and decision-making (Kersten et al., 2004; Lau, 2007; Wickens, 2001).
For instance, equation (4) can explain how individuals infer the probability of
event A from observing event B. Here, P(A) is called prior probability—an in-
dividual’ s prior belief about A’ s probability before observing B. P(A|B) is
posterior probability—reflecting the updated belief about A after observing B.
In Bayesian inference, individuals update their beliefs about A’ s probability
from the prior P(A) to the posterior P(A|B) based on observing B.

Meanwhile, P(B|A) is called the likelihood function, reflecting how likely B is
given that A occurs. Both prior probability and likelihood function play crucial
roles: higher prior probability for A leads to higher posterior probability, and
greater likelihood of B given A (i.e., larger likelihood function value) also leads
to higher posterior probability for A after observing B.

According to BDT, in signal detection tasks individuals observe each stimulus’
s intensity (denoted x) and complete a Bayesian inference process to determine
the posterior probability that the current stimulus is signal or noise (Burgess,
1985; Fleming & Daw, 2017; Wickens, 2001). The following formula shows how
individuals update the probability that the current stimulus is a signal (denoted
S) based on intensity x:

P(x|S)P(S5)
P(S|lz) = ————— 5
(Sle) = =55 o)
This means individuals have a prior belief P(S) about the probability of a signal
before observation. After observing intensity x, they update this to posterior

chinarxiv.org/items/chinaxiv-202205.00114 Machine Translation


https://chinarxiv.org/items/chinaxiv-202205.00114

ChinaRxiv [$X]

probability P(S|x). Similarly, updating the probability that the stimulus is noise
(denoted N) follows:

PVl = T ©

BDT posits that individuals decide whether to judge the stimulus as signal or
noise based on these posterior probabilities. If the posterior probability of signal
exceeds that of noise, the stimulus is judged as signal; otherwise, it is judged
as noise (Burgess, 1985; Fleming & Daw, 2017; Lau, 2007). Since the posterior
probabilities of signal and noise sum to 1, individuals use P(S|x) = 0.5 as the
decision criterion: judge as signal if P(S|x) > 0.5, and as noise if P(S|x) < 0.5.

In equations (5) and (6), the marginal probability of observing intensity x, P(x),
is identical. Specifically, P(x) is calculated as a weighted average of the likeli-
hood functions—P(x|S) and P(x|N)—according to the prior probabilities of signal
and noise, P(S) and P(N):

P(z) = P(z[S)P(S) + P(z|N)P(N) (7)
Dividing equation (5) by equation (6) eliminates P(x):

P(S|z) _ P(x[S)P(S) ®)
P(N|z) ~ P(z[N)P(N)

Equation (8) reveals that Bayesian decision-making can be viewed as a process
based on the ratio of posterior probabilities: if the ratio P(S|x)/P(N|x) exceeds 1,
the stimulus is judged as signal; otherwise, as noise. According to Bayes’theorem,
this posterior ratio is jointly determined by the likelihood ratio P(x|S)/P(x|N)
and the prior probability ratio P(S)/P(N).

Since stimulus intensity x follows probability distributions (typically assumed
normal) under signal and noise conditions, the likelihood function reflects the
relative probability of observing intensity x given signal or noise—equivalent to
the probability density of x in the signal or noise distribution (i.e., the ordinate
value at x in the normal distribution). When the probability density of x in
the signal distribution, P(x|S), is larger, or when it is smaller in the noise dis-
tribution, P(x|N), individuals are more likely to judge the stimulus as signal,
and vice versa. Importantly, individuals may not know the true distributions
of signal and noise. For instance, they may not know the actual means and
standard deviations of these distributions (Lau, 2007). To complete Bayesian
inference, individuals must subjectively estimate the distribution shapes and use
these estimates to assess the likelihood of the current intensity x (Lau, 2007).

In some cases, individuals may have no prior preference between signal and noise.
For example, before a signal detection experiment, participants may have no bias
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about whether stimuli on a computer screen are signals or noise, simply consid-
ering them equally likely. Here we can assume equal prior probabilities: P(S)
= P(N) = 0.5. In this case, the posterior probability ratio equals the likelihood
ratio, so Bayesian decisions depend entirely on likelihood values. However, prior
probabilities are not always 0.5 (Wickens, 2001). Some individuals may have
subjective preferences, believing signals or noise are more likely. In such cases,
Bayesian decisions based on posterior probability ratios are influenced by both
likelihood ratios and prior probability ratios: when individuals believe signals
are more probable a priori, they are more likely to judge stimuli as signals, and
vice versa.

According to BDT, both likelihood function values and prior probabilities used
in Bayesian inference come from subjective estimates. When do these subjective
estimates yield optimal decisions? How do changes in these estimates affect deci-
sion processes? To address these questions, we next examine the “ideal observer”
perspective in signal detection tasks to explore when decisions are optimal and
how to explain deviations between real participants and ideal observers.

3 The Ideal Observer

Classical SDT posits that individuals set a response criterion C on the stimu-
lus intensity axis and compare the current stimulus intensity x to C to decide
whether the stimulus is signal or noise. Responses are classified as hits, false
alarms, misses, and correct rejections, with hits and correct rejections consid-
ered correct responses, while false alarms and misses are errors. An interesting
question arises: where should C be placed to maximize accuracy? In SDT, an
individual who sets the optimal criterion to maximize accuracy is called an ideal
observer (Wickens, 2001).

To calculate where an ideal observer would place C, we must first determine how
C affects accuracy. Consider the SDT model shown in Figure 1, where signal
and noise distributions have equal variance (both equal to 1)—this is called an
equal-variance SDT model (Wickens, 2001). In this model, when the stimulus
is a signal, accuracy (hit rate, HR) equals the area under the signal distribution
to the right of C:

HR=1-0Clu=d o=1) (9)

Here, ®(C|u,0) represents the cumulative distribution function of a normal
distribution with mean p and standard deviation o, equivalent to the area under
the curve to the left of C. Similarly, when the stimulus is noise, accuracy (correct
rejection rate, CRR) equals the area under the noise distribution to the left of
C:

CRR=2(Clp=0,0=1) (10)
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Assuming signal stimuli occur with probability P(St) and noise stimuli with
probability P(Nt) in the experiment (where t indicates these are the true prob-
abilities, to distinguish them from subjective priors used in Bayesian decision-
making), overall accuracy Pcorrect is:

P,yprow = P(St)-HR+P(Nt)-CRR = P(St)-[1-®(Clp = d’, o = 1)]+P(Nt)-®(Clp = 0,0 = 1)
(11)

To find the C that maximizes Pcorrect, we first derive its first derivative:
chorrect ’
Heorreet _ p(N) - §(Clu=0,0 = 1)~ PSHHClu=d' 0 =1)  (12)

Here, ¢(C|u, o) represents the probability density at intensity C in a normal dis-
tribution with mean g and standard deviation o. The ideal observer’ s criterion,
Cideal, should be set where this derivative equals zero:

P(Nt) ' ¢)(Cideal|ﬂ = 070 = 1) - P(St)¢(Cideal|/’L = d/v 0= 1) =0 (13)
When individuals judge all stimuli with intensity above Cideal as signals and

all below as noise, accuracy is maximized (Wickens, 2001). Using the normal
probability density function, we can solve for Cideal’ s location:

¢(Cideal|p“ = d/’ 0= 1) P(Nt)

= 14

HCogolit =0.0=1) _ P(57) 14)

L gt PINY 1 G (15)
Nz RCORNGT:
d’ In[P(Nt)/P(St

Cidear = 57 e d)’/ (50) (16)

In the equal-variance model, when signals and noise occur with equal probabil-
ity (P(St) = P(Nt) = 0.5), Cideal equals d’ /2—the ideal observer places the
criterion exactly midway between the signal and noise distribution means, at
their intersection (Wickens, 2001).

We can also understand the ideal observer’ s decision rule from a BDT perspec-

tive. Equation (13) can be rewritten as:

¢(Cideal‘:u’ = d/,(f = 1)P(St)
QS(Oideal‘,u =0,0= 1)P(Nt)

=1 (17)

This closely resembles equation (8) describing Bayesian decision-making. In
equation (17), the ratio of true probabilities P(St)/P(Nt) resembles the prior
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probability ratio in Bayesian decisions, and the ratio of probability densities at
Cideal resembles the likelihood ratio. BDT indicates that when individuals know
the objective prior probabilities and true distribution shapes (i.e., true likelihood
values), Bayesian decision-making ensures ideal observer performance—maximiz-
ing accuracy (Burgess, 1985). Combining equations (8) and (17), when stimulus
intensity equals Cideal, the posterior probability ratio (product of likelihood ra-
tio and prior ratio) equals 1. When intensity exceeds Cideal, the posterior ratio
exceeds 1, leading to a “signal” judgment; when below Cideal, it is less than 1,
leading to a “noise” judgment. This Bayesian decision rule matches the ideal
observer’ s rule in classical SDT.

However, empirical analyses show that while real participants’ criteria approx-
imate the ideal observer’ s (Knill, 1998; Legge et al., 2002; Stretch & Wixted,
1998), they rarely place the criterion exactly at Cideal from equation (16), indi-
cating systematic deviations (Lau, 2007; Wickens, 2001). BDT explains these
deviations through two sources: First, participants’ subjective estimates of prior
probabilities may differ from objective probabilities. Figure 2A illustrates a case
where objective probabilities are equal, but participants subjectively believe sig-
nals are more likely. Based on their subjective priors, they set a criterion left of
the distributions’ midpoint to maximize accuracy, causing deviation from the
ideal observer. Second, participants’ subjective estimates of distribution shapes
may differ from objective distributions, causing biased likelihood estimates. In
Figure 2B, participants correctly estimate the noise distribution mean but over-
estimate the signal distribution mean, leading them to set a criterion at the
midpoint of their subjective estimates, which deviates from the true ideal cri-
terion (Lau, 2007; Wickens, 2001). Thus, BDT provides a deeper explanation
than classical SDT for why criteria are set at specific locations, linking them to
subjective estimates of probability and distribution shape.

These conclusions derive from the equal-variance model in Figure 1. In this
model, although BDT offers deeper theoretical explanation than classical SDT,
they are mathematically equivalent. Even if participants’ subjective estimates
of priors and likelihoods differ from true values, as long as they believe signal
and noise variances are equal, both theories yield mathematically equivalent
decision processes: judge as signal when x exceeds criterion C, and as noise
when x is below C (Glanzer et al., 2009, 2019; Wickens, 2001). However, in real
tasks, signal and noise variances are not always equal—these are called unequal-
variance SDT models (Mickes et al., 2007). Here, the relationship between
classical SDT and BDT becomes more complex.

4 Unequal-Variance Signal Detection Models

To simplify models, researchers often assume equal variances for signal and noise
distributions. However, this assumption does not always hold empirically (Green
& Swets, 1966; Wixted, 2020). In recognition memory tasks, for instance, the
signal distribution (old words) has a significantly larger standard deviation than
the noise distribution (new words), with a typical ratio of about 1.25:1 (Mickes
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et al., 2007; Rotello, 2017). Wixted (2007) proposed that old words have higher
intensity in recognition memory because they were learned during the study
phase. Only if all old words were learned equally would the signal variance
match the noise variance. Since learning varies across items, this variability
causes the signal distribution’ s variance to exceed the noise distribution’ s.
Thus, equal-variance models, while theoretically simple, may oversimplify signal
detection processes, whereas unequal-variance models may better capture real
task dynamics.

Not all signal detection tasks require unequal-variance models. In two-
alternative forced-choice (2AFC) tasks, where a signal (e.g., old word) and
noise (e.g., new word) are presented simultaneously and participants must
select the signal, equal-variance models can quantify performance even when
variances differ (Wickens, 2001). As this is not directly relevant to our topic,
we will not elaborate further; interested readers may consult existing literature
on 2AFC tasks (Macmillan & Creelman, 2004; Wickens, 2001).

We now examine decision-making in unequal-variance models from a BDT per-
spective. Figure 3 shows an unequal-variance model where the noise distribution
has mean 0 and standard deviation o, = 1, while the signal distribution has
mean d’ and standard deviation og # 1 (here og > 1, as in recognition memory).
To simplify, we assume equal true probabilities for signal and noise (0.5 each)
and that participants know these priors and likelihoods perfectly. With equal
priors, decisions depend entirely on the likelihood ratio: according to equation
(8), judge as signal when the likelihood ratio exceeds 1, and as noise otherwise.
However, in unequal-variance models, signal and noise distributions intersect at
two points (C1 and C2). When x is less than C1 or greater than C2, the proba-
bility density is higher in the signal distribution, leading to a “signal” judgment;
when x is between C1 and C2, the density is higher in the noise distribution,
leading to a “noise” judgment. Thus, a specific likelihood ratio corresponds to
two different criteria on the intensity axis.

Glanzer et al. (2009) derived the mathematical relationship between likelihood
ratio and criterion C in unequal-variance models. They first computed the
likelihood ratio at intensity C, then took its natural logarithm (denoted \):

¢(C‘/’L = d/,O' = US’)
¢(Clu=0,0=1)

A=1In (18)

Since the logarithm is monotonically increasing, A’s maxima/minima correspond
to those of the likelihood ratio. Further analysis shows (Glanzer et al., 2009)
that A relates quadratically to C (see Figure 4). When og > 1, A has a minimum
(A*); when g < 1, it has a maximum (A*). Only when A = A\* does a unique
criterion C* exist on the intensity axis; otherwise, each A value corresponds to
two criteria. When A = 0 (likelihood ratio = 1), the two criteria C1 and C2
divide the intensity axis into three regions. If og > 1, the region between C1
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and C2 is judged as noise and the outer regions as signal; if 0g < 1, the pattern
reverses.

Classical SDT, in contrast, assumes that even in unequal-variance models, indi-
viduals simply set a single criterion C, judging as signal when x exceeds C and
as noise otherwise (Mickes et al., 2007; Wickens, 2001). Thus, classical SDT and
BDT make different predictions for unequal-variance models, and their decision
outcomes are no longer equivalent (unlike in equal-variance models).

These differences manifest in receiver operating characteristic (ROC) curves,
which plot hit rate (HR) against false alarm rate (FAR) while holding objective
distributions constant (Wickens, 2001). In classical SDT, varying C changes
both HR and FAR. In BDT (assuming perfect knowledge of priors and likeli-
hoods), varying signal/noise probabilities changes prior probabilities, affecting
the likelihood ratio where posterior ratio equals 1 (i.e., the critical A value),
which in turn changes criteria locations and thus HR and FAR. Plotting all
possible HR-FAR pairs yields the ROC curve.

In equal-variance models, both theories (being mathematically equivalent) pro-
duce ROC curves above the diagonal when d” > 0, with larger area under the
curve for higher d’ (Figure 5A). However, in unequal-variance models, classical
SDT can produce ROC curves that fall below the diagonal even when d° > 0.
For example, when o4 > 1, HR may be lower than FAR when both approach
1 (Figure 5B); when og < 1, this occurs when both approach 0 (Figure 5C).
In contrast, BDT produces ROC curves that always remain above the diagonal
(Figure 5D), a conclusion that can be proven mathematically (Wickens, 2001).

These differences are more apparent in zZROC curves (Macmillan & Creelman,
2004). zROC curves transform HR and FAR to z-scores:

zyp =@ '(HR|p=0,0=1) (19)

where ®1(p|u = 0,0 = 1) is the inverse cumulative distribution function of
the standard normal distribution, converting probabilities (0 to 1) to z-scores
(-00 to +00). Plotting zHR against zFAR yields the zZROC curve (Figure 6).
When the zZROC curve lies above the line y = x, hit rate exceeds false alarm
rate. In classical SDT, zHR and zFAR have a linear relationship with slope
equal to oy /og (Wickens, 2001). With o, typically set to 1, when og > 1
the slope is less than 1, causing the zROC line to intersect y = x on the right
side and produce HR < FAR at high rates. When og < 1, the slope exceeds 1,
intersecting on the left side and producing HR < FAR at low rates (Figure 6A).
In BDT, zHR and zFAR have a curvilinear relationship that always remains
above y = x (Figure 6B) (Macmillan & Creelman, 2004).
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Since classical SDT and BDT predict different ROC and zROC patterns in
unequal-variance models, one could theoretically examine empirical ROC/zROC
curves and extreme HR/FAR data to determine which theory better explains
real decision-making. For example, in recognition memory tasks, one could
increase old word frequency and decrease new word frequency to induce a liberal
criterion (HR and FAR both near 1). If HR < FAR, this would support classical
SDT; if HR always exceeds FAR, this would support BDT.

However, such designs are difficult to implement. In classical SDT" s unequal-
variance model, HR < FAR occurs only when both approach extreme values (0
or 1), and the difference is small (Figures 5B and 5C). Sampling error severely
affects observed HR-FAR differences, making it difficult to accurately estimate
true differences (Glanzer et al., 2019; Macmillan & Creelman, 2004). Are there
alternative experimental designs to compare these theories?

5 Empirical Evidence Supporting Bayesian Decision Theory

Researchers have proposed that two-condition experiments can compare classi-
cal SDT and BDT (Glanzer et al., 2009, 2019; Semmler et al., 2018; Stretch &
Wixted, 1998). In these within-subject designs, the same participants complete
two signal detection tasks differing only in difficulty, with identical requirements.
For example, participants might complete two recognition memory tasks where
the only difference is study time per item (longer time = easier task; Glanzer
et al., 2009). Participants judge each stimulus as signal or noise and provide
confidence ratings on a Likert scale. Glanzer et al. (2019) emphasized that
participants must know which task condition each trial belongs to. Therefore,
the two difficulty conditions should be presented in separate blocks; if using a
mixed-list design, trials must be clearly marked (e.g., by color) to indicate their
condition.

Likelihood ratio theory explains decision-making in two-condition experiments
(Glanzer et al., 2009, 2019; Semmler et al., 2018). Based on BDT, it comprises
two assumptions: (1) Likelihood ratio invariance—the critical likelihood ratio
threshold remains constant across difficulty conditions. (2) True likelihood ra-
tio—participants know the true distribution shapes and use actual likelihood
ratios for decisions. Note that the true likelihood ratio assumption is stronger
than general BDT, which allows subjective likelihood ratios to differ from true
values (Lau, 2007; Wickens, 2001). Likelihood ratio theory posits that both
assumptions hold simultaneously.

From this theory, Glanzer et al. (2009, 2019) predicted three phenomena: mirror
effect, variance effect, and zZROC length effect. Likelihood ratio theory readily
explains these, while classical SDT struggles to account for all three. Empir-
ical studies across cognitive domains (perception, memory, reasoning, mental
rotation) consistently demonstrate these effects (Glanzer et al., 2009, 2019; Hil-
ford et al., 2015, 2019; Semmler et al., 2018), supporting BDT. Due to space
constraints, we focus on the zZROC length effect.
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The zROC length effect was first reported by Stretch and Wixted (1998), who
reanalyzed data from Ratcliff et al. (1994). In that study, participants com-
pleted two recognition memory tasks (easy vs. difficult). In the easy condition,
participants studied each old word for 3 s; in the difficult condition, only 1 s.

During the recognition test, participants used a 6-point scale: 1 = “sure new,”
2 = “probably new,” 3 = “maybe new,” 4 = “maybe old,” 5 = “probably old,”
6 = “sure old.” Thus, participants made old/new judgments and reported con-

fidence. In classical SDT, confidence rating tasks generalize binary judgments:
an n-point scale corresponds to (n-1) criteria on the intensity axis (Wickens,
2001). As Figure TA shows, when intensity falls below C1, participants respond
“1” ; between C1 and C2, “2” ; and so on. Stretch and Wixted found that in
the easy condition (higher d’ ), all criteria shifted inward, shortening distances
between them (Figure 7A). They replicated this finding in a new experiment.

Glanzer et al. (2009, 2019) reformulated this using zZROC curves. They com-
puted (n-1) HR-FAR pairs by varying criteria across the n-point scale. For a
6-point scale, treating responses 1 as “noise” and 2-6 as “signal” yields one
HR-FAR pair; treating 1-2 as “noise” and 3-6 as “signal” yields another; and so
on. Plotting zZROC curves from these pairs revealed that the easy condition’ s
zROC curve was significantly shorter (Figure 7B), meaning HR and FAR varied
less across criteria—criteria were closer together. This is the zZROC length effect.

Likelihood ratio theory naturally derives this effect from the invariance assump-
tion. According to BDT (equation (8)), confidence judgments correspond to
setting (n-1) thresholds on posterior probability ratios (denoted 5, By, .., B_1)-
If the posterior ratio falls below 3;, participants respond “1” ; between ; and
By, “2” ; etc. (Green & Swets, 1966). Glanzer et al. (2009, 2019) assumed that
when tasks differ only in difficulty, these thresholds § remain constant across
conditions. Since posterior ratio equals prior ratio times likelihood ratio, and
subjective prior estimates are approximately constant (Fleming & Daw, 2017;
Wickens, 2001), participants effectively set constant thresholds on likelihood
ratios across conditions. This is the likelihood ratio invariance assumption.

Deriving the zZROC length effect from this assumption in equal-variance models:
with constant likelihood ratio thresholds, the log-likelihood ratio () thresholds
are also constant across conditions. Using the normal density function (see
equations (14) and (15)), the relationship between A and criterion C is (Glanzer
et al., 2009):

’ o ,2

A=1
" d(Clp=0,0=1) 2

When A is constant across conditions, decreasing task difficulty (increasing d’ )
causes criteria C to contract around d’ /2, shortening distances between them—
producing the zROC length effect. Glanzer et al. (2009) showed this holds even
in unequal-variance models, provided A remains constant. While classical SDT
could ad hoc explain criteria contraction as direct adjustment on the intensity
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axis, it cannot specify the underlying mechanism. Thus, the zZROC length effect
supports BDT. Glanzer et al. (2009) similarly derived mirror and variance effects,
which empirical studies confirm.

However, likelihood ratio theory’ s true likelihood ratio assumption—that partici-
pants know true distribution shapes—has been questioned. Some doubt whether
real participants possess such knowledge (Balakrishnan & Ratcliff, 1996; Criss
& McClelland, 2006). Semmler et al. (2018) responded that knowledge accu-
mulates through lifelong learning; even if participants cannot precisely estimate
means and standard deviations, they learn how distribution separation varies
with task difficulty (Turner et al., 2011; Wixted & Gaitan, 2002). This remains
largely theoretical and requires future investigation.

6 Conclusion

This article examined decision-making in signal detection tasks through
Bayesian inference. Compared to classical SDT, BDT provides deeper ex-
planations of the mental mechanisms underlying signal-noise discrimination.
However, BDT involves many parameters (subjective estimates of priors and
likelihoods) that cannot all be estimated from hit and false alarm rates alone.
For instance, criterion shifts could reflect changes in either prior or likelihood
estimates, which are difficult to disentangle empirically (Fleming & Daw,
2017; Lau, 2007). While likelihood ratio theory simplifies BDT by assuming
subjective likelihood ratios approximate true values (Glanzer et al., 2009, 2019;
Semmler et al., 2018), this assumption is contested. Therefore, classical SDT
(and its criterion C) remains a useful tool for data analysis.

The BDT discussed here does not fully capture decision mechanisms. For exam-
ple, BDT assumes decisions depend solely on posterior probability ratios, but
real decisions are also influenced by rewards and penalties. A driver approach-
ing an intersection must quickly judge traffic light color (green = signal, red =
noise). A miss (judging green as red) has minor consequences (waiting longer),
but a false alarm (judging red as green) is catastrophic (causing accidents).
Thus, drivers may adopt a strict criterion, i F#IErAL4T, independent of per-
ceptual information. Green and Swets (1966) noted that when outcomes have
different utilities, the goal may shift from maximizing accuracy (ideal observer)
to maximizing reward or minimizing punishment, making decisions depend on
both posterior probabilities and outcome consequences.

Additionally, BDT views confidence judgments as setting thresholds on posterior
probability ratios (Glanzer et al., 2009, 2019; Green & Swets, 1966). However,
recent work suggests posterior probabilities from stimulus intensity do not fully
capture confidence. The information used for stimulus decisions may differ from
that used for confidence judgments: some stimulus information may be lost in
confidence reports, while additional reasoning may enrich them (Hu et al., 2021;
Jang et al., 2012; Maniscalco & Lau, 2012; Shekhar & Rahnev, 2021). Fleming
and Daw (2017) extended BDT to incorporate these differences, but others argue
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confidence mechanisms may not fully conform to BDT even with this extension
(Adler & Ma, 2018; Li & Ma, 2020). Whether confidence judgments follow
Bayesian principles remains debated and requires further research.
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