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Abstract

This work aims to identify models capable of describing size effects on the mod-
ulus and hardness of polymers as measured by indentation testing. First, elastic
size effects are described through a model developed by introducing an elastic
unloading load model that incorporates couple-stress elasticity into the Oliver-
Pharr indentation approach. The resulting modulus and hardness models show
excellent agreement with a substantial body of experimental data obtained from
the literature. The models demonstrate that elastic size effects in polymers and
their experimental manifestations are primarily governed by molecular struc-
ture. The fitting results confirm that size effects on the indentation hardness of
polymers with complex molecular structures are predominantly elastic. Second,
it is postulated that plastic size effects in the indentation hardness of polymers
originate solely from their glassy phases. A shear transformation plasticity the-
ory developed for glassy polymers is utilized to characterize the plastic size
effects. A hardness model is accordingly proposed and shows good agreement
with relevant experimental data.
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Abstract

This work attempts to find out the models which can describe the size effects
in modulus and hardness of polymers measured by indentation tests. Firstly,
the elastic size effects are described by a model, through introducing a model
of elastic unloading load with consideration of couple stress elasticity into the
Oliver-Pharr indentation approach. The accordingly proposed modulus model
and hardness model agree excellently with a large amount of experimental data
obtained from literatures. The models show that the elastic size effects of poly-
mers and their experimental observations are mainly determined by the molec-
ular structures. The fitting results verify that the size effects in indentation
hardness of polymers with complex molecular structures are significantly elas-
tic. Secondly, it is postulated that the plastic size effects in indentation hardness
of polymers are only derived from their glassy components. A shear transforma-
tion plasticity theory proposed for glassy polymers is employed to characterize
the plastic size effects. A hardness model is accordingly proposed and agrees
well with related experimental data.

1. Introduction

The nano-indentation approach of Oliver and Pharr [1] has been widely used to
measure modulus and hardness of crystals, polymeric materials or thin films. In
such a test, the phenomenon that the measured modulus and hardness increase
with decreasing indentation depths is called indentation size effects (simplified
as ISEs). For crystals, size effects almost do not emerge in indentation modulus,
but mainly in indentation hardness, and have been well studied and mostly
described by the model proposed by Nix and Gao [2]. Nix and Gao found ISEs
of crystals are induced by the different distribution of geometrically necessary
dislocations along the indentation depths. For polymers, size effects are however
extensively observed in both indentation modulus and indentation hardness [3-
10]. But the notion of dislocations cannot be applied to polymers due to the
lack of long-range order. It is necessary to investigate the essential mechanism
of the size effects of polymers, from which we may get some favorable results
conducive to the development of MEMS, sensors, precision instruments.

The present work attempts to construct models which can describe the ISEs
of polymers. The first study in this respect is the hardness model of Lam and
Chong [11] which adopts the notion of the geometrically necessary kinks of
molecular chains in polymer plasticity. This is similar to the innovation of Nix
and Gao[2] which adopts the notion of the geometrically necessary dislocations
in crystal plasticity. Recently, Han and Nikolov [12] and Alisafaei et al. [13]
pointed out that the size effects in indentation modulus (simplified as modulus
ISEs) of polymers are only elastic size effects, because the determinations of
modulus in indentation tests are only related to elastic deformations. They also
suggested the size effects in indentation hardness (simplified as hardness ISEs)
of polymers can be decomposed into elastic part and plastic part, and the elas-
tic part probably even be dominant due to the extensive elasticity of polymers.

chinarxiv.org/items/chinaxiv-202205.00113 Machine Translation


https://chinarxiv.org/items/chinaxiv-202205.00113

ChinaRxiv [$X]

In order to theoretically characterize the ISEs of polymers, Han and Nikolov
[12] simplified the indentation problem as the Boussinesq problem. The couple
stress elasticity is introduced into the simplified problem and a hardness model
is accordingly proposed. Both the model of Lam and Chong [11] and that of
Han and Nikolov [12] involve rotation gradients in deformations of microstruc-
tures. Voyiadjis et al. [10] suggested that the size effects of polymers may be
at least partly independent of rotation gradients, since size effects were also
found in rotation-free situations such as uniaxial tensile experiments of poly-
meric nanofibers. They accordingly proposed a hardness model, by employing a
shear transformation plasticity theory of glassy polymers which was developed
by Voyiadjis and Samadi-Dooki [14].

The present work is an extension of the works of Han and Nikolov [12] and
Voyiadjis et al. [10]. Before we attempted to solve the spherical contact prob-
lem in the context of couple stress elasticity a number of solutions regarding
the same problem have been reported [15-18]. Based on these works, similar
to the work of Han and Nikolov[12], the couple stress elasticity was introduced
into Hertz contact problem, and a theoretical model of contact load which can
characterize the size effects in contact tests of elastomers was derived [19] in our
previous work. In Section 2, the Oliver-Pharr indentation approach is firstly
recalled. Then the proposed load model is introduced into Oliver-Pharr ap-
proach. Accordingly, two models respectively characterizing the modulus ISEs
and the elastic hardness ISEs are derived. These two models are applied to
a large number of experimental data to illustrate their validity. In Section 3,
the shear transformation plasticity theory and hardness model respectively pro-
posed by Voyiadjis and Samadi-Dooki[14] and Voyiadjis et al.[10] are recalled.
A new hardness model with less assumptions and in a simpler form is proposed,
in order to characterize the plastic hardness ISEs of polymers. The proposed
hardness mode is compared with related experimental data.

2.1. Model development

We start by recalling the indentation approach proposed by Oliver and Pharr
[1]. Their approach adopts a diamond Berkovich indenter. A single indentation
cycle contains three periods: loading to a peak load P, .., as shown in Fig. 1(a);
holding for a period of time at the peak load; and unloading from the peak load
to zero with a plastically residual depth being left, as shown in Fig. 1(b). The
holding period is conducted in order to minimize any non-elastic effects upon
unloading period, assuring a completely elastic deformation with respect to
h—h;. Fig. 1(c) shows a typical load-curve of a single indentation cycle. Three
important quantities are recorded: the maximum deformation depth A the
peak load P, and the plastically residual depth h .

max?

max?

The Oliver-Pharr approach starts with the elastic contact analysis at the initial
unloading stages. They found that the elastic unloading curve can be best fitted
by a power law relation:
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P=a(h—h,)m (1)

where P is the elastic contact load at the unloading stage, o and m are fitted pa-
rameters, and h is exactly the plastic residue. The critical property estimated
from the unloading curve is the elastic contact stiffness at initial unloading
stages, which is defined as:

s= 2
dh lp—p

—'max

= am(hy,, —hy)" ! (2)

max

The contact depth h, shown in Fig. 1(a) is then estimated by:

T 3)

The projected area of elastic contact shown in Fig. 1(a) is determined by sub-
stituting h, into the area function of the cross section of indenter, i.e.:

A, = flhe) (4)

and the elastic modulus is related to A, by:
p VYT S
T 2,8 /AC

where [ is a dimensionless parameter accounting for indenter geometry. Finally,
the hardness is determined by:

()

= (6)

The critical advance in Oliver-Pharr approach is their understanding of the
effective behavior of Berkovich indenter at the initial unloading stages. Firstly,
on the basis of a large number of experimental observations, they found the
elastic unloading curves at the initial stages can be exactly represented by Eq.
(1), in which the values of m are around 1.5. The contact load of linear elastic
half space by a rigid paraboloid of revolution has been analytically expressed
by Sneddon [20] as a power law with the exponent being exactly 1.5. Therefore,
Oliver and Pharr suggested the effective behavior of the Berkovich indenter in
contact with the elastic recovery of deformed surface can be approximated by
the behavior of a paraboloid of revolution in contact with the flat surface of
half space, as schematically shown in Fig. 2. Further, on the basis of several
finite element simulations, Pharr and Bolshakov [21] verified this inference and
constructed the concept of “effective indenter shape” .
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In Sneddon’ s work, the contact load of linear elastic half space by a rigid
paraboloid of revolution is expressed as:

4 G 9,3
_ 2 Y p1/233/2
P, 31_VR he (7)

where P, is the linear elastic contact load, G is the shear modulus of half space,
R is the curvature radius of indenter tip, v is Poisson’ s ratio, and h, is the
normal displacement of the contact center. In the limit of small displacement,

this contact problem is the same as the contact of half space by a rigid sphere,
which is also the famous Hertz contact problem [22].

Recently, we investigated the Hertz contact problem in the context of couple
stress elasticity [19]. A model of contact load with consideration of couple stress
effects is analytically derived and expressed as:

YRG! 2
p=__Y pi2 5/2 14
51—yt e\ (8)

where P is the couple stress-based contact load, [ is a characteristic length
of deformation body employed in couple stress elasticity to characterize size-
dependent deformations, similar to the two Lamé constants in classical linear
elasticity.

It can be seen from Eq. (8) that the couple stress-based contact load P contains
an augmenting term relative to the linear F,. Besides, the augmenting effects
increase with the decreasing deformation depth h,, which denotes elastic contact
load size effects existing in contact load. Furthermore, this equation has been
successfully used to characterize the size effects found in spherical contact test
of PDMS [23].

The above discussion indicates the modulus ISEs and the elastic part of hardness
ISEs may be theoretically modeled by introducing the couple stress-based elastic
contact formula Eq. (8) into the Oliver-Pharr indentation approach. Specifically,
the elastic contact load at the initial unloading stages, i.e., Eq. (1), may be
decomposed into two parts: a linear elastic load and a corresponding augment
mediated by couple stress effects, similar to Eq. (8). For simplicity, the linear
elastic part in Eq. (1) is assumed to be in the same analytical form as Eq.
(7), with the exponent m in Eq. (1) being sustained. Besides, the couple
stress-mediated load augment is assumed to be the same as that in Eq. (8),
i.e., 1?/(Rh,). Based on these considerations, the couple stress-based unloading
curve can be expressed as:

P=a(h—hp)™ [1+ R(hl_hf)} (9)
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Incorporating Eq. (9) into Eq. (2), the couple stress-based contact stiffness can
be expressed as:

(m — 1)1

5= SO b mR(h‘max - h‘f)

(10)

where S, is the linear elastic contact stiffness, which is obtained by incorporating
the leading term in Eq. (9) into Eq. (2), and expressed as:

So = am(hyax — hy)™ ! (11)

max
According to Eq. (5), the size effects in modulus can only come from S and
A, because other parameters in Eq. (5) are prescribed constants. Eq. (10) has
introduced the size effects into S. Similarly, the size effects could be introduced
into A, by incorporating Eq. (9) and Eq. (10) into Eq. (3). However, the
respective size effects in P and S may be largely “faded” after they are incorpo-
rated into the term P/S, due to the quotient form of this term. Additionally,
this incorporation would make the expression of the resultant model of A, much
complex. Based on these considerations, for simplicity the size effects in A, are
neglected here. Therefore, the size effects in modulus are modeled by directly
incorporating Eq. (10) into Eq. (5), and expressed as:

(m—1)?

E=FE |1+ ————
0 - mR(hmax_hf)

(12)

where Ej is the linear elastic indentation modulus, which is obtained by incor-
porating Eq. (11) into Eq. (5).

Eq. (12) describes the modulus ISEs as that the modulus varies with the com-
pletely elastic depth h,,,, —hy. However, in an indentation test, the measured
modulus and hardness are recorded as a function of h,,.. Therefore, in order
to apply Eq. (12) to the experimentally obtained moduli, it should be also
expressed as a function of h,,.. In the indentation tests of UHMWPE, PS
and PMMA [3] and PAI [7], the fraction of elastic deformation work (the area
encompassed by CDE in Fig. 1(c)) in total deformation work (the area encom-
passed by ABCE in Fig. 1(c)) is found to approximately remain constant as
hoax increases, as can be seen in Fig. 3. Therefore, for simplicity we assume

that the elastic recovery hy,,, — h; is related to hy,, by a relation:

hmax - hf = 6hhmax (13)
where the constant ¢, essentially denotes the fraction of elastic depth, ranging
from 0 to 1. Based on these approximations, we can express Eq. (12) in the

form of:
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R
EEO[1+ l} (14)
hmax
where the relevant parameters are combined into a higher-order parameter
2
R, = %. As the constant fraction ¢, is dimensionless, the higher-order

parameter R; has a dimension of length. So far, the modulus ISEs have been
characterized by the exponent m and the higher-order parameter R;. According
to the understanding of effective behavior of indenter in the work of Oliver and
Pharr [1], the theoretical range of m is considered to be around 1.5, at most
ranging from 1 to 2. In a difference to m, to determine the theoretical range of
R, is of difficulties, because R, contains five pieces of information, either from
the material itself or from the indenter.

As mentioned in Section 1, Han and Nikolov [12] and Alisafaei et al. [13] pointed
out the hardness ISEs of polymers can be decomposed into elastic part and
plastic part, and the elastic part may even be dominant. If the plastic hardness
ISEs are temporarily neglected here, the elastic part can be similarly modeled
by incorporating the couple stress-based elastic contact load, i.e., Eq. (9), into
the hardness formula Eq. (6). Therefore, we can obtain:

H=H, [1 + th ] (15)

max

where H, represents the macro hardness or constant hardness, which is obtained
by substituting linear elastic contact load (the leading term in Eq. (9)) into Eq.
(6) with h being h,,, — h;. The parameters R, and m are exactly those in Eq.
(13). However, it should be noted that if this hardness model is directly applied
to the experimental data of indentation hardness of a polymer, the estimated
values of R, and m may respectively deviate from those estimated by Eq. (13),
because the plastic hardness ISEs in experimental data may be non-negligible
and even significant. The same values as those estimated by Eq. (13) can be
obtained only if the plastic hardness ISEs of this polymer can be extremely
negligible.

So far, the modulus ISEs and the elastic hardness ISEs are respectively modeled
by Eq. (13) and Eq. (15). It can be found from Eq. (13) and Eq. (15) that
a relation exists between the two augmenting effect terms in the two models,
which can be expressed as:

H-H, E-E,
HO B EO

(16)

As mentioned above, if the plastic hardness ISEs of a polymer can be extremely
negligible, the values of R; and m estimated by Eq. (13) will be the same
as those estimated by Eq. (15). Under this condition, if the experimentally
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obtained hardness and moduli are respectively processed in the form of Eq.
(16) and plotted versus 1/h,,., two power law curves with uniform exponent
will be obtained. In particular, these two curves become two straight lines if
the values of m are uniformly estimated as 1.5, which requires the “effective
indenter shape” in tests is equivalent to a paraboloid of revolution. Additionally,
there is a proportional relationship of 3 times between the slopes of the two
lines.

2.2. Model verification

The scattering points in Fig. 4 are experimentally obtained indentation moduli
of various glassy polymers including PS (Briscoe et al. [3]), PMMA (Briscoe
et al. [3]; Voyiadjis et al. [10]), Epoxy (Alisafaei et al. [8]), and various semi-
crystalline polymers including Nylon66 (Shen et al. [6]), UHMWPE (Briscoe
et al. [3]), PTFE (Li and Bhushan [24]) and LDPE (Tavares et al. [5]). Fig.
5(a~d) correspondingly shows the indentation hardness of these polymers. In
addition, Fig. 5(e-f) shows the indentation hardness of Epoxy (Chong and Lam
[4]), PC (Chong and Lam [4]; Samadi-Dooki et al. [9]) and PAI (Tatiraju et
al. [7]). The moduli of polymers shown in Fig. 5(e-f) were not measured in the
respective literatures. It can be seen from these two figures that for PS, PMMA
Epoxy (Alisafaei et al. [8]), Nylon66 and LDPE the hardness ISEs are always
accompanied by the modulus ISEs, while for UHMWPE and PTFE the ISEs
arise in neither modulus nor hardness. In other words, for these polymers, ISEs
must arise in hardness as long as it arises in modulus, or vice versa.

In order to illustrate the validity of Eq. (13) and Eq. (15) for characterizing
ISEs of polymers, they are respectively fitted to the experimental data with size
effects shown in Fig. 4 and Fig. 5. As shown in the two figures, an excellent
agreement between the two models and the experimental data of polymers other
than Epoxy (Alisafaei et al. [8]) is obtained. For Epoxy (Alisafaei et al. [8]),
both Eq. (13) and Eq. (15) slightly deviate from the experimental data after
depths of about 1000 nm, i.e., larger h,,,. This may be attributed to the
continuous declines of experimental data at these depths, due to the possible
inhomogeneity of properties derived from sample preparation.

The fitted values of E,, R, and m in Fig. 4 and Fig. 5 are shown in Table 1
and Table 2, respectively. It can be seen that all m values in Table 1 are in the
theoretical range of m. Specially, the m values of PS and PMMA (Briscoe et
al. [3]) are significantly close to 1.5, which implies that the “effective indenter
shape” used in these experiments can be well identified as a paraboloid of revo-
lution. Additionally, in Table 1 the value of LDPE is larger than those of other
polymers. Comparing Table 2 with Table 1, it can be found that for polymers
whose modulus and hardness are measured, the values of R; and m in Table 2
are respectively greater than those in Table 1. Especially, in Table 2 the R; of
PAT reaches about 500 nm and that of LDPE can even reach near 90000 nm.
The m value of LDPE in Table 2 can even reach 2.9 which significantly deviates
from the theoretical range of m.
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2.3. Discussion

Before proceeding to the discussion of results in Table 1 and Table 2, let us
discuss the influences of characteristic length | and elastoplastic properties of
polymers on R; and m, because these features of different polymers are signif-
icantly discrepant. Regarding the characteristic length [ of polymers, Nikolov
et al. [25] and Han [26] have studied its physical mechanisms and related it to
the bending stiffness of polymeric chains. The phenomenological rotation gra-
dient energy in couple stress elasticity is related by Nikolov et al. [25] to the
Frank elasticity energy, which is always present as long as the chains possess fi-
nite bending stiffness and neighboring interactions. They worked out a relation
linking the phenomenological characteristic length [ to the effective Frank elas-
ticity constant K. Han [26] subsequently illustrated in detail the dependence of
characteristic length [ on the molecular bending stiffness, although the exact [
value of each polymer is not estimated. They found that polymers containing
complex molecular structures in chains always have larger characteristic length
[ than those having flexible chains. For example, PAI, Epoxy, PC and PS have
the longest [ due to the stiffening of aromatic rings in the backbone or side group;
PMMA and Nylon66 have shorter [, since PMMA has complex side groups and
the Nylon66 has stiff areas of chains due to the presence of the O and N atoms
[12], although they both lack aromatic rings; UHMWPE and PTFE have short-
est [ which can even be close to 0 nm due to their highly flexible and linear
chains. LDPE was not considered in the work of Han [26]. The [ of LDPE is
presently considered to be longer than those of UHMWPE and PTFE due to
its easily branched chains, but shorter than those of other polymers due to the
flexibility of chains.

The elastoplastic properties of polymers mainly influence the parameter €; which
denotes the fraction of elastic recovery in total elastoplastic deformation depth.
In general, polymers with higher cross-link/entanglement density can provide
higher elastic resistance than those containing flexible chains, because the flex-
ible chains can easily adjust themselves to plastically dissipate the indentation
work [26]. This kind of dependence is approximately consistent with the depen-
dence of characteristic length [ on the molecular bending stiffness. As can be
seen in Fig. 3, the fraction of elastic work of PAI is larger than those of other
polymers, and the corresponding fraction of UHMWPE is the lowest. According
to the definition of ¢, in Section 2.1, it can be postulated that the parameter ¢,
also approximately conforms the size sequence of molecular stiffness. Addition-
ally, the results of finite element simulations for a variety of elastic to plastic
materials [21] show that the exponent m obviously increases with €,. Further-
more, according to the analytical solutions of Sneddon [20], the increasing m
implies that the effective shape of indenter is close to a cone, resulting in a
smaller effective curvature radius R.

The R, increases with increasing [, however decreases with increasing €, and m.
This is the reason why the values in Table 1 do not strictly conform the size
sequence of [. For example, the PS and Epoxy containing rigid aromatic rings
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in chains should theoretically have the largest R; value, but their ¢, value may
also be the largest, thus the resulted R; is not the largest. For LDPE, if its ¢,
value is considered to be close to that of UHMWPE, it also has the lowest [
value. According to the finite element simulations of Pharr and Bolshakov [21]
mentioned above, its lowest €, causes the largest m value among these polymers.
More importantly, the lowest ¢, and the largest m of LDPE, along with the
correspondingly smaller effective curvature radius R, make the resulted R; the
largest among these polymers, although the LDPE has a shorter [ than other
polymers. Conclusively, with these considerations, the results shown in Fig. 4
and Table 1 demonstrate that the modulus model Eq. (13) can be successfully
applied to characterize the modulus ISEs of polymers.

The corresponding deviations between the values of R, and m in Table 2 and
those in Table 1 can be attributed to the discrepancy that the experimentally
obtained hardness ISEs contain both elastic part and plastic part, while Eq.
(15) considers only the elastic part. As discussed above, the plastic dissipation
of LDPE in indentation is significant due to its relatively flexible chains, thus
the plastic hardness ISEs of LDPE may even be dominant. This is exactly the
reason why the values of R; and m of LDPE significantly deviate from those
predicted by Eq. (13), and from the theoretical range. For other polymers
in Table 1, the fraction of plastic deformation is smaller than that of LDPE,
thus the plastic hardness ISEs are slighter than those of LDPE. Therefore, the
corresponding deviations are not as significant as that of LDPE. It can even be
postulated that for all polymers shown in Fig. 5, if the elastic hardness ISEs
can be separated from the experimental data and fitted by Eq. (15), the same
values of R; and m as those predicted by Eq. (13) will be obtained. That
is to say, despite these deviations, the hardness model Eq. (15) can still be
applied to characterize the elastic hardness ISEs. In particular, the PAI has
the lowest fraction of plastic deformation among all polymers. Therefore, the
plastic hardness ISEs of PAI may be trivial. If its modulus data are obtained
by experiment and fitted by Eq. (13), the same values of R; and m as their
counterparts (estimated by Eq. (15)) in Table 2 will be obtained.

The influences of the plastic hardness ISEs can also be explicitly reflected by
relation Eq. (16). For each polymer depicted in Fig. 4, the (E — E,)/E,
values where E,, comes from Table 1 are plotted versus 1/h,,. in Fig. 6. The
corresponding (H—H,))/H, values where H, comes from Table 2 are also plotted.
According to the discussion of Eq. (16) in Section 2.1, for each polymer whose
m values in both Table 1 and Table 2 are uniformly close to 1.5, the data points
of either will line up more straightly. Additionally, a triple relation will exist
between the slopes of the two linear trends. For a more explicit comparison,
a straight line passing through the point (0, 0) is respectively fitted to these
data points. As can be seen in Fig. 6, this kind of tendency is approximately
reflected by the data points of PS, PMMA, and Nylon66. As deviant H, values
are predicted for Epoxy (Alisafaei et al. [8]) in Fig. 4 and Fig. 5, its data
points in Fig. 6 slightly deviate from the linear tendency. However, it can be
found that the data points of LDPE significantly deviate from the linear trend.
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The corresponding slopes of these linearly fitting are shown in Table 3. As
can be seen therein, for PS, PMMA and Nylon66, the triple relation is obvious.
However, for LDPE the relation in slopes significantly deviates from the triple
relation, which can be exactly attributed to the significant fraction of plastic
hardness ISEs. Finally, it is noted that the linear fits in Fig. 6 are adopted to
illustrate not the validities of Eq. (13) and Eq. (15) (both for choice m = 1.5),
but the influence of plastic hardness ISEs on the validities of the two models.

All results present above indicate that for polymers shown in Fig. 5 other than
LDPE, the hardness ISEs are significantly elastic, while the hardness ISEs of
LDPE are significantly plastic. Additionally, these results yield the presen-
timent that if the plastic hardness ISEs are to be characterized by a model,
this model may be in a similar mathematical form to Eq. (15), but with an
exponent larger than m. Firstly, as can be seen in Fig. 5, although the ex-
perimentally obtained hardness of all polymers have already contained plastic
ISEs, the mathematical form of Eq. (15) can still give an exact graphical de-
scription of the whole hardness ISEs. This implies the plastic hardness ISEs
can also be described by a formula in the similar form to Eq. (15), i.e., the
augmenting effect term is proportional to the power of 1/h, ... Secondly, for
polymers whose moduli are also measured, the m value estimated by the Eq.
(15) is respectively larger than those estimated by the modulus model Eq. (13).
This implies that the corresponding exponent in plastic hardness ISEs will be
larger than m. According to the fitted results of LDPE, this exponent may be
larger than 2.4. Thirdly, this inference is compatible with a categorization of
the hardness ISEs suggested by Han (2010), which says that for a polymer the
depth range presenting elastic hardness ISEs is always larger than that present-
ing the ISEs mediated by other factors. It can be easily seen from Eq. (15) that
as the exponent becomes larger, the augmenting term will become smaller at
the depths beyond h,,,,, and larger at the depths within A, ,.. That is to say,
at the depths beyond the elastic hardness ISEs will be more obvious than the
plastic hardness ISEs, and consequently more easily observed by experiments.

Finally, the non-existence of hardness ISEs of UHMWPE and PTFE yields the
presentiment that the plastic hardness ISEs of semi-crystalline polymers may
be derived from only their glassy components, but not their crystal components.
In indentation, the plastic deformation zone is only the region beneath the in-
denter. In semi-crystalline polymers, the deformations begin with the elastic
and subsequently plastic deformations of glassy components [27]. In a local re-
gion, after glassy components are exhausted, the deformations are transferred to
the crystal components by various crystallographic processes up to large plastic
strains. UHMWPE and PTFE have the highest degree of crystallinity due to
their highly linear chains, thus their plastic deformations beneath the indenter
are mainly derived from crystal components. However, as can be seen from
Fig. 5, both UHMWPE and PTFE exhibit no hardness ISEs. This indicates
that the plastic deformation of their crystal components mediates no size effect.
It can be postulated that for semi-crystalline Nylon66 and LDPE, the plastic
deformation of crystal components may also mediate no size effect, and thus
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their plastic hardness ISEs are only related to glassy components.

3. Models for the plastic indentation size effects of poly-
mers

This section attempts to model the plastic hardness ISEs of polymers. Studies in
this respect mainly involve incorporating size characteristic into the formula of
plastic deformation. Lam and Chong [11] developed a strain gradient plasticity
theory and a corresponding hardness model, based on the molecular kink pair
theory of Argon [28] in which the carrier of plasticity is the formation of kink
pairs. Their hardness model, similar to that of Nix and Gao [2] for crystals,
employs the notion of statistically random kinks and geometrically necessary
kinks of chains.

However, in Argon’ s plasticity theory for glassy polymers, the carrier of plas-
ticity has been replaced by the nucleation of shear transformations (STs) [29,
14, 10] which was originally proposed by Argon for glassy metals [30, 31]. The
STs represent the cooperative rearrangements of atoms inside some free volume
sites under the enforcing of shear stress, including gliding, slipping, or shear
rotation of the chains. The massive nucleation of shear transformation events
results in the stable plastic flow of glassy metals. Based on the notion of STs, a
plastic constitutive formula was developed by Voyiadjis and Samadi-Dooki [14]
for PMMA. Their constitutive formula shows its success in not only capturing
the primary softening behavior, but also justifying the secondary hardening ob-
served in compressive experiments of PMMA. Voyiadjis et al. [10] subsequently
interpreted the ISEs of glassy polymers as that the probability of nucleating
STs with average size, at the very small indentation depths, is lower than that
at deep indentation depths, and consequently, higher shear stresses are caused.
This probabilistic interpretation of ISEs provides a novel insight to understand
the plastic ISEs of polymers.

3.1. Model development

The constitutive formula of Voyiadjis and Samadi-Dooki [14] is briefly recalled
here. In unstressed state, a large amount of free volume sites with different sizes
are distributed in the microstructure due to the amorphous nature of glassy
polymers. Among these free volume sites, those with excessive free volume are
more likely to foster atomic STs under enforcing of shear stress, as shown in Fig.
7. These sites with excessive free volume are also called potential transformation
sites, which are only a fraction of all free volume sites. It is noted that the STs
are not any existing defects but dynamic events only instantaneously nucleating
under enforcing of shear stress. Those potential transformation sites where the
ST events are occurring are called shear transformation zones (STZs) (see Fig.
7). The STZs have a characteristic average volume 2 and a characteristic shear
strain 7y,.

The constitutive relation between the global shear strain rate < and global shear
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yield stress 7 is expressed as:

. . AF . 7O,
Ay = Ay exp <_M> sinh ( T > (17)

where 7, is the pre-exponential factor, k5 is Boltzmann constant, 1" is absolute
temperature, AF is the average nucleating energy of STs, and f, is a factor
depending on the volume fraction of potential transformation sites. The aver-
age nucleating energy of STs with shear strain v, and average volume of €2, is
considered equal to the deformation energy in the inclusion model of Eshelby
[32] and expressed as:

1

where G is the shear modulus, and f,,;,, is a strain tensor. For polymers with
the Poisson’ s ratio of 0.35-0.4, f,;,, has a value close to 0.5 [14, 10].

Voyiadjis et al. [10] subsequently interpreted the indentation size effects of glassy
polymers based on the above constitutive formula. They suggested that the
nucleation of STs in the deformation zone beneath the indenter is a probabilistic
phenomenon. On one hand, the size of a unit potential transformation site
could be manifested as a spherical region with a diameter of about 10 nm, on
the other hand, the potential transformation sites are only a fraction of all free
volume sites and discretely distributed in the material. Therefore, at very small
indentation depths, the deformation zone is not big enough to “see” a potential
transformation site, and thus atoms in this zone can hardly rearrange themselves
(shear transformation) to dissipate the indentation work, as schematically shown
in Fig. 8(a), consequently the corresponding deformation zone is highly stressed.
As the indenter continues to move down, the region around the highly stressed
zone starts to “see” potential transformation sites and form ST events (Fig.
8(b)). At very deep indentation depths, the ST events could massively nucleate
and control the kinetics of deformation (Fig. 8(c)).

They suggested that the total shear stress in the whole deformation zone can be
decomposed into two parts. One is the shear stress associated with nucleation of
a single ST, the other is the shear stress associated with the plastic deformation
of the highly stressed region, respectively denoted as 74 and 7;,.,;- The Tgr is
derived from Eq. (17) where the parameter AF is considered to be far larger
than the unit thermal activation energy kT for polymers at temperatures below
their glass transition T}, and the fraction parameter f. is set to 0.5. Then the
Tgr is expressed as:

2k T )
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The 7;,,.,; is obtained by directly setting © in Eq. (19) to the size of the plastic
deformation zone. The plastic deformation zone is assumed to be the hemisphere
under the indenter with subtracting the volume of the pyramidal indenter itself.
Its size is identified to be:

Qieal = %hi’ — %hg’ tan? 0 (20)
The total shear stress is expressed in a statistical form of the above stress com-
ponents. To this end, they extended the fraction parameter f, to the probability
of the nucleation of STs and also the probability of 7¢; in the statistical form.
This probability is specifically expressed as exp(—k/h,,.), where k is a dimen-
sionless fitting parameter, accounting for indenter geometry, proportionality
and free volume fraction. As can be seen in Eq. (20), the probability quantita-
tively decreases with the decreasing indentation depths. As the indentation is
implemented at deeper depths, the probability increases and has an upper limit
of 1, representing the massive nucleation of STs. With this probability, they
expressed the total shear stress as:

k k
Tiotal = TsT €XP <_h) + Tiocal {1 —exp <_h>] (21)
max max

Then the hardness model is expressed by Voyiadjis et al. [10] as:

2

H= %Ttotal

(22)

where the relation H = 27/+/3 [33] for polymers is considered, similar to Tabor’
s relation [34] for metals.

However, the hardness model Eq. (22) is too complex for application. Ad-
ditionally, the estimation of 7., (the non-ST mediated stress), i.e., directly
substituting the size of a STZ in 7¢ for the size of the whole deformation zone,
needs more rationalities. A size effect model can be directly derived from the
constitutive formula Eq. (17), because Eq. (17) itself has already contained
the probability parameter, or presently called size effect factor exp(—k/h .y )-
Similarly, considering that the parameter AF is far larger than k5T, Eq. (17)
can be converted to:

.. GY2Qf . Ty k
=4 e _ Tl nbm h e e - 23
Y= xp( A sinh | — xp(—7 - (23)

It can be seen that the indentation size has been successfully introduced into
the constitutive formula. With the relation H = 27/+/3 [33] a hardness model
can be expressed as:
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k

H = H,exp (— ) (24)
hmax

where the last term denotes the STs plasticity mediated hardness ISEs. When

the indentation is implemented at far deeper depths, the STs are massively

nucleated and the hardness augment tends to be 0. It can be seen that Eq. (24)

has a simpler form than Eq. (22), although with the same number of parameters
as Eq. (22).

The hardness model Eq. (24) can be rewritten as:

Vi
H = H, [1 +ag ] (25)
where the parameter Vy;, is expressed as:
k3
Vw =+ (26)

and the macro hardness H, is expressed as:

Ozlkf’iln <7>+G’7€fnbm (27)
V3. \ % 2V3
It can be found that Eq. (25) has a similar form to Eq. (15) which characterizes
the elastic hardness ISEs. More importantly, the exponent of 1/h, .. in Eq. (25)
is 3, being larger than the exponent in Eq. (15). These two features are well
consistent with the inference in the end of Section 2.3. As discussed therein, if
the plastic hardness ISEs are to be characterized, the corresponding hardness
model should have a similar form to Eq. (15), but with an exponent larger than
m. Additionally, a dimensional analysis to Eq. (26) suggests that the parameter
Vv has a dimension of volume. This parameter can be seen as a higher-order
volume parameter similar to the higher-order length parameter R; in Eq. (15).

3.2. Model verification and discussion

In principle, the validity of model Eq. (25) should be illustrated by hardness
data containing only plastic ISEs. However, to separate the plastic ISEs from
hardness data of polymers in Fig. 5 is impossible. A compromise is applying it
to the hardness data of LDPE in which the plastic ISEs are dominant. As shown
in Fig. 9(a), a good agreement between the model and the experimental data
is found. The macro hardness H;, and volume parameter Vj;, are respectively
estimated to be about 0.025 GPa and 1.5 x 10% nm3. Then the characteristic
volume 2 of STZ is estimated to be about 2718 nm? (for choice f,;,, = 0.5) and
parameter k is estimated to be about 145 nm respectively from Eq. (27) and
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Eq. (26). Taking the obtained € and k into Eq. (20), the varying probability
of nucleating STs with respect to h,,,, is depicted in Fig. 9(b). It can be seen
that the probability curve is compatible with the hardness curve. When the
indentation is implemented in small depths, the deformation zone is too small
to foster a ST event. As the indenter continues to move down, the probability
is close to 1 which implies the massive nucleation of STs, and thus the hardness
value correspondingly tends to be stable.

The presently obtained 2 of LDPE is close to the STZ volumes of several other
polymers given by Mott et al. [35] through molecular simulations, which range
from hundreds to thousands of cubic nanometers. The presently obtained k also
has the same order of magnitude as that of PMMA estimated by Voyiadjis et
al. [10]. Note that the determination of €2 is significantly sensitive to the chosen
value of v,, for example, the  will be 1183 nm? for choice v, = 0.05. The 7,
of PMMA is believed to be in the range of 0.03 to 0.05 by the interpolation
of experimental data (Malekmotiei et al. [36]; Voyiadjis et al. [10]), and thus
the middle of this range is adopted in the present estimation. The temperature
T is set at 295 K for room temperature experiments, as Tavares et al. [5] did
not specify that the experiments were carried out under heating or cooling
conditions.

The shear strain rate 4 has been found to alter the macro hardness [10], as
illustrated in Eq. (27). However, its contribution is not able to justify the
observed indentation size effect in hardness [33], although it emerges into the
higher-order volume parameter Vy;,. In above estimation of €2, the value of ¥ is
obtained from ¥ = C'é; where C is a constant value equal to 0.09 and ¢; is the
indentation strain rate [38, 36]. Tavares et al. [5] did not provide the indentation
strain rate ¢;, but stated that a high rate was adopted to minimize the influence
of viscoelastic properties in the measurements. The above estimation assumes é;
tobe 1s7!. Additionally, the shear modulus G is obtained from G = E/[2(1+)]
[39] and E is the macro modulus in Table 1 as Eq. (27) denotes the macro
hardness.

4. Conclusions

The size effects in indentation modulus (modulus ISEs) and indentation hard-
ness (hardness ISEs) of polymers are theoretically modeled, on the basis of liter-
atures which found that the modulus ISEs are elastic and the hardness ISEs can
be divided into elastic part and plastic part in which the elastic part is likely
to be dominant. The modulus ISEs and the elastic hardness ISEs are modeled,
by introducing a couple stress elasticity-based unloading model proposed in our
previous work into Oliver-Pharr indentation approach. The resultant modulus
model and hardness model, along with the corresponding results of application
to experimental data, show that these elastic size effects and their experimental
showing are mainly determined by the molecular structures. Specifically, poly-
mers with complex molecules would exhibit significant modulus ISEs. Besides,
the hardness ISEs of this kind of polymers are significantly elastic.
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The couple stress elasticity-based hardness model shows a shortage in charac-
terizing the hardness ISEs of LDPE. We postulate that the hardness ISEs of
LDPE are significantly plastic, due to its highly flexible molecular structures.
As both the UHMWPE and PTFE with high crystallinity exhibit no indentation
size effects, we postulate that the plastic hardness ISEs of polymers are only
determined by their glassy components and may be described by a model in a
similar form to that of the couple stress elasticity-based hardness model. Based
on these considerations, the shear transformation plasticity theory proposed for
amorphous solids is employed to characterize the plastic hardness ISEs of poly-
mers. Accordingly, a hardness model is proposed and successfully applied to
experimental data. Besides, the shear transformation plasticity-based hardness
model is completely consistent with previous speculation.
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