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Abstract
In 1975, P. Erd {o}s proposed the problem of determining the maximum number
𝑓(𝑛) of edges in a graph with 𝑛 vertices in which any two cycles are of different
lengths. In this paper, it is proved that

𝑓(𝑛)𝑔𝑒𝑞 𝑛 + 𝑓𝑟𝑎𝑐1073𝑡 + 𝑓𝑟𝑎𝑐73

for 𝑡 = 1260𝑟 + 169 ,  (𝑟𝑔𝑒𝑞 1) and 𝑛 𝑔𝑒𝑞 𝑓𝑟𝑎𝑐21194𝑡2 + 87978𝑡 + 𝑓𝑟𝑎𝑐159574.
Consequently,$ liminf sb {n to infty} {f(n)-n over sqrt n} geq sqrt {2 +
frac{7654}{19071}},$ which is better than the previous bounds $ sqrt 2$ Y.
Shi, Discrete Math. 71(1988), 57-71 , $ sqrt {2.4}$ C. Lai, Australas. J. Com-
bin. 27(2003), 101-105 . The conjecture $ lim_{n rightarrow infty} {f(n)-n
over sqrt n}= sqrt {2.4}$ is not true.
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Abstract
In 1975, P. Erdős proposed the problem of determining the maximum number
𝑓(𝑛) of edges in a graph with 𝑛 vertices in which any two cycles have different
lengths. In this paper, we prove that for 𝑡 = 1260𝑟 + 169 (𝑟 ≥ 1) and 𝑛 ≥ 2119,
𝑓(𝑛) ≥ 𝑛 + 4𝑡2+87978𝑡+15957

19071 . Consequently, lim inf𝑛→∞
𝑓(𝑛)−𝑛√𝑛 ≥ √ 4

19071 , which
improves upon the previous bounds of 2 (see Shi, Discrete Math. 71(1988), 57-
71) and 2 + 2

5 (see Lai, Australas. J. Combin. 27(2003), 101-105). This result
disproves Conjecture 4 of Lai.
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Introduction
Let 𝑓(𝑛) denote the maximum number of edges in a graph on 𝑛 vertices in
which no two cycles have the same length. In 1975, Erdős posed the problem
of determining 𝑓(𝑛) (see Bondy and Murty [1], p.247, Problem 11). Shi [15]
established the following lower bound:

Theorem 1 (Shi [15]). 𝑓(𝑛) ≥ 𝑛 + ⌊(
√

8𝑛 − 23 + 1) /2⌋ for 𝑛 ≥ 3.

Additional related results were obtained by Chen, Lehel, Jacobson, and Shreve
[3], Jia [5], Lai [6–8], and Shi [16,18–20]. Boros, Caro, Füredi, and Yuster [2]
proved an upper bound:

Theorem 2 (Boros, Caro, Füredi and Yuster [2]). For 𝑛 sufficiently large,
𝑓(𝑛) < 𝑛 + 1.98√𝑛.

Lai [9] improved the lower bound:

Theorem 3 (Lai [9]). 𝑓(𝑛) ≥ 𝑛 + √2𝑛(1 − 𝑜(1)).
Lai [6,9] proposed the following conjectures:

Conjecture 4 (Lai [9]). lim inf𝑛→∞
𝑓(𝑛)−𝑛√𝑛 = 2.

Conjecture 5 (Lai [6]). lim inf𝑛→∞
𝑓(𝑛)−𝑛√𝑛 ≥ 2 + 2

5 .

Markström [13] raised the following problem:

Problem 6 (Markström [13]). Determine the maximum number of edges in
a Hamiltonian graph on 𝑛 vertices with no repeated cycle lengths.

Results for the maximum number of edges in a 2-connected graph on 𝑛 vertices
with distinct cycle lengths can be found in [2,3,15]. Survey articles on this
problem appear in Tian [21], Zhang [24], and Lai and Liu [10]. The progress on
all 50 problems from [1] can be found in Locke [12].

A related topic concerns the Entringer problem, which asks which simple graphs
have exactly one cycle of each length ℓ for 3 ≤ ℓ ≤ 𝑣 (see Problem 10 in [1]).
This problem was posed in 1973 by R.C. Entringer. For developments on this
topic, see [4,11,13,14,17,22,23].

In this paper, we construct a graph 𝐺 with no two cycles of the same length,
yielding the following result:

Theorem 7. Let 𝑡 = 1260𝑟 + 169 (𝑟 ≥ 1). Then 𝑓(𝑛) ≥ 𝑛 + 4𝑡2+87978𝑡+15957
19071

for 𝑛 ≥ 2119. Consequently, Conjecture 4 is false.
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Proof of Theorem 7
Proof. Let 𝑡 = 1260𝑟 + 169 with 𝑟 ≥ 1, and let 𝑛𝑡 = 2119. We shall show that
for 𝑛 ≥ 𝑛𝑡, there exists a graph 𝐺 on 𝑛 vertices with 𝑛 + 4𝑡2+87978𝑡+15957

19071 edges
such that all cycles in 𝐺 have distinct lengths.

We construct the graph 𝐺 from several subgraphs 𝐵𝑖 defined for indices 𝑖 be-
longing to the following sets: - 0 ≤ 𝑖 ≤ 20𝑡 - 27𝑡 ≤ 𝑖 ≤ 28𝑡 + 64 - 29𝑡 − 734 ≤
𝑖 ≤ 29𝑡 + 267 - 30𝑡 − 531 ≤ 𝑖 ≤ 30𝑡 + 57 - 31𝑡 − 741 ≤ 𝑖 ≤ 31𝑡 + 58 -
32𝑡 − 740 ≤ 𝑖 ≤ 32𝑡 + 57 - 33𝑡 − 741 ≤ 𝑖 ≤ 33𝑡 + 57 - 34𝑡 − 741 ≤ 𝑖 ≤ 34𝑡 + 52 -
35𝑡 − 746 ≤ 𝑖 ≤ 35𝑡 + 60 - 36𝑡 − 738 ≤ 𝑖 ≤ 36𝑡 + 60 - 37𝑡 − 738 ≤ 𝑖 ≤ 37𝑡 + 799
- 𝑖 = 20𝑡 + 𝑗 for 1 ≤ 𝑗 ≤ 𝑡−7

6 - 𝑖 = 20𝑡 + 𝑡−1
6 - 𝑖 = 20𝑡 + 𝑡−1

3 - 𝑖 = 20𝑡 + 𝑡−1
2 -

𝑖 = 20𝑡 + 2𝑡−2
3 - 𝑖 = 21𝑡 − 2 - 𝑖 = 21𝑡 − 1 - 𝑖 = 21𝑡 + 2𝑗 + 1 for 0 ≤ 𝑗 ≤ 𝑡 − 1 -

𝑖 = 21𝑡 + 2𝑗 for 0 ≤ 𝑗 ≤ 𝑡−3
2 - 𝑖 = 23𝑡 + 2𝑗 + 1 for 0 ≤ 𝑗 ≤ 𝑡−3

2 - 𝑖 = 26𝑡
All these subgraphs share a single common vertex 𝑥, and their vertex sets are
otherwise pairwise disjoint.

Construction of the subgraphs:

For 1 ≤ 𝑖 ≤ 𝑡−7
6 , let 𝐵20𝑡+𝑖 consist of a cycle 𝐶20𝑡+𝑖 = 𝑥𝑎𝑖

1𝑎𝑖
2 ⋯ 𝑎𝑖

62𝑡−8
3 +2𝑖 and a

path 𝑎𝑖
1𝑎𝑖

2 ⋯ 𝑎𝑖
59𝑡−5

3
𝑎𝑖

61𝑡−1
3

. By construction, 𝐵20𝑡+𝑖 contains exactly three cycles
of lengths 20𝑡 + 𝑖, 20𝑡 + 𝑡−1

6 + 𝑖 − 1, and 20𝑡 + 2𝑡−2
3 + 2𝑖 − 1.

For 1 ≤ 𝑖 ≤ 𝑡−7
6 , let 𝐵20𝑡+ 𝑡−1

6 +𝑖 consist of a cycle 𝐶20𝑡+ 𝑡−1
6 +𝑖 = 𝑥𝑏𝑖

1𝑏𝑖
2 ⋯ 𝑏𝑖

62𝑡−5
3 +2𝑖

and a path 𝑏𝑖
1𝑏𝑖

2 ⋯ 𝑏𝑖
10𝑡−1𝑏𝑖

61𝑡−1
3

. This subgraph contains exactly three cycles of
lengths 20𝑡 + 𝑡−1

6 + 𝑖, 20𝑡 + 𝑡−1
3 + 𝑖, and 20𝑡 + 2𝑡−2

3 + 2𝑖.
For 0 ≤ 𝑖 ≤ 𝑡 − 1, let 𝐵21𝑡+2𝑖+1 consist of a cycle 𝐶21𝑡+2𝑖+1 = 𝑥𝑢𝑖

1𝑢𝑖
2 ⋯ 𝑢𝑖

25𝑡+2𝑖−1
and a path 𝑢𝑖

1𝑢𝑖
2 ⋯ 𝑢𝑖

19𝑡+2𝑖−1
2

𝑢𝑖
23𝑡+2𝑖+1

2
. This subgraph contains exactly three cycles

of lengths 21𝑡 + 2𝑖 + 1, 23𝑡 + 2𝑖, and 25𝑡 + 2𝑖.
For 0 ≤ 𝑖 ≤ 𝑡−3

2 , let 𝐵21𝑡+2𝑖 consist of a cycle 𝐶21𝑡+2𝑖 = 𝑥𝑣𝑖
1𝑣𝑖

2 ⋯ 𝑣𝑖
25𝑡+2𝑖 and a

path 𝑣𝑖
1𝑣𝑖

2 ⋯ 𝑣𝑖
9𝑡+𝑖−1𝑣𝑖

12𝑡+𝑖. This subgraph contains exactly three cycles of lengths
21𝑡 + 2𝑖, 22𝑡 + 2𝑖 + 1, and 25𝑡 + 2𝑖 + 1.

For 𝑖 = 𝑡−1
2 , 𝐵21𝑡+2𝑖 is simply a cycle of length 22𝑡 − 1.

For 0 ≤ 𝑖 ≤ 𝑡−3
2 , let 𝐵23𝑡+2𝑖+1 consist of a cycle 𝐶23𝑡+2𝑖+1 = 𝑥𝑤𝑖

1𝑤𝑖
2 ⋯ 𝑤𝑖

26𝑡+2𝑖+1
and a path 𝑤𝑖

1𝑤𝑖
2 ⋯ 𝑤𝑖

21𝑡+2𝑖−1
2

𝑤𝑖
25𝑡+2𝑖+1

2
. This subgraph contains exactly three

cycles of lengths 23𝑡 + 2𝑖 + 1, 24𝑡 + 2𝑖 + 2, and 26𝑡 + 2𝑖 + 2.

For 𝑖 = 𝑡−1
2 , 𝐵23𝑡+2𝑖+1 is simply a cycle of length 24𝑡.

For 58 ≤ 𝑖 ≤ 𝑡 − 742, let 𝐵27𝑡+𝑖−57 consist of a cycle 𝐶27𝑡+𝑖−57 =
𝑥𝑦𝑖

1𝑦𝑖
2 ⋯ 𝑦𝑖

132𝑡+11𝑖+893 and ten paths sharing the common vertex 𝑥, with
their other endpoints on the cycle 𝐶27𝑡+𝑖−57: - 𝑦𝑖

1𝑦𝑖
2 ⋯ 𝑦𝑖

17𝑡−1
2

- 𝑦𝑖
2𝑦𝑖

3 ⋯ 𝑦𝑖
19𝑡−1

2
- 𝑦𝑖

3𝑦𝑖
4 ⋯ 𝑦𝑖

19𝑡−1
2

- 𝑦𝑖
4𝑦𝑖

5 ⋯ 𝑦𝑖
21𝑡−1

2
- 𝑦𝑖

5𝑦𝑖
6 ⋯ 𝑦𝑖

21𝑡−1
2

- 𝑦𝑖
6𝑦𝑖

7 ⋯ 𝑦𝑖
23𝑡−1

2
- 𝑦𝑖

7𝑦𝑖
8 ⋯ 𝑦𝑖

23𝑡−1
2

-
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𝑦𝑖
8𝑦𝑖

9 ⋯ 𝑦𝑖
25𝑡−1

2
- 𝑦𝑖

9𝑦𝑖
10 ⋯ 𝑦𝑖

25𝑡−1
2

- 𝑦𝑖
10𝑦𝑖

11 ⋯ 𝑦𝑖
27𝑡−1

2
𝑦 37𝑡−115

2 +𝑖𝑦 57𝑡−103
2 +2𝑖𝑦 77𝑡+315

2 +3𝑖𝑦 97𝑡+313
2 +4𝑖𝑦 117𝑡+313

2 +5𝑖𝑦 137𝑡+311
2 +6𝑖𝑦 157𝑡+309

2 +7𝑖𝑦 177𝑡+297
2 +8𝑖𝑦 197𝑡+301

2 +9𝑖𝑦 217𝑡+305
2 +10𝑖

A cycle with 𝑑 chords contains exactly (𝑑+2
2 ) distinct cycles. Therefore, 𝐵27𝑡+𝑖−57

contains cycles of the following 66 lengths: 27𝑡+𝑖−57, 28𝑡+𝑖+7, 29𝑡+𝑖+210,
30𝑡+𝑖, 31𝑡+𝑖+1, 32𝑡+𝑖, 33𝑡+𝑖, 34𝑡+𝑖−5, 35𝑡+𝑖+3, 36𝑡+𝑖+3, 37𝑡+𝑖+742,
38𝑡 + 2𝑖 − 51, 38𝑡 + 2𝑖 + 216, 40𝑡 + 2𝑖 + 209, 40𝑡 + 2𝑖, 42𝑡 + 2𝑖, 42𝑡 + 2𝑖 − 1,
44𝑡+2𝑖−6, 44𝑡+2𝑖−3, 46𝑡+2𝑖+5, 46𝑡+2𝑖+744, 48𝑡+3𝑖+158, 49𝑡+3𝑖+215,
50𝑡 + 3𝑖 + 209, 51𝑡 + 3𝑖 − 1, 52𝑡 + 3𝑖 − 1, 53𝑡 + 3𝑖 − 7, 54𝑡 + 3𝑖 − 4, 55𝑡 + 3𝑖 − 1,
56𝑡+3𝑖+746, 59𝑡+4𝑖+157, 59𝑡+4𝑖+215, 61𝑡+4𝑖+208, 61𝑡+4𝑖−2, 63𝑡+4𝑖−7,
63𝑡+4𝑖−5, 65𝑡+4𝑖−2, 65𝑡+4𝑖+740, 69𝑡+5𝑖+157, 70𝑡+5𝑖+214, 71𝑡+5𝑖+207,
72𝑡+5𝑖−8, 73𝑡+5𝑖−5, 74𝑡+5𝑖−3, 75𝑡+5𝑖+739, 80𝑡+6𝑖+156, 80𝑡+6𝑖+213,
82𝑡+6𝑖+201, 82𝑡+6𝑖−6, 84𝑡+6𝑖−3, 84𝑡+6𝑖+738, 90𝑡+7𝑖+155, 91𝑡+7𝑖+207,
92𝑡 + 7𝑖 + 203, 93𝑡 + 7𝑖 − 4, 94𝑡 + 7𝑖 + 738, 101𝑡 + 8𝑖 + 149, 101𝑡 + 8𝑖 + 209,
103𝑡 + 8𝑖 + 205, 103𝑡 + 8𝑖 + 737, 111𝑡 + 9𝑖 + 151, 112𝑡 + 9𝑖 + 211, 113𝑡 + 9𝑖 + 946,
122𝑡 + 10𝑖 + 153, 122𝑡 + 10𝑖 + 952, and 132𝑡 + 11𝑖 + 894.

Finally, 𝐵0 is a path with one endpoint at 𝑥 and length 𝑛 − 𝑛𝑡, while each
remaining 𝐵𝑖 is simply a cycle of length 𝑖.
This construction yields 𝑓(𝑛) ≥ 𝑛 + 107

3 for 𝑛 ≥ 𝑛𝑡, completing the proof.

From Theorem 7, we obtain lim inf𝑛→∞
𝑓(𝑛)−𝑛√𝑛 ≥ √ 4

19071 , which improves upon
the previous bounds of 2 (see [15]) and 2 + 2

5 (see [9]). Therefore, Conjecture
4 is false. Combining this with the upper bound of Boros, Caro, Füredi, and
Yuster (Theorem 2), we have:

1.98 ≥ lim sup
𝑛→∞

𝑓(𝑛) − 𝑛√𝑛 ≥ lim inf
𝑛→∞

𝑓(𝑛) − 𝑛√𝑛 ≥ √ 4
19071 .
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