

On the size of graphs without repeated cycle lengths (postprint)

Authors: Chunhui Lai, Chunhui Lai

Date: 2024-03-26T18:22:32+00:00

Abstract

In 1975, P. Erdős proposed the problem of determining the maximum number $f(n)$ of edges in a graph with n vertices in which any two cycles are of different lengths. In this paper, it is proved that

$$f(n) \geq n + \frac{1073t}{2} + \frac{73}{2}$$

for $t = 1260r + 169$, ($r \geq 1$) and $n \geq \frac{21194t^2 + 87978t + 159574}{19071}$. Consequently, $\liminf_{n \rightarrow \infty} \frac{f(n)-n}{\sqrt{n}} \geq \sqrt{2 + \frac{4}{19071}}$, which is better than the previous bounds $\sqrt{2 + \frac{2}{5}}$ (see Shi, Discrete Math. 71(1988), 57-71), $\sqrt{2.4}$ (see Lai, Australas. J. Combin. 27(2003), 101-105). The conjecture $\lim_{n \rightarrow \infty} \frac{f(n)-n}{\sqrt{n}} = \sqrt{2.4}$ is not true.

Full Text

Preamble

Chunhui Lai

School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian, P.R. China

Abstract

In 1975, P. Erdős proposed the problem of determining the maximum number $f(n)$ of edges in a graph with n vertices in which any two cycles have different lengths. In this paper, we prove that for $t = 1260r + 169$ ($r \geq 1$) and $n \geq 2119$, $f(n) \geq n + \frac{4t^2+87978t+159574}{19071}$. Consequently, $\liminf_{n \rightarrow \infty} \frac{f(n)-n}{\sqrt{n}} \geq \sqrt{\frac{4}{19071}}$, which improves upon the previous bounds of 2 (see Shi, Discrete Math. 71(1988), 57-71) and $2 + \frac{2}{5}$ (see Lai, Australas. J. Combin. 27(2003), 101-105). This result disproves Conjecture 4 of Lai.

Key words: Graph, cycle, number of edges.

AMS 2000 MSC: 05C38, 05C35.

Introduction

Let $f(n)$ denote the maximum number of edges in a graph on n vertices in which no two cycles have the same length. In 1975, Erdős posed the problem of determining $f(n)$ (see Bondy and Murty [1], p.247, Problem 11). Shi [15] established the following lower bound:

Theorem 1 (Shi [15]). $f(n) \geq n + \lfloor (\sqrt{8n-23} + 1) / 2 \rfloor$ for $n \geq 3$.

Additional related results were obtained by Chen, Lehel, Jacobson, and Shreve [3], Jia [5], Lai [6-8], and Shi [16,18-20]. Boros, Caro, Füredi, and Yuster [2] proved an upper bound:

Theorem 2 (Boros, Caro, Füredi and Yuster [2]). For n sufficiently large, $f(n) < n + 1.98\sqrt{n}$.

Lai [9] improved the lower bound:

Theorem 3 (Lai [9]). $f(n) \geq n + \sqrt{2n(1 - o(1))}$.

Lai [6,9] proposed the following conjectures:

Conjecture 4 (Lai [9]). $\liminf_{n \rightarrow \infty} \frac{f(n)-n}{\sqrt{n}} = 2$.

Conjecture 5 (Lai [6]). $\liminf_{n \rightarrow \infty} \frac{f(n)-n}{\sqrt{n}} \geq 2 + \frac{2}{5}$.

Markström [13] raised the following problem:

Problem 6 (Markström [13]). Determine the maximum number of edges in a Hamiltonian graph on n vertices with no repeated cycle lengths.

Results for the maximum number of edges in a 2-connected graph on n vertices with distinct cycle lengths can be found in [2,3,15]. Survey articles on this problem appear in Tian [21], Zhang [24], and Lai and Liu [10]. The progress on all 50 problems from [1] can be found in Locke [12].

A related topic concerns the Entringer problem, which asks which simple graphs have exactly one cycle of each length ℓ for $3 \leq \ell \leq v$ (see Problem 10 in [1]). This problem was posed in 1973 by R.C. Entringer. For developments on this topic, see [4,11,13,14,17,22,23].

In this paper, we construct a graph G with no two cycles of the same length, yielding the following result:

Theorem 7. Let $t = 1260r + 169$ ($r \geq 1$). Then $f(n) \geq n + \frac{4t^2 + 87978t + 15957}{19071}$ for $n \geq 2119$. Consequently, Conjecture 4 is false.

Proof of Theorem 7

Proof. Let $t = 1260r + 169$ with $r \geq 1$, and let $n_t = 2119$. We shall show that for $n \geq n_t$, there exists a graph G on n vertices with $n + \frac{4t^2+87978t+15957}{19071}$ edges such that all cycles in G have distinct lengths.

We construct the graph G from several subgraphs B_i defined for indices i belonging to the following sets: $-0 \leq i \leq 20t - 27t \leq i \leq 28t + 64 - 29t - 734 \leq i \leq 29t + 267 - 30t - 531 \leq i \leq 30t + 57 - 31t - 741 \leq i \leq 31t + 58 - 32t - 740 \leq i \leq 32t + 57 - 33t - 741 \leq i \leq 33t + 57 - 34t - 741 \leq i \leq 34t + 52 - 35t - 746 \leq i \leq 35t + 60 - 36t - 738 \leq i \leq 36t + 60 - 37t - 738 \leq i \leq 37t + 799 - i = 20t + j$ for $1 \leq j \leq \frac{t-7}{6} - i = 20t + \frac{t-1}{6} - i = 20t + \frac{t-1}{3} - i = 20t + \frac{t-1}{2} - i = 20t + \frac{2t-2}{3} - i = 21t - 2 - i = 21t - 1 - i = 21t + 2j + 1$ for $0 \leq j \leq t - 1 - i = 21t + 2j$ for $0 \leq j \leq \frac{t-3}{2} - i = 23t + 2j + 1$ for $0 \leq j \leq \frac{t-3}{2} - i = 26t$

All these subgraphs share a single common vertex x , and their vertex sets are otherwise pairwise disjoint.

Construction of the subgraphs:

For $1 \leq i \leq \frac{t-7}{6}$, let B_{20t+i} consist of a cycle $C_{20t+i} = xa_1^i a_2^i \cdots a_{\frac{62t-8}{3}+2i}^i$ and a path $a_1^i a_2^i \cdots a_{\frac{59t-5}{3}}^i a_{\frac{61t-1}{3}}^i$. By construction, B_{20t+i} contains exactly three cycles of lengths $20t+i$, $20t + \frac{t-1}{6} + i - 1$, and $20t + \frac{2t-2}{3} + 2i - 1$.

For $1 \leq i \leq \frac{t-7}{6}$, let $B_{20t+\frac{t-1}{6}+i}$ consist of a cycle $C_{20t+\frac{t-1}{6}+i} = xb_1^i b_2^i \cdots b_{\frac{62t-5}{3}+2i}^i$ and a path $b_1^i b_2^i \cdots b_{10t-1}^i b_{\frac{61t-1}{3}}^i$. This subgraph contains exactly three cycles of lengths $20t + \frac{t-1}{6} + i$, $20t + \frac{t-1}{3} + i$, and $20t + \frac{2t-2}{3} + 2i$.

For $0 \leq i \leq t - 1$, let $B_{21t+2i+1}$ consist of a cycle $C_{21t+2i+1} = xu_1^i u_2^i \cdots u_{25t+2i-1}^i$ and a path $u_1^i u_2^i \cdots u_{\frac{19t+2i-1}{2}}^i u_{\frac{23t+2i+1}{2}}^i$. This subgraph contains exactly three cycles of lengths $21t + 2i + 1$, $23t + 2i$, and $25t + 2i$.

For $0 \leq i \leq \frac{t-3}{2}$, let B_{21t+2i} consist of a cycle $C_{21t+2i} = xv_1^i v_2^i \cdots v_{25t+2i}^i$ and a path $v_1^i v_2^i \cdots v_{9t+i-1}^i v_{12t+i}^i$. This subgraph contains exactly three cycles of lengths $21t + 2i$, $22t + 2i + 1$, and $25t + 2i + 1$.

For $i = \frac{t-1}{2}$, B_{21t+2i} is simply a cycle of length $22t - 1$.

For $0 \leq i \leq \frac{t-3}{2}$, let $B_{23t+2i+1}$ consist of a cycle $C_{23t+2i+1} = xw_1^i w_2^i \cdots w_{26t+2i+1}^i$ and a path $w_1^i w_2^i \cdots w_{\frac{21t+2i-1}{2}}^i w_{\frac{25t+2i+1}{2}}^i$. This subgraph contains exactly three cycles of lengths $23t + 2i + 1$, $24t + 2i + 2$, and $26t + 2i + 2$.

For $i = \frac{t-1}{2}$, $B_{23t+2i+1}$ is simply a cycle of length $24t$.

For $58 \leq i \leq t - 742$, let $B_{27t+i-57}$ consist of a cycle $C_{27t+i-57} = xy_1^i y_2^i \cdots y_{132t+11i+893}^i$ and ten paths sharing the common vertex x , with their other endpoints on the cycle $C_{27t+i-57}$: $- y_1^i y_2^i \cdots y_{\frac{17t-1}{2}}^i - y_2^i y_3^i \cdots y_{\frac{19t-1}{2}}^i - y_3^i y_4^i \cdots y_{\frac{19t-1}{2}}^i - y_4^i y_5^i \cdots y_{\frac{21t-1}{2}}^i - y_5^i y_6^i \cdots y_{\frac{21t-1}{2}}^i - y_6^i y_7^i \cdots y_{\frac{23t-1}{2}}^i - y_7^i y_8^i \cdots y_{\frac{23t-1}{2}}^i -$

$$y_8^i y_9^i \cdots y_{\frac{25t-1}{2}}^i - y_9^i y_{10}^i \cdots y_{\frac{25t-1}{2}}^i - y_{10}^i y_{11}^i \cdots y_{\frac{27t-1}{2}}^i y_{\frac{37t-115}{2}} + i y_{\frac{57t-103}{2}} + 2i y_{\frac{77t+315}{2}} + 3i y_{\frac{97t+313}{2}} + 4i y_{\frac{117t+313}{2}} + 5i y_{\frac{137t+311}{2}} + 6i y_{\frac{157t+311}{2}}$$

A cycle with d chords contains exactly $\binom{d+2}{2}$ distinct cycles. Therefore, $B_{27t+i-57}$ contains cycles of the following 66 lengths: $27t+i-57, 28t+i+7, 29t+i+210, 30t+i, 31t+i+1, 32t+i, 33t+i, 34t+i-5, 35t+i+3, 36t+i+3, 37t+i+742, 38t+2i-51, 38t+2i+216, 40t+2i+209, 40t+2i, 42t+2i, 42t+2i-1, 44t+2i-6, 44t+2i-3, 46t+2i+5, 46t+2i+744, 48t+3i+158, 49t+3i+215, 50t+3i+209, 51t+3i-1, 52t+3i-1, 53t+3i-7, 54t+3i-4, 55t+3i-1, 56t+3i+746, 59t+4i+157, 59t+4i+215, 61t+4i+208, 61t+4i-2, 63t+4i-7, 63t+4i-5, 65t+4i-2, 65t+4i+740, 69t+5i+157, 70t+5i+214, 71t+5i+207, 72t+5i-8, 73t+5i-5, 74t+5i-3, 75t+5i+739, 80t+6i+156, 80t+6i+213, 82t+6i+201, 82t+6i-6, 84t+6i-3, 84t+6i+738, 90t+7i+155, 91t+7i+207, 92t+7i+203, 93t+7i-4, 94t+7i+738, 101t+8i+149, 101t+8i+209, 103t+8i+205, 103t+8i+737, 111t+9i+151, 112t+9i+211, 113t+9i+946, 122t+10i+153, 122t+10i+952, and 132t+11i+894.$

Finally, B_0 is a path with one endpoint at x and length $n - n_t$, while each remaining B_i is simply a cycle of length i .

This construction yields $f(n) \geq n + \frac{107}{3}$ for $n \geq n_t$, completing the proof.

From Theorem 7, we obtain $\liminf_{n \rightarrow \infty} \frac{f(n)-n}{\sqrt{n}} \geq \sqrt{\frac{4}{19071}}$, which improves upon the previous bounds of 2 (see [15]) and $2 + \frac{2}{5}$ (see [9]). Therefore, Conjecture 4 is false. Combining this with the upper bound of Boros, Caro, Füredi, and Yuster (Theorem 2), we have:

$$1.98 \geq \limsup_{n \rightarrow \infty} \frac{f(n)-n}{\sqrt{n}} \geq \liminf_{n \rightarrow \infty} \frac{f(n)-n}{\sqrt{n}} \geq \sqrt{\frac{4}{19071}}.$$

Acknowledgment

The author would like to thank the referees for their many valuable comments and suggestions.

References

- [1] J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications* (Macmillan, New York, 1976). MR3138588
- [2] E. Boros, Y. Caro, Z. Füredi and R. Yuster, Covering non-uniform hypergraphs, *J. Combin. Theory Ser. B* 82(2001), 270-284. MR1842115 (2002g:05130)
- [3] G. Chen, J. Lehel, M. S. Jacobson and W. E. Shreve, Note on graphs without repeated cycle lengths, *J. Graph Theory* 29(1998), 11-15. MR1633908 (2000d:05059)
- [4] J. C. George, A. Khodkar, W. D. Wallis, *Pancyclic and bipancyclic graphs*, Springer Briefs in Mathematics, Springer, Cham, 2016. MR3495006
- [5] X. Jia, Some extremal problems on cycle distributed graphs, *Congr. Numer.*

121(1996), 216-222. MR1431994 (97i:05068)

[6] C. Lai, On the size of graphs with all cycle having distinct length, *Discrete Math.* 122(1993) 363-364. MR1246693(94i:05048)

[7] C. Lai, The edges in a graph in which no two cycles have the same length, *J. Zhangzhou Teachers College (Natural Science)* 8(4)(1994), 30-34. MR1336586 (96h:05121)

[8] C. Lai, A lower bound for the number of edges in a graph containing no two cycles of the same length, *Electron. J. Combin.* 8(2001), N9, 1-6. MR1877662 (2002k:05124)

[9] C. Lai, Graphs without repeated cycle lengths, *Australas. J. Combin.* 27(2003), 101-105. MR1955391 (2003m:05102)

[10] C. Lai, M. Liu, Some open problems on cycles, *J. Combin. Math. Combin. Comput.* 91(2014), 51-64. MR3287706

[11] S. Liu, On r-(k)-pancyclic graphs, *Ars Combin.* accepted.

[12] S. C. Locke, Unsolved problems: <http://math.fau.edu/locke/Unsolved.htm>

[13] K. Markström, A note on uniquely pancyclic graphs, *Australas. J. Combin.* 44 (2009), 105-110. MR2527003 (2010i:05180)

[14] Y. Shi, Some theorems of uniquely pancyclic graphs, *Discrete Math.* 59 (1986), no. 1-2, 167-180. MR0837964

[15] Y. Shi, On maximum cycle-distributed graphs, *Discrete Math.* 71(1988), 57-71. MR0954686 (89i:05169)

[16] Y. Shi, The number of edges in a maximum graphs with uni-length cycles, *Kexue Tongbao* 33(10)(1988), 795-796.

[17] Y. Shi, H. P. Yap, S. K. Teo, On uniquely r-pancyclic graphs, *Graph theory and its applications: East and West (Jinan, 1986)*, Ann. New York Acad. Sci. 576(1989), 487-499. MR1110849 (93d:05088)

[18] Y. Shi, Some theorems on simple MCD-graphs, *J. Math. Res. Exposition* 11(4)(1991), 551-554. MR1144956 (92i:05182)

[19] Y. Shi, The number of edges in a maximum cycle distributed graph, *Discrete Math.* 104(1992), 205-209. MR1172850 (93d:05083)

[20] Y. Shi, On simple MCD graphs containing a subgraph homeomorphic to K_4 , *Discrete Math.* 126(1994), 325-338. MR1264498 (95f:05072)

[21] F. Tian, The progress on some problems in graph theory, *Qufu Shifan Daxue Xuebao Ziran Kexue Ban* 1986, no. 2, 30-36. MR0865617

[22] H. P. Yap, S. K. Teo, On uniquely r-pancyclic graphs, *Lecture Notes in Math.* 1073(1984), 334-335.

[23] C. T. Zamfirescu, (2)-pancyclic graphs, *Discrete Appl. Math.* 161(2013), 1128-1136. MR3030597

[24] K. Zhang, Progress of some problems in graph theory, *J. Math. Res. Exposition* 27(3) (2007), 563-576. MR2349503

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaRxiv –Machine translation. Verify with original.