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Abstract

In 1975, P. Erd {o}s proposed the problem of determining the maximum number
f(n) of edges in a graph with n vertices in which any two cycles are of different
lengths. In this paper, it is proved that

f(n)geq n + fracl073t + frac73

for t = 12607 + 169 , (rgeq 1) and n geq frac21194t? + 87978t + fracl59574.
Consequently,$ liminf sb {n to infty} {f(n)-n over sqrt n} geq sqrt {2 +
frac{7654}{19071}},$ which is better than the previous bounds $ sqrt 2% Y.
Shi, Discrete Math. 71(1988), 57-71 , $ sqrt {2.4}$ C. Lai, Australas. J. Com-
bin. 27(2003), 101-105 . The conjecture $ lim {n rightarrow infty} {f(n)-n
over sqrt n}= sqrt {2.4}$ is not true.
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Abstract

In 1975, P. Erd6és proposed the problem of determining the maximum number
f(n) of edges in a graph with n vertices in which any two cycles have different
lengths. In this paper, we prove that for ¢ = 12607 + 169 (r > 1) and n > 2119,

2 . . — .
f(n) > n 4 HESTIBEISNT - Consequently, liminf,,_, f('\l/)ﬁ” > 1/ 1581, which

improves upon the previous bounds of 2 (see Shi, Discrete Math. 71(1988), 57-
71) and 2 + £ (see Lai, Australas. J. Combin. 27(2003), 101-105). This result
disproves Conjecture 4 of Lai.
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Introduction

Let f(n) denote the maximum number of edges in a graph on n vertices in
which no two cycles have the same length. In 1975, Erdds posed the problem
of determining f(n) (see Bondy and Murty [1], p.247, Problem 11). Shi [15]
established the following lower bound:

Theorem 1 (Shi [15]). f(n) >n+ L(\/Sn — 23+ 1) /QJ for n > 3.

Additional related results were obtained by Chen, Lehel, Jacobson, and Shreve
[3], Jia [5], Lai [6-8], and Shi [16,18-20]. Boros, Caro, Fiiredi, and Yuster [2]
proved an upper bound:

Theorem 2 (Boros, Caro, Fiiredi and Yuster [2]). For n sufficiently large,
f(n) < n+1.98/n.

Lai [9] improved the lower bound:
Theorem 3 (Lai [9]). f(n) > n+ 1/2n(1 —o(1)).
Lai [6,9] proposed the following conjectures:

Conjecture 4 (Lai [9]). liminf,_, f(:L/)g" =2.

(n)=n

Conjecture 5 (Lai [6]). liminf, , fT

[\
+
7N

<

Markstrom [13] raised the following problem:

Problem 6 (Markstrom [13]). Determine the maximum number of edges in
a Hamiltonian graph on n vertices with no repeated cycle lengths.

Results for the maximum number of edges in a 2-connected graph on n vertices
with distinct cycle lengths can be found in [2,3,15]. Survey articles on this
problem appear in Tian [21], Zhang [24], and Lai and Liu [10]. The progress on
all 50 problems from [1] can be found in Locke [12].

A related topic concerns the Entringer problem, which asks which simple graphs
have exactly one cycle of each length ¢ for 3 < ¢ < v (see Problem 10 in [1]).
This problem was posed in 1973 by R.C. Entringer. For developments on this
topic, see [4,11,13,14,17,22,23].

In this paper, we construct a graph G with no two cycles of the same length,
yielding the following result:

Theorem 7. Let ¢ = 1260r 4+ 169 (r > 1). Then f(n) > n + 14879784415057
for n > 2119. Consequently, Conjecture 4 is false.
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Proof of Theorem 7

Proof. Let t = 1260r + 169 with » > 1, and let n, = 2119. We shall show that

4t>487978t+15957

for n > n,, there exists a graph G on n vertices with n + 6071

such that all cycles in G have distinct lengths.

edges

We construct the graph G from several subgraphs B, defined for indices ¢ be-
longing to the following sets: - 0 < i < 20t - 27t < ¢ < 28t + 64 - 29t — 734 <
1 < 29t 4+ 267 - 30t — 531 < i < 30t + 57 - 31t — 741 < ¢ < 31t + 58 -
32t — 740 <1 <32t +57- 33t — 741 <1 <33t + 57 - 34t — 741 <4 < 34t + 52 -
35t — 746 <1 < 35t + 60 - 36t — 738 < ¢ < 36t + 60 - 37t — 738 <4 < 37t + 799
~i=20t+jfor 1 <j<ET-i=20t+ 52 i =200+ 5 -0 =20t + -
i:20t+¥—i:21t—2—i:21t—1-i:21t+2j+1for0§j§t—1—
i=21t+2jfor 0< <52 -i=23t+2j+1for0<j< 3 -i=26t

All these subgraphs share a single common vertex x, and their vertex sets are
otherwise pairwise disjoint.

Construction of the subgraphs:

For1<i< ﬂ let Byg,,; consist of a cycle Cy,.; = walal ~--a%2,,T,,8+2i and a
path a! a2 09, dasl, i- By construction, Byy,,,; contains exactly three cycles

of lengths 20t+z 20t—|— L +i—1, and 20t + 22 4 2§ —

For 1 <i < L let B2Ot+t 1 consist of a cycle Chppy i ;= xbibl - b%zt 205 o

and a path bl bl b?mt lb‘w .. This subgraph contains exactly three cycleb of
lengths 20t 4+ &=L 4, 20¢ + -1 L 44, and 20 + 22 4 24

For 0 <i<t—1, let B21t+2z+1 consist of a cycle 021t+2z+1 = zubub - ubsy 0 g
and a path ulub -+ u'e,.0: 1 Ubsi.nis - This subgraph contains exactly three cycles

of lengths 21¢ + 2i + 1, 23¢ + 2i, and 25¢ + 2i.

For 0 <4 < 53 let Byyy o, consist of a cycle Cyyyyo; = zvivh - vhs, 5 and a
path vévd - Ugt +i_1Vi9s4;- This subgraph contains exactly three cycles of lengths
21t + 24, 22t + 2i + 1, and 25¢ + 2i + 1.

For ¢ = %, B21t+2i is simply a cycle of length 22¢ — 1.

i
For 0 <i< &3 » let Bygy, ;41 consist of a cycle Chsy g5 = Twiwh - Whey  0;q
and a path w1w2 Whiyis 1 Whsresise . This subgraph contains exactly three

cycles of lengths 23t + 2i -+ 1, 24t + 2i + 2, and 26¢ + 2i + 2.
For ¢ = %, Bysyi9:41 1s simply a cycle of length 24¢.

For 58 < i < t — 742, let By, ; 57 consist of a cycle Cyryy 57 =

TY1Y5 - Yizoir11iesos and ten paths sharing the common vertex z, with

their other endpoints on the cycle Cory i 570 - Yi¥5 - Yires - Y5U53 - Yo
2 2

- y3y4...y19§71 - y4y5...y21§71 - y5y6...y21£71 - y6y7...y23371 - y7y8...y23371 -
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) ) o) ) ) )
ygyg my%é 1 - 3/93/10 ...y%5 .- yloyll ...ym%y3715115+iy57t5103+2iy77t;315+3iy97t§313 Jr4iy117t2+313+5i:l/137t2+311Jrﬁl-y%

A cycle with d chords contains exactly (d;Q) distinct cycles. Therefore, Byr, ;57
contains cycles of the following 66 lengths: 27t+4i—57, 28t +i+ 7, 29t +1i + 210,
30t 414, 31t +i+1, 32t 414, 33t +14, 34t +1¢—5, 35t +i+3, 36t +i+3, 3Tt +i+ 742,
38t + 21 — 51, 38t + 2i + 216, 40t + 27 + 209, 40t + 24, 42t + 23, 42t + 24 — 1,
44t +21—6, 44t + 21— 3, 46t 429+ 5, 46t + 20+ 744, 48t 4 37+ 158, 49t + 31 4215,
50t +3i+209, 51t +3i—1, 52t +3i — 1, 53t + 31 — 7, b4t + 31 — 4, 55t + 3i — 1,
56t +3i+ 746, 59t +4i+ 157, 59t +4i+215, 61t +4i+208, 61t +4i—2, 63t +4i—7,
63t+4i—5, 65t +4i—2, 65t 44i+740, 69t + 514157, 70t +5i+214, 71t 4 5¢ 4207,
T2t 451 —8, 73t +5t—5, 74t +51 —3, 75t + 5i+ 739, 80t + 61+ 156, 80t 4- 67+ 213,
82t+6i+201, 82t+6i—6, 84t+61—3, 84t+ 67+ 738, 90t +7i+ 155, 91t +7i 4207,
92t + T¢ + 203, 93t + 7i — 4, 94t + 71 + 738, 101¢ + 8¢ + 149, 101t + 8 + 209,
103t + 8 + 205, 103t + 8 + 737, 111t 4+ 9¢ + 151, 112¢ 49 + 211, 113t 4 9¢ + 946,
122¢ + 10¢ + 153, 122¢ + 10¢ + 952, and 132t 4 117 + 894.

Finally, B, is a path with one endpoint at x and length n — n,, while each
remaining B; is simply a cycle of length <.
This construction yields f(n) > n + % for n > n,, completing the proof.
f(n)—n 4
Jn = \/ 19071°
the previous bounds of 2 (see [15]) and 2 + 2 (see [9]). Therefore, Conjecture
4 is false. Combining this with the upper bound of Boros, Caro, Fiiredi, and
Yuster (Theorem 2), we have:

From Theorem 7, we obtain liminf, , which improves upon

. fn)—n _ . . f(n)—n 4
1.98 > limsup ———— > 1 f > .
98 2 lim sup Jn = oo m = V19071
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