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Abstract
We propose a multi-description coding image enhancement method based on
joint side and central decoding feature learning, which simultaneously considers
both side decoding image enhancement and central decoding image enhance-
ment, thereby enabling better network training through joint optimization of
features for central and side decoding. First, considering the characteristics of
independent side decoding and joint central decoding in multi-description cod-
ing, we propose a shared side low-resolution feature extraction network to effec-
tively extract features from two side-decoded images with identical content but
different details, and simultaneously design a residual recursive compensation
network structure that is applied to both side and central low-resolution feature
extraction networks. Second, we design a multi-description side upsampling re-
construction network that adopts a partial network layer parameter sharing
strategy, which can reduce network model parameters while improving network
generalization capability. Finally, we propose a multi-description central up-
sampling reconstruction network that performs deep feature fusion of two side
low-resolution features with central low-resolution features to achieve enhance-
ment of multi-description compressed images. Extensive experimental results
demonstrate that the proposed method outperforms many image enhancement
methods such as ARCNN, FastARCNN, DnCNN, WSR, and DWCNN in terms
of model complexity, objective quality, and visual quality evaluation.

Full Text
Preamble
Multiple Description Coding Image Enhancement Method with Joint
Learning of Side- and Central-Decoding Features
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Abstract: This paper proposes a multiple description coding (MDC) image
enhancement method that jointly learns side- and central-decoding features.
By simultaneously addressing both side-decoding and central-decoding image
enhancement, the method achieves superior network training through joint op-
timization of central and side decoding features. First, considering the charac-
teristics of MDC—namely independent side decoding and joint central decoding
—we propose a network-shared side low-resolution feature extraction network to
effectively extract features from two side-decoded images with identical content
but differing details, while designing a residual recursive compensation network
structure for both side and central low-resolution feature extraction. Second,
we design a multiple description side up-sampling reconstruction network em-
ploying a partial layer parameter sharing strategy that reduces model parame-
ters while improving generalization capability. Finally, we propose a multiple
description central up-sampling reconstruction network that performs deep fea-
ture fusion of two side low-resolution features with the central low-resolution
feature to enhance MDC-compressed images. Extensive experimental results
demonstrate that the proposed method outperforms many image enhancement
methods—including ARCNN, FastARCNN, DnCNN, WSR, and DWCNN—in
terms of model complexity, objective quality, and visual quality assessment.

Key words: multiple description coding; deep learning; image enhancement;
compression distortion; feature fusion

0 Introduction
Although modern communication systems provide substantial network band-
width, network congestion frequently occurs in densely populated venues such
as concert halls, football stadiums, and student dormitory complexes. Moreover,
limited communication device resources often lead to significant packet loss over
unreliable channels. While many existing efficient image compression standards
can mitigate this issue, they cannot guarantee reliable data transmission. Unlike
single description coding, multiple description coding (MDC) divides a source
into multiple descriptions transmitted over different channels. If all description
packets are correctly received at the decoder, high-quality images can be re-
constructed through joint decoding. If only one description packet is received,
a reasonably high-quality image can still be recovered through side decoding.
Thus, MDC technology enables reliable image transmission.

Although MDC methods can reduce data volume, both central and side decoded
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images suffer from varying degrees of distortion, particularly severe distortion
in received side images. Consequently, image compression artifact removal tech-
niques are essential to improve MDC decoded image quality. These techniques
generally fall into two categories: traditional compression artifact removal meth-
ods and deep learning-based approaches. For instance, Dabov et al. [?] proposed
an enhanced sparse representation strategy in the transform domain, implement-
ing image denoising through grouping and collaborative filtering. Foi et al. [?]
introduced a shape-adaptive discrete cosine transform filtering method that de-
fines a region-shape-adaptive transform to effectively remove blockiness and
edge oscillation artifacts. Chang et al. [?] reduced JPEG compression artifacts
through sparse representation and redundant dictionary learning, though this
method cannot recover lost high-frequency information. Zhang et al. [?] pro-
posed a non-convex low-rank model for image deblocking that explicitly trans-
forms quantization constraints into a feasible solution space to constrain non-
convex low-rank optimization without modifying existing codecs, solving the
optimization problem through an adaptive parameter adjustment alternating
minimization strategy.

AlexNet’s victory in the ImageNet competition marked the dawn of modern deep
learning. Subsequently, AlphaGo’s 4:1 victory over world-class Go player Lee
Sedol brought widespread attention to convolutional neural networks (CNNs).
Deep learning has achieved tremendous success in computer vision, address-
ing tasks such as image super-resolution, deraining, dehazing, and denoising.
Deep learning-based compression artifact removal methods have also garnered
significant research interest. For example, Yu et al. [?] proposed ARCNN (Ar-
tifacts Reduction Convolutional Neural Network), demonstrating that reusing
shallow network parameters benefits deep network training. To address training
difficulties in deep networks, Zhang et al. [?] proposed DnCNN (Denoising Con-
volutional Neural Network), a residual learning-based approach that constructs
deep CNNs with batch normalization to improve convergence speed and denois-
ing performance. To further enhance performance, Qiu et al. [?] combined signal
processing-based image restoration with deep residual learning models for JPEG
artifact removal. While these methods outperform traditional approaches, they
fail to fully exploit contextual information for image quality enhancement. To
address this limitation, Chen et al. [?] proposed a multi-scale dense residual
network that introduces dilated convolutions with varying dilation factors into
dense blocks of residual networks to achieve larger receptive fields.

Moving beyond single-domain neural network processing, Zhang et al. [?]
proposed DMCNN (Dual-domain Multi-scale Convolutional Neural Network),
which effectively utilizes global information to eliminate JPEG compression
artifacts. Similarly, Zheng et al. [?] introduced IDCN (Implicit Dual-domain
Convolutional Network) to reduce compression artifacts in color images.
Although DMCNN and IDCN employ dual-branch network topologies, they do
not adequately leverage high and low-frequency information for feature comple-
mentarity. To fully exploit these features, Jin et al. [?] proposed a flexible deep
learning image restoration method that decomposes low-quality input images
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into low-frequency structure and high-frequency texture components, processes
them through separate quality enhancement networks, uses texture features
to enhance structure features, and finally merges the predicted high-quality
texture and structure maps through an aggregation network.

To address gridding artifacts caused by pooling and dilated filtering, Liu et
al. [?, ?] proposed MWCNN (Multi-level Wavelet Convolutional Neural Net-
work), which demonstrates excellent performance in image denoising, single-
image super-resolution, and JPEG artifact removal. To balance enhancement
performance, network parameters, and inference time, Zhang et al. [?] proposed
WSR (Wavelet Super-Resolution), a lightweight method using deformable con-
volution kernels to reduce parameters.

While these methods achieve good denoising performance, they cannot adap-
tively enhance images for different compression artifact levels, often requiring
multiple trained denoising networks. This inevitably increases complexity and
storage requirements, limiting widespread adoption. To address this, Li et al. [?]
proposed a single-model compression artifact removal method for JPEG images
across various quality factors, using separate restoration and global branches to
address local oscillation artifacts, global block artifacts, and color shift. Addi-
tionally, Kirmemis et al. [?] proposed a BPG (Better Portable Graphics) artifact
removal method that selects among three networks of different sizes, though
choosing the optimal network remains challenging.

Beyond compressed image enhancement, researchers have also addressed video
compression quality. For example, Zhou et al. [?] proposed a dual-network com-
pressed video reconstruction method that first removes compression artifacts
then applies super-resolution.

To address MDC image compression distortion, Xuan et al. [?] enhanced com-
pressed images through adjacent keyframe estimation. Zhao et al. [?] com-
bined pre- and post-processing techniques to create a new MDC framework
compatible with standard codecs, significantly improving coding efficiency and
decoded image quality. Similarly, Zhang et al. [?] obtained multiple single-
description images through checkerboard downsampling, encoded them with
standard codecs, and used CNNs to enhance single-path and central decoded
image quality. Purica et al. [?] merged two low-resolution compressed video
descriptions into one high-resolution description. Zhang et al. [?] reconstructed
and enhanced received side descriptions through odd-even separation sampling.
Zhu et al. [?] proposed a compression-constrained deblocking algorithm that
effectively utilizes received dual-description information to reduce boundary ar-
tifacts in central decoded images. Xu [?] proposed a 3D-LVQ (3D Lattice Vector
Quantization) based predictive decoding method to improve side image decoding
performance. However, these deep learning models often fail to meet lightweight
device requirements, necessitating research into low-complexity models.

To address compression artifacts in MDC images, particularly severe structural
splitting artifacts in side decoded images, this paper proposes a joint side- and
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central-decoding feature learning method for MDC image enhancement (MDE).
The contributions are summarized as follows:

a) To address the large storage and computational complexity of existing deep
learning models, we design a residual recursive compensation network as
the low-resolution feature extraction network for both side and central
paths, employing parameter sharing to effectively extract features from
two decoded images with identical content but differing details.

b) Considering the independent decoding characteristic of MDC side paths,
we design a multiple description side up-sampling reconstruction network
that also adopts partial layer parameter sharing to reduce model parame-
ters and improve generalization.

c) Considering the joint decoding characteristic of MDC central paths, we
design a multiple description central up-sampling reconstruction network
that performs deep feature fusion of two side low-resolution features with
the central low-resolution feature to enhance MDC-compressed images.

1 Proposed Multiple Description Compressed Image En-
hancement Method
Although existing MDC methods effectively address reliable image transmis-
sion in unstable network environments, lossy MDC inevitably introduces vari-
ous artifacts, noise, structural deformation, and structural splitting. Compared
to traditional enhancement techniques, deep learning-based methods better re-
move compression artifacts. However, existing deep learning models suffer from
high computational complexity and large memory consumption, and can only
address single-description enhancement. When directly applied to MDC tasks,
they can only enhance side and central decoded images separately without joint
feature decoding. Therefore, we propose a joint side- and central-decoding fea-
ture learning method for MDC image enhancement.

The proposed method first employs Multiple Description Random Offset Quan-
tization (MDROQ) [?] to encode and decode input images, obtaining two dis-
torted side decoded images and one central decoded image. As shown in Figure
1, the method divides MDC image enhancement into two stages: low-resolution
feature extraction and high-resolution image reconstruction. The first stage
includes two side low-resolution feature extraction networks and one central
low-resolution feature extraction network. The second stage includes two side
up-sampling reconstruction networks and one central up-sampling reconstruc-
tion network. Based on MDC’s independent side decoding and joint central
decoding characteristics, we design a residual recursive compensation network
structure for both side and central low-resolution feature extraction. Parameter
sharing in side feature extraction effectively extracts convolutional features from
two decoded images with identical appearance but different detail information.
Additionally, the proposed side up-sampling reconstruction network adopts par-
tial layer parameter sharing, significantly reducing total model parameters.
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Unlike the side up-sampling reconstruction network, the central up-sampling
reconstruction network performs deep feature fusion of two side low-resolution
features with the central low-resolution feature for compressed image enhance-
ment. The enhancement process can be expressed as:

⟦MATH_1⟧

where 𝑖 = 1, 2, 3 represents side 1, central, and side 2 respectively, 𝑌𝑖 denotes
the enhanced image, 𝑋𝑖 is the input image, and 𝑅𝑖 represents the residual map
predicted by the reconstruction network.

1.1 Low-Resolution Feature Extraction Network

Unlike single-description image coding, MDC outputs multiple side and central
decoded images. Therefore, our low-resolution feature extraction network com-
prises two types: side low-resolution feature extraction networks and a central
feature extraction network. To prevent overfitting during deep neural network
training and reduce learnable parameters, the side low-resolution feature extrac-
tion network employs a residual block parameter sharing strategy to effectively
extract low-resolution features. Unlike previous methods, this parameter shar-
ing strategy shares only partial blocks rather than entire side networks. During
network recursion, recursive results are processed with 1$×$1 convolution, then
added to the previous block’s output before feeding into the next recursive
block. This effectively reduces parameters while maintaining branch differences.
The network structure is shown in Figure 1. The central low-resolution fea-
ture extraction network adopts the same topology but with different learnable
parameter values.

In both side and central low-resolution feature extraction networks, we first ap-
ply a convolution block operation—Convolution (Conv) + Batch Normalization
(BN) + Parametric ReLU (PReLU) activation—denoted as Conb. Images are
converted to convolutional features using stride-2 downsampling convolution
to reduce computation, followed by multi-layer fusion via the proposed resid-
ual recursive compensation approach. This process uses five Residual Convolu-
tion Blocks (Resb) for sequential feature extraction with multiple channel-wise
weighted average fusions. Each Resb comprises five operations: Conv + BN +
PReLU + Conv + skip connection. After the fifth Resb, its output is fused with
the initial convolutional feature and the previous four channel-wise weighted fu-
sion features through channel-wise weighted fusion to obtain the low-resolution
convolutional feature. Table 1 details each layer’s parameters.

Specifically, Conb1 performs downsampling and feature extraction. Its output
feeds into Resb1 and Conv1. Resb1’s output is summed with Conv1’s output
as Resb2’s input. In Conv2, Resb1’s and Resb2’s inputs are combined as
Conv2’s input, then Resb2’s output is summed with Conv2’s output as Resb3’
s input. Similar operations apply to Resb4 and Resb5. In Conv3, the sum of
Resb1’s, Resb2’s, and Resb3’s inputs serves as Conv3’s input. Conv4 and
Conv5 perform similar residual recursive compensation operations. Finally, the
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sum of Resb5’s output and Conv5’s output forms the low-resolution feature
extraction network’s output, while the sum of both side networks’outputs feeds
into the central up-sampling reconstruction network.

The two side low-resolution feature extraction networks can be expressed as:

⟦MATH_2⟧

where 𝑍𝑖 represents the feature map after the 𝑖-th side low-resolution feature
extraction network, 𝑋𝑖 is the 𝑖-th side decoded image, and 𝑔𝑠(⋅) denotes the
side low-resolution feature extraction mapping function. 𝑍1 and 𝑍3 are linear
combinations of feature images. Similarly, the central low-resolution feature
extraction network is:

⟦MATH_3⟧

where 𝑍2 is the feature map after central low-resolution feature extraction, 𝑋2
is the central decoded image, and 𝑔𝑐(⋅) is the central low-resolution feature
extraction mapping function.

1.2 Side and Central Up-Sampling Reconstruction Networks

After feature extraction, we obtain two side low-resolution feature maps and one
central low-resolution feature map. In the first side up-sampling reconstruction
network, the first side low-resolution feature feeds into five cascaded convolution
blocks to obtain reconstruction features, with skip connections introduced in
the third block to facilitate gradient backpropagation. The final reconstruction
feature feeds into a transposed convolution (ConvT) layer to produce the first
side decoded enhanced image. The second side network operates similarly. In
both side networks, deep convolutional layers adopt parameter sharing to reduce
parameters while enhancing reconstruction.

Unlike side networks, the central up-sampling reconstruction network can uti-
lize features from both side and central decoded images. Therefore, we design a
central network that fuses these features atop the side network structure. Both
networks use five convolution blocks, but the central network concatenates the
fused side features with central low-resolution features along the channel dimen-
sion after skip connections. Deep layers in the central network do not share
parameters with side networks, primarily because the input feature maps to
the fourth convolution block differ significantly. Table 2 details each layer’s
parameters.

The side up-sampling reconstruction networks’nonlinear mapping can be ex-
pressed as:

⟦MATH_4⟧

where 𝑌1 and 𝑌3 are the reconstructed images from the two side paths, 𝑍1 and
𝑍3 are the low-resolution features, and 𝑓1

𝑠 (⋅) and 𝑓3
𝑠 (⋅) are the side up-sampling
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reconstruction mapping functions. The central up-sampling reconstruction net-
work’s mapping is:

⟦MATH_5⟧

where 𝑌2 is the reconstructed central image, 𝑍2 is the central low-resolution
feature, and 𝑓𝑐(⋅) is the central up-sampling reconstruction mapping function.
The complete nonlinear mapping for all paths is:

⟦MATH_6⟧

where 𝑌1, 𝑌2, 𝑌3 are the enhanced side 1, central, and side 2 images; 𝑋1, 𝑋2, 𝑋3
are the input decoded images; 𝑅1, 𝑅2, 𝑅3 are the residual maps; and
𝑓1

𝑠 (⋅), 𝑓𝑐(⋅), 𝑓3
𝑠 (⋅) are the mapping functions.

1.3 Loss Function

Common image reconstruction losses include content loss, structural dissimilar-
ity loss, total variation loss, and gradient difference loss. For content loss, L1
or L2 norms are typically used. Research shows that L2-based MSE loss causes
over-smoothing, while L1-based MAE loss produces results closer to the original
image. Therefore, we adopt MAE loss for our enhancement task. The total loss
is:

⟦MATH_7⟧

where 𝐿𝑜𝑠𝑠1, 𝐿𝑜𝑠𝑠2, and 𝐿𝑜𝑠𝑠3 represent the enhancement losses for side 1,
central, and side 2 decoded images respectively. 𝐼1

𝑖 and ̂𝐼1
𝑖 are the 𝑖-th pixel of

the original and predicted images for side 1, with 𝑛 being the total pixel count.
𝛼 and 𝛽 are weights for side and central loss functions.

1.4 Algorithm Description

Our training and test datasets derive from [?], which uses 291 images from [?]
and [?] to create training patches. Specifically, 91 images come from [?]’s
training set and 200 from [?]’s BSDS500 training set. Through cropping, down-
sampling, and stitching, [?] created 1,681 images of size 160$×$160, denoted as
Set-1681. We compress Set-1681 using MDROQ to obtain Set-1681(C), forming
our training dataset. Different quantization parameter pairs (Qstep0,Qstep1) of
(56,56.57), (96,96.57), (136,136.57), (176,176.57), and (216,216.57) produce vary-
ing distortion levels. Smaller pairs preserve more original information. While
dataset size and type affect performance, all comparison methods use identical
datasets for fairness.

Algorithm 1 describes MDE network training. First, compress Set-1681 using
MDROQ to build the training dataset. Initialize network parameters: side
low-resolution feature extraction parameters 𝜁, central low-resolution feature
extraction parameters 𝜂, side up-sampling reconstruction parameters 𝜆, and
central up-sampling reconstruction parameters 𝜉. For each epoch, extract side
low-resolution features via Equation (2) and central features via Equation (4).
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Considering independent side and joint central decoding, perform reconstruction
prediction via Equations (5)-(7). Jointly optimize side and central decoding
features by updating parameters 𝜁, 𝜂, 𝜆, 𝜉 using gradient descent on the total
loss from Equation (11). After training, save the final MDE model.

Algorithm 1: MDE Network Training Algorithm
Input: Set-1681 dataset (n=1,681 images), total iterations R=500, initial learn-
ing rate lr=2e-4, batch size b=8.
Output: Trained MDE network model.
1. Compress Set-1681 using MDROQ to obtain Set-1681(C); construct training
dataset.
2. Initialize MDE parameters (𝜁, 𝜂, 𝜆, 𝜉).
3. For epoch = 1 to R:
a. For i = 1 to floor(n/b):
i. Extract side low-resolution features via Equation (2).
ii. Extract central low-resolution features via Equation (4).
iii. Perform side/central up-sampling reconstruction via Equations (5)-(7).
iv. Update parameters via gradient descent on Equation (11).
4. Save trained MDE model.

2 Experimental Results and Analysis
We compare MDE against state-of-the-art deep learning methods: ARCNN [?],
FastARCNN [?], DnCNN [?], WSR [?], DWCNNV1 [?], DWCNNV1C [?], and
DWCNNV2 [?]. For fair comparison, we train separate enhancement networks
for side 1, side 2, and central paths using identical architectures but different
parameters for each method. Since WSR is wavelet-based super-resolution, we
remove its up-sampling layer for MDC enhancement. Test images from [?]
(shown in Figure 2) evaluate performance using PSNR, SSIM, total parameters,
receptive field size, and runtime. Visual quality comparisons are also provided.

2.1 Simulation Environment and Training Settings

We train and test our method using PyTorch on an NVIDIA RTX 2080Ti GPU.
The ADAM optimizer uses an initial learning rate of 2e-4, updated every 100
iterations with a decay factor of 0.5. Batch size is 8, with total training iterations
R=500.

2.2 Objective and Subjective Quality Evaluation

Tables 3-5 present PSNR and SSIM comparisons for side 1, side 2, and cen-
tral enhanced images under different (Qstep0,Qstep1) values. The proposed
method achieves significantly higher PSNR and SSIM than other methods across
all quantization parameters. Table 6 compares parameter counts: ARCNN,
FastARCNN, WSR, DWCNNV1, and DWCNNV1C have over twice our pa-
rameters while achieving lower PSNR/SSIM. Though DnCNN and WSR have
similar parameter counts, our method delivers superior objective metrics.
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Visual comparisons in Figures 3-5 show that ARCNN, FastARCNN, DnCNN,
WSR, DWCNNV1, DWCNNV1C, and DWCNNV2 produce enhanced images
with severe blurring artifacts, while our method yields clearer results with better
visual quality, particularly for central images containing more details.

2.3 Complexity Analysis

Table 7 compares receptive field sizes. Our method’s receptive field is larger than
ARCNN, FastARCNN, DnCNN, DWCNNV1, and DWCNNV1C, but smaller
than WSR and DWCNNV2. Table 8 examines performance with different re-
ceptive fields at (Qstep0,Qstep1)=(216,216.57). Performance improves with in-
creasing receptive field up to 103, after which it saturates. Models with similar
parameter counts show comparable runtime regardless of receptive field size.
While larger receptive fields exploit more spatial correlations, excessively large
fields weaken correlation between distant pixels and increase complexity. Table
9 compares average runtime: our method runs at 0.007 seconds per image, faster
than ARCNN, DnCNN, WSR, DWCNNV1, DWCNNV1C, and DWCNNV2.

2.4 Ablation Experiments and Analysis

We conduct ablation studies on four aspects: residual block count, loss weight
ratio, batch size, and learning rate.

Residual Blocks: Table 10 shows performance with 1, 3, 5, 7, and 9 residual
blocks at (Qstep0,Qstep1)=(56,56.57). Performance stabilizes beyond 5 blocks,
though parameters increase. We set the default to 5 blocks.

Loss Weights: Table 11 compares side:central loss weight ratios of 0.1:1, 1:0.1,
and 1:1. The 1:1 ratio achieves the highest PSNR and SSIM.

Batch Size: Table 12 tests batch sizes of 4, 8, 12, and 16. The method is
insensitive to batch size, with batch size 8 yielding the highest PSNR/SSIM.

Learning Rate: Table 13 tests learning rates of 1e-4, 2e-4, and 3e-4. The
method is relatively insensitive. While 3e-4 yields slightly higher PSNR, its
SSIM is lower than 2e-4. Considering human visual sensitivity to structure, we
default to 2e-4.

3 Conclusion
This paper proposes a joint side- and central-decoding feature learning method
for MDC image enhancement to address compression distortion. We intro-
duce a residual recursive network for low-resolution feature extraction in both
paths, employ parameter sharing based on decoding characteristics to extract
features from two side images with identical content but differing details, and
fuse side/central low-resolution features through up-sampling reconstruction net-
works. Extensive experiments demonstrate superiority over many deep learning
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enhancement methods in model complexity, objective quality, and visual qual-
ity. Future work will explore using a single deep learning model for MDC
enhancement across different quantization parameters.
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