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Abstract

In industrial applications, fully supervised semantic segmentation for surface
imprinted character images incurs high dataset annotation costs for enterprises.
To address this issue, we propose a dual-branch feature fusion domain adap-
tation segmentation method (Dual-branch Feature Fusion Domain Adaptation,
DbFFDA). First, inspired by the skip connection design of U-Net, we propose
a residual domain adaptation segmentation network with a dual-branch up-
sampling structure (Residual Adaptation Network, Res-Adp). Simultaneously,
we propose fused feature input to enhance network segmentation performance,
overcoming the problem of missing characters. Additionally, we propose a seg-
mentation continuity loss function #1;, which suppresses the generation of noise
in segmented images. In unsupervised segmentation experiments on graphite
electrode surface imprinted characters, the proposed method achieves an MIoU
value of 69.60%. The actual segmentation effect essentially meets character
recognition requirements and is expected to be deployed in practical applications
in specific industrial scenarios, saving enterprises substantial dataset annotation
costs.
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Abstract: In industrial applications, fully supervised semantic segmentation of
surface-imprinted character images incurs prohibitive dataset annotation costs.
To address this challenge, we propose a dual-branch feature fusion domain adap-
tation segmentation method (DbFFDA). First, drawing inspiration from U-Net’
s skip connection design, we introduce a residual adaptation network (Res-Adp)
with a dual-branch upsampling structure. Simultaneously, we propose fused
feature inputs to enhance network segmentation performance and overcome
character missing issues. Additionally, we introduce a segmentation continu-
ity loss function that suppresses noise generation in segmented images. In un-
supervised segmentation experiments on graphite electrode surface-imprinted
characters, our method achieves an MIoU of 69.60%. The actual segmentation
quality substantially meets character recognition requirements, demonstrating
potential for practical deployment in specific industrial scenarios and offering
enterprises substantial savings in dataset labeling costs.

Keywords: surface imprint characters; domain adaptation; semantic segmen-
tation; unsupervised training

0 Introduction

Image semantic segmentation represents a crucial research direction in com-
puter vision with broad application prospects in autonomous driving, character
recognition, and other domains. Its objective is to categorize each pixel in an
image into classes with specific semantic information. In industrial applications,
segmenting surface-imprinted character images proves particularly challenging
due to variations in lighting and printer quality, making precise segmentation
difficult for traditional algorithms.

Since the advent of deep learning, numerous researchers have explored semantic
segmentation, progressively improving both effectiveness and accuracy. In 2014,
Long et al. [1] proposed Fully Convolutional Networks (FCN), which consist en-
tirely of convolutional layers without fully connected structures, providing new
insights for semantic segmentation network design. In 2015, Ronneberger et
al. introduced U-Net [2], featuring a symmetric U-shaped encoder-decoder ar-
chitecture with skip connections that fuse information across network levels,
achieving remarkable success in medical image segmentation. In 2018, Chen et
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al. [3-6] presented the DeepLab series, whose most significant contribution is
the Atrous Spatial Pyramid Pooling (ASPP) module. Convolutional Neural Net-
works (CNNs) have dramatically enhanced semantic segmentation performance
in complex scenes, offering unparalleled advantages over traditional methods.

However, all these networks employ fully supervised training, requiring manu-
ally annotated labels as training data and incurring enormous annotation costs.
The emerging research on unsupervised domain adaptive semantic segmenta-
tion networks offers a promising solution to this problem. Domain adaptation
focuses on optimizing the alignment of feature distributions between source
and target domains, extracting shared features to predict target domain data.
Researchers have proposed various domain adaptation methods, most of which
utilize Generative Adversarial Networks (GAN) [7] for adversarial training. The
segmentation network serves as the generator—source and target domain images
are fed into the segmentation network (generator) to produce predictions that
are alternately fed to the discriminator. Through adversarial training between
the segmentation network and discriminator, the distributions of features from
both domains are aligned to achieve domain adaptation segmentation.

Ganin et al. proposed Domain-Adversarial Neural Network (DANN) [8], com-
prising feature extraction, classification, and domain discrimination modules.
This network constructs two loss functions—image classification loss and domain
classification loss—simultaneously improving network performance while align-
ing feature distributions across domains, thereby enhancing classification capa-
bility for target domain images. Since single-discriminator adversarial domain
adaptation cannot leverage complex multi-modal structures, Pei et al. [9] intro-
duced Multi-Adversarial Domain Adaptation (MADA), constructing multiple
discriminators for domain adaptation training. Multiple domain discriminators
align distributions across various dimensions, improving adaptation effective-
ness. Luo et al. [10] proposed Category-Level Adversarial Network (CLAN),
constructing a category-level adversarial network to enforce local semantic con-
sistency within overall alignment. Wang et al. [11] introduced Patch-based
Output Space Adversarial Learning (pOSAL), designing a lightweight and effi-
cient segmentation network along with a novel shape-aware segmentation loss
to guide the network in generating accurate and smooth predictions. Wang et
al. [12] proposed Boundary and Entropy-driven Adversarial Learning (BEAL),
a domain adaptation framework that improves segmentation performance in
ambiguous boundary regions by encouraging target domain boundary predic-
tions to resemble those of the source domain, thereby generating more accurate
boundaries.

Zhu et al. [13] proposed Cycle-Consistent Generative Adversarial Networks (Cy-
cleGAN), cascading two GAN networks and introducing cycle consistency loss
to construct a bidirectional style transfer network between source and target
domain images, enabling generation of simulated samples close to the target
domain distribution to assist training. Chen et al. [14] improved the CycleGAN
structure by adding a segmentation branch to the target-to-source generator,
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aligning source and target domain distributions from both image and feature
perspectives, achieving remarkable success in domain adaptation segmentation
between medical MRI and CT images. Zhang et al. [15] introduced atrous spatial
pyramid pooling (ASPP) into the segmentation network to extract multi-scale
image features for improved segmentation performance, applying segmentation
prediction entropy to adversarial loss to reduce domain shift.

Liu et al. [16] proposed Source-Free Domain Adaptation (SFDA), providing a do-
main adaptation training approach for scenarios where source domain datasets
cannot be publicly released. By recovering and filtering source domain data
from the source domain model, domain adaptation can be achieved using only
the trained source domain model and target domain dataset. Araslanov et
al. [17] proposed a lightweight domain adaptation segmentation method that
addresses the complexity and high resource consumption of existing networks
by abandoning common approaches like adversarial training and style transfer,
instead employing data augmentation techniques such as noise addition, flip-
ping, and scaling to ensure consistency in cross-domain semantic segmentation.
Wang et al. [18] introduced Correlation-Aware Domain Adaptation (CorDA),
using universal self-supervised depth estimation guidance from both domains to
bridge the domain gap. This method explicitly learns task feature correlations
with the help of target depth estimation to improve prediction quality. Saha et
al. [19] proposed a method for encoding visual task relationships to enhance un-
supervised domain adaptation network performance, introducing a Cross-Task
Relation Layer (CTRL) that encodes task dependencies between semantic and
depth predictions. Liu et al. [20] proposed a two-stage segmentation network
—CDR-GANs—where each stage comprises a semantic segmentation network,
generator, and discriminator. During training, the discriminator guides the se-
mantic segmentation network and generator to learn the joint probability distri-
bution of original images and segmentation predictions. Li et al. [21] addressed
the limitation that existing domain adaptation algorithms use shared source
domain networks to learn cross-domain feature representations, which restricts
generalization to unlabeled target domain objects, by proposing Transferable
Semantic Augmentation (T'SA) to implicitly generate source domain features
for target domain objects and enhance network adaptability.

This paper proposes the dual-branch feature fusion domain adaptation segmen-
tation method DbFFDA, which improves upon U-Net in network architecture,
image preprocessing, and loss function design, achieving satisfactory segmenta-
tion results on graphite electrode imprinted character datasets that substantially
meet industrial application requirements. DbFFDA’ s innovations include three
aspects: (a) A dual-branch upsampling unsupervised semantic segmentation
network Res-Adp that introduces residual modules into U-Net’ s skip connec-
tions to build a residual branch for cross-domain feature alignment. During
network upsampling, features at each level undergo upsampling through both
residual and convolutional branches. The residual branch handles feature align-
ment using domain-invariant features for image segmentation, while the convo-
lutional branch preserves domain-specific features to supplement segmentation
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details using unique image characteristics. (b) Fused feature input. Consid-
ering that surface-imprinted character images contain numerous noise points
and character edges are critically important, we use grayscale images, median-
filtered images, and edge detection images as three input channels fused and
fed into the network for training. (c¢) Construction of a segmentation continuity
loss function to constrain segmentation network training. Based on the prior
knowledge that objects should be internally continuous in segmented images, we
propose a segmentation continuity loss function that indirectly improves target
domain segmentation by constraining source domain segmentation generation,
suppressing both character voids and background noise.

1.1 Domain Adaptation Segmentation Framework

The domain adaptation segmentation framework is illustrated in Figure 1. The
segmentation network is our proposed dual-branch upsampling network Res-
Adp, shared by both domains. IS represents source domain (simulated) data,
which easily obtains labels with rich supervision information and complete label
set LS. IT represents target domain (real) data without supervision information.

Figure 1. Domain adaptive segmentation framework

Source domain data consists of computer-generated simulated images whose
labels require no manual annotation, while target domain data comprises real
images captured by cameras without annotation information. The framework
involves two training phases:

(a) Fully supervised training on source domain data. Source domain
(simulated) images IS are input to the segmentation network to obtain
source domain predictions PS. PS can construct a cross-entropy loss func-
tion with labels LS to train the segmentation network Res-Adp in a fully
supervised manner. The cross-entropy loss function formula is:

N
Lop =~ Yl 1oa(p,) + (1 -y, log(1 — p,)]

=1

where p, represents pixels in the source domain prediction and y,; represents
pixels in the source domain label. Target domain (real) images IT are input
to the segmentation network to obtain target domain predictions PT. Since
target domain images IT lack labels, cross-entropy loss cannot be constructed
for segmentation training.

(b) Adversarial training between segmentation network (generator)
and discriminator. To enable the segmentation network trained on
source domain images to accurately segment target domain images, we
must align the distributions of both domains through domain adaptation
training. Source predictions PS and target predictions PT are fed to
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the discriminator for adversarial training with the segmentation network
(generator). The adversarial loss function L, is defined as:

Lgan = Eyns,,, 108 D(S(2)] + E, o, [log(1 — D(T'(x)))]

where S;,;, and T},,, represent source and target domain images respectively,
S represents the segmentation network, and D represents the discriminator.

The overall network loss function L comprises three components:

L= LGan + LCE + LCon

where Lg,,, is the adversarial loss, Lo is the cross-entropy loss, and L, is
our proposed segmentation continuity loss function, detailed in Section 1.5.

The discriminator’ s optimization objective is to distinguish whether input seg-
mentation predictions originate from source predictions PS or target predictions
PT. During training, the discriminator aims to output an all-ones matrix for
source predictions and an all-zeros matrix for target predictions to determine
prediction categories. The discriminator constructs L2 norms between its judg-
ment on target predictions and an all-zeros matrix, and between its judgment
on source predictions and an all-ones matrix, minimizing the sum of these two
losses.

The segmentation network (generator) aims to produce predictions that confuse
the discriminator, specifically making the discriminator output an all-ones ma-
trix for target predictions, bringing them close to source predictions. The L2
norm is constructed between the discriminator’s judgment on target predictions
and an all-ones matrix, while non-adversarial losses are constructed between
source input images and their labels. The segmentation network minimizes the
sum of these two losses.

Non-adversarial losses L and L, train segmentation performance, while ad-
versarial loss L, trains domain adaptation capability. Under their joint con-
straints, the segmentation network improves source domain (simulated) image
segmentation performance while aligning feature distributions across domains,
thereby enhancing target domain (real) image segmentation performance and
achieving unsupervised segmentation of target domain images.

1.3 Markov Discriminator

DbFFDA employs a Markov discriminator [24]. As shown in Figure 4, segmen-
tation predictions undergo four downsampling operations followed by one con-
volutional operation to output a feature map with one channel. Also known as
PatchGAN, the Markov discriminator outputs a feature map where each point
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represents the authenticity of a patch region in the segmentation prediction.
The discriminator’ s optimization direction is to identify whether input predic-
tions belong to source or target domains, while the segmentation network aims
to generate predictions indistinguishable to the discriminator. Through this
adversarial game, both components continuously improve their performance to
achieve cross-domain distribution alignment.

Figure 4. Markov discriminator structure

1.4 Fusion Feature Input

Under complex and variable natural lighting conditions, constrained by printer
quality and image acquisition device performance, surface-imprinted character
images exhibit uneven illumination and substantial noise. Directly feeding raw
images into the network for training introduces numerous binary noise points
into segmented images, severely degrading segmentation purity.

We convert camera-captured color images of surface-imprinted characters to
grayscale images as the first input channel. Median filtering is applied to remove
noise while preserving foreground information maximally, with the filtered im-
age serving as the second input channel. Character edges in surface-imprinted
images constitute critical foreground information essential for segmentation. We
apply Sobel operators to median-filtered images for edge extraction, using the re-
sulting images as the third input channel. Figure 5 illustrates the three-channel
input data, which are concatenated and fed into the network for training.

Figure 5. Fusion feature input

1.5 Segmentation Continuity Loss Function

Due to substantial noise and partial character distortion in surface-imprinted
character images, using only cross-entropy as the non-adversarial loss function
leads to character voids and binary noise points in target domain segmentation
results.

To address this issue, inspired by traditional computer vision algorithms, we
propose a segmentation continuity loss function L.,,. In binary label maps,
individual characters are internally continuous, as is the background, without
interspersed binary noise points—foreground and background remain relatively
independent. Therefore, in N-channel labels, points with value 1 and points with
value 0 on each channel should be continuous, meaning each class is internally
continuous and independent from others.

As shown in Figure 6, except for boundary points, a point’ s value should match
its neighbors’ . Since network segmentation results are obtained by mapping
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N-channel feature maps to probability distributions and taking the maximum
index, the N-channel feature map output should exhibit the same property—
continuous activation values at each point. A point A(%, 7, k) on channel k
should have activation values similar to its neighbors, enabling construction of
the segmentation continuity loss function:

_1 3 A(@j’k)iA(lfl,J,k)+A(Z+1,J7k‘)ZA(%Jfl,k)+A(w+l,k)

where A(4, j, k) represents the point at position (4,7) on channel k, and A(i —
1,5,k), A(i + 1,5,k), A(i,j — 1,k), A(i,j + 1,k) represent its left, right, top,
and bottom neighbors respectively. This function effectively suppresses void
generation within characters.

Figure 6. Point of a channel in an N-channel label and its four neigh-
borhoods

2.1 Experimental Data

Domain adaptation segmentation effectively addresses the high cost of manual
semantic segmentation dataset annotation, offering broad application prospects.
In industrial applications, numerous scenarios require semantic segmentation
algorithms to process captured images for subsequent operations.

In graphite electrode manufacturing, surface-imprinted characters must be rec-
ognized for production statistics and management. Semantic segmentation
constitutes a critical pre-processing step, yet pixel-level annotation would im-
pose tremendous production costs. This work addresses the problem by using
computer-generated source domain data and camera-captured target domain
data, effectively saving annotation costs through domain adaptation segmenta-
tion.

The experimental dataset comprises source and target domain components.
Source (simulated) data consists of screenshots from computer font libraries
without manual annotation, featuring complete computer-generated labels with
random character fonts, sizes, and spatial positions. Target domain data com-
prises graphite electrode surface-imprinted character images captured by mobile
phone cameras from a carbon materials manufacturing enterprise, as shown in
Figure 7.

Figure 7. Real image of graphite electrode

Dataset example images appear in Figure 8. The source domain (computer
font library characters) contains 600 images, while the target domain (graphite
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electrode surface-imprinted characters) contains 550 images, with 440 training
images and 110 test images. All dataset images are sized 512$x$128.

Figure 8. Examples of dataset

2.2 Evaluation Metrics

We evaluate network performance using five metrics: Pixel Accuracy (PA), Mean
Pixel Accuracy (MPA), Precision, Recall, and Mean Intersection over Union
(MIoU).

PA is the ratio of correctly classified pixels to total pixels. MPA is the mean of
per-class ratios of correctly classified pixels to total pixels of that class. Precision
is the proportion of correctly predicted positive examples among all predicted
positives. Recall is the proportion of correctly predicted positives among all
actual positives. Intersection over Union (IoU) is the ratio of intersection pixel
count to union pixel count for a predicted and labeled object class, while MIoU
represents the mean IoU across all classes. The five evaluation metrics are
formulated as:

PA — TP+ TN
 TP+TN+FP+FN
TP
MPA =
rean (TP+FN+TN+FP)
Precision — TP
recision — TP+FP
TP
ReCaH—m
ANB
MIoU =
(0] mean(AuB>

where True Positive (TP) denotes pixels correctly predicted as positive, True
Negative (TN) denotes pixels correctly predicted as negative, False Positive
(FP) denotes pixels incorrectly predicted as positive, and False Negative (FN)
denotes pixels incorrectly predicted as negative.
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2.4.2 Ablation Experiment Results and Analysis

Ablation experiments compare five configurations: U-Net (fully supervised) [2],
U-Net (unsupervised) [2], Res-Adp (innovation 1), Res-Adp + fusion feature
input (innovations 14-2), and Res-Adp + fusion feature input + L,,, (DbFFDA,
innovations 142+43). These experiments quantify the performance gap between
DbFFDA and fully supervised U-Net while validating each proposed innovation.
For each configuration, we identify the training epoch with maximum MIoU
and report its metrics. Segmentation comparisons appear in Figure 11, detail
comparisons in Figure 12, and quantitative evaluations in Table 2.

Figure 11. Image of segmentation effect comparison of ablation ex-
periment

Figure 12. Segmentation detail comparison of ablation experiments

Table 2. Quantitative evaluation of ablation experiment

Approach PA  MPA Precision Recall MIoU

U-Net (fully supervised) [2] - - - - -
U-Net (unsupervised) [2] - - - - -
Res-Adp - - - - -
Res-Adp + fusion feature input - - - - -
Res-Adp + fusion feature input + Ls,,, - - - - 69.60%

As shown in Figures 11-12 and Table 2: (a) Unsupervised U-Net suffers from se-
vere character missing and numerous noise points. Res-Adp (innovation 1) signif-
icantly improves this issue through its dual-branch upsampling structure, which
aligns cross-domain features while preserving domain-specific features, yielding
continuous characters without missing parts and improving MIoU by 1.52% over
unsupervised U-Net. (b) Res-Adp + fusion feature input (innovations 1+2) adds
median-filtered and Sobel edge detection images to network inputs, suppressing
noise and enhancing character edge information. This produces smoother char-
acter edges, reduces burrs, and decreases noise points compared to Res-Adp
alone, improving MIoU by 0.43%. (c) Res-Adp + fusion feature input + L,
(DbFFDA, innovations 142+43) generates characters that are continuous, have
smooth edges without burrs, and contain minimal background noise. The seg-
mentation continuity loss function L., further suppresses background noise
and character voids, achieving the best segmentation performance with MIoU
reaching 69.60%.

Although DbFFDA still trails fully supervised U-Net in objective metrics, its
actual segmentation quality substantially meets character recognition require-
ments and shows promise for practical industrial deployment.
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3 Conclusion

Addressing the difficulty of obtaining labels for surface-imprinted character im-
ages in industrial applications, this paper proposes the dual-branch feature fu-
sion domain adaptation segmentation method DbFFDA. First, inspired by U-
Net’ s skip connections, we introduce the dual-branch upsampling segmentation
network Res-Adp. Additionally, we fuse grayscale, median-filtered, and edge de-
tection images as network input to suppress noise and enhance character edge
information. Furthermore, based on the prior that object interiors should be
continuous in labels, we propose the segmentation continuity loss function L,
This function indirectly improves target domain segmentation by constraining
source domain segmentation generation, further suppressing character voids and
background noise.

DbFFDA produces segmented images with complete characters, smooth edges,
and minimal noise, achieving 69.60% MIoU that substantially meets industrial
character recognition requirements. For images suffering from excessive noise in
segmentation predictions due to uneven illumination, future work will explore
discriminator structure improvements to better constrain generator optimiza-
tion, suppress noise generation, and enhance segmentation quality.
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