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Abstract
With the goal of enhancing the cognitive reasoning capability of recommendation
algorithm models and overcoming the current limitation where traditional rec-
ommendation algorithms heavily rely on data quality, resulting in constrained
performance, we propose an implicit deep collaborative recommendation model
that integrates propositional logic with neural networks. First, we construct
an implicit logical representation module to assist in bridging the gap between
complex variables in practical problems and logical variables, and transform the
recommendation problem into a logical expression. Subsequently, we utilize neu-
ral networks to fit logical symbols, solve the logical expression, and complete the
recommendation. Experiments on three classical datasets with different char-
acteristics—MovieLens, Book-Crossing, and Amazon-E—demonstrate that the
proposed method exhibits superior recommendation performance.
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Abstract: To enhance the cognitive reasoning capability of recommendation
algorithm models and overcome the performance limitations of traditional rec-
ommendation algorithms that are highly dependent on data quality, this pa-
per proposes an implicit deep collaborative recommendation model that fuses
propositional logic with neural networks. First, an implicit logic representa-
tion module is constructed to bridge the gap between complex variables in
real-world problems and logical variables, transforming the recommendation
problem into a logical expression. Subsequently, neural networks are used to fit
logical symbols to solve the logical expression and complete recommendations.
Experiments on three classical datasets with different characteristics—Movie-
Lens, Book-Crossing, and Amazon-E—demonstrate that the proposed method
achieves superior recommendation performance.
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0 Introduction
In recent years, the rapid development of the Internet and the continuous up-
grading of mobile devices have brought diverse lifestyles to society. The further
advancement of e-commerce and new retail has provided people with numerous
lifestyle and work choices. However, the explosive growth of information and
data has also made it difficult for users to identify potentially interesting prod-
ucts from millions or even hundreds of millions of items. Recommendation sys-
tems can quickly match users with the most relevant products, effectively saving
purchase time and improving user experience, making them a research hotspot
in related fields [?]. Current recommendation methods mainly include collabo-
rative filtering, content-based recommendation, and association rule-based rec-
ommendation. Most mainstream recommendation methods today are based on
and optimized from the collaborative filtering concept, which predicts the fu-
ture based on users’historical interactions [?]. Classical collaborative filtering
methods are represented by matrix factorization [?]. With the rapid develop-
ment and widespread application of deep learning, using deep models to learn
from large-scale data to fit matching functions has become a popular research
direction [?].

However, an increasing number of scholars have realized that recommendation
problems cannot be perfectly solved merely through statistical induction of in-
teraction history [?]. For example, a user who recently purchased a computer
will not need recommendations for similar products but rather peripherals such
as keyboards and mice. In general, users are often recommended similar prod-
ucts immediately after purchase, even though their actual need has disappeared.
Therefore, relying solely on statistical induction of user interaction history to
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infer future intentions is difficult to achieve ideal results. Second, statistical
matching approaches struggle to learn sufficient user-item feature pairs when
facing extremely sparse datasets. This is primarily because the possible com-
binations of items and users increase exponentially with dataset growth, while
classical neural network models lack the reasoning ability to draw inferences,
making their performance heavily dependent on dataset quality. Correspond-
ingly, although traditional logic systems excel at solving reasoning problems,
hard rule-based logical methods often lack generalization, making it difficult to
accommodate internal conflicts when solving real-world problems. For instance,
users with identical historical interactions may make completely different deci-
sions, meaning the same logical expression may have different solutions. It is
thus evident that fusing logical reasoning with neural networks to build models
with both reasoning capability and good generalization will inevitably become
a focus of future research [?].

Recently, Shi et al. [?] proposed a novel idea of transforming the recommenda-
tion problem into a logical expression for solving, constructing a recommenda-
tion prediction model with reasoning capability. Similar works include those
by Chen et al. [?], [?] and Fan et al. [?]. However, the logical expressions
in these methods only consider first-order relationships between variables, and
serial solving causes information loss for earlier units. Therefore, based on trans-
forming the recommendation problem into a logical expression for solving, this
paper adds an implicit logic representation module between item embedding
and logical solving, proposing an implicit deep collaborative reasoning model.

Compared with existing work, the innovations of this model are: (a) This pa-
per treats variables in the interaction logic expression as a sequence and uses
multi-layer self-attention mechanisms to mine implicit interaction relationships
among variables, alleviating the problem of insufficient representation informa-
tion caused by considering only first-order logical relationships. (b) A gated
recurrent network module is used to improve information loss for earlier logi-
cal units during the serial solving process of logical expressions. Experiments
on MovieLens, Book-Crossing, and Amazon-E datasets show that the proposed
model achieves better performance on NDCG and HIT metrics.

1.1 Collaborative Filtering Recommendation Based on
Deep Models
Collaborative filtering is a common and mainstream recommendation method
[?]. Traditional collaborative filtering methods are based on matching concepts,
achieving recommendations by learning matching functions. The earliest matrix
factorization technology decomposes the user-item interaction matrix into the
product of two or more matrices to represent the relationship between users and
items [?]. Currently, researchers optimize collaborative filtering models mainly
through two approaches. One focuses on optimizing embeddings. For example,
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Gediminas et al. [?] modeled user features through context-aware pre-filtering,
Alexandros et al. [?] used higher-dimensional tensors instead of factorization
matrices to enrich embedding information through dimensionality enhancement,
and Yehuda [?] incorporated dynamic time information and user behavior into
embeddings for learning. Meanwhile, some scholars integrate richer information
structures into representations. For instance, Zhang et al. [?] jointly represented
user embeddings using images, ratings, and other information, He et al. [?] di-
rectly extracted visual features from product images as an independent indicator
affecting model decisions, and Ai et al. [?] used knowledge graphs to assist in
building recommendation models and optimizing embedding learning.

The other optimization direction is building collaborative filtering recommen-
dation models by finding better matching functions. For example, Hsieh et
al. [?] used vector transformation instead of inner product and measured user
preferences in a joint space. With deep learning demonstrating powerful effects
in image and language domains, an increasing number of scholars tend to use
complex neural networks to learn matching. Works such as Ruslan et al. [?],
who first proposed an RBM model combining deep learning with collaborative
filtering and achieved good results on movie datasets, He [?]’s Neural Collab-
orative Filtering (NCF) model, and Travis et al. [?]’s Collaborative Memory
Network (CMN) model all use richer prior knowledge or more complex kernel
models to improve recommendation effects. However, when facing tasks requir-
ing reasoning capability, induction-based statistical methods struggle to bridge
the gap from perception to cognition. Therefore, it is necessary to fuse inductive
statistics with deductive reasoning to address complex recommendation tasks
requiring certain reasoning abilities.

1.2 Neural-Symbolic Integration
As the most classical paradigm in artificial intelligence, symbolic AI uses symbols
as a medium for setting hard rules to give AI cognitive intelligence. Neural-
symbolic integration is a field that combines classical symbolic knowledge with
neural networks, enabling models to provide both good computational capability
and logical reasoning ability. Deep learning is regarded as a promising way to
overcome the gap between symbols and subsymbols [?]. In recent years, many
scholars have attempted to solve logical problems using deep learning methods.
For example, Johnson et al. [?] and Yi et al. [?] designed deep network models
to generate programs and perform visual reasoning. Yang et al. [?] proposed
a first-order logic-based neural logical reasoning system for knowledge bases.
Dong et al. [?] built a neural logic model for relational reasoning and decision-
making. However, these works all preset a single architecture to handle different
logical inputs. While they show good performance on specific problems, they
lack flexibility when facing complex datasets requiring generalization capability.

To enable reasoning models to maintain better generalization performance, Shi
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et al. [?] proposed the Logic-Integrated Neural Network (LINN), which treats ba-
sic logical symbols as neural networks for fitting and learning, serving as a good
medium between neural networks and symbolic AI. However, this approach ne-
glects the implicit relationships between variables after different types of tasks
are converted into logical problems. Additionally, constructing model computa-
tion graphs based on logical expressions causes information loss for front-end log-
ical units. This paper targets recommendation systems and designs an implicit
logic representation module combining self-attention mechanisms and gated re-
current networks to address problems arising from the fusion of propositional
logic and neural networks.

2.1 Method Overview
Enhancing the cognitive reasoning ability of models is an effective means to solve
complex recommendation problems. This paper transforms the recommenda-
tion problem into a logical expression for solving and proposes an Implicit Deep
Collaborative Reasoning (IDCR) algorithm that fuses propositional logic with
neural networks. The model mainly consists of an implicit logic representation
module based on self-attention and gated recurrent units, and a deep reasoning
module based on the integration of logical symbols and BP neural networks.
First, the implicit logic representation module mines implicit logical informa-
tion among items from user historical interactions and generates implicit logical
variables. Subsequently, the deep reasoning module solves the logical expression
composed of implicit logical variables and makes recommendation predictions.

The model consists of four main components: the input layer, implicit logic
representation module, deep reasoning layer, and output layer. The following
sections elaborate on each module in detail.

2.2 Input Layer
The input layer converts data into the structure required by the model. The
original dataset consists of a series of user-item interaction ratings, including
user ID set 𝑈 = {𝑢1, 𝑢2, 𝑢3, ..., 𝑢𝑖}, item ID set 𝑉 = {𝑣1, 𝑣2, 𝑣3, ..., 𝑣𝑗}, and
rating matrix 𝑌𝑖×𝑗. Since the model transforms the recommendation problem
into a logical expression for solving, it is necessary to convert ratings to 0 and
1. Taking a 5-point scale as an example, ratings greater than or equal to 4 are
treated as 1, representing positive interactions between users and items, while
ratings less than 4 are treated as 0, representing negative interactions.

Subsequently, all user-item interactions are sorted by time and formed into
sequences. Each sequence contains user 𝑢𝑖, item 𝑣𝑗, user rating 𝑦𝑖𝑗 for the
item, and the 𝑚 interaction item groups 𝐻 = {ℎ1, ℎ2, ℎ3, ..., ℎ𝑚} before this
interaction. Finally, to prevent integer encoding from creating false ordinal
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relationships between items and users, an EmbeddingLayer is used to map all
integer encodings into a high-dimensional space to obtain feature vectors.

2.3 Deep Reasoning Layer
To better introduce the implicit logic representation module, this section first
presents the deep reasoning layer for solving logical expressions. Its input is a
logical expression composed of logical variables and three basic logical symbols
(∧, ∨, ¬), and its output is a solution vector. The basic logical symbols are
treated as three independent neural networks for training.

For ease of understanding, assume that data processed by the input layer directly
enters the deep reasoning layer. The input includes target user 𝑢, target item 𝑣𝑡,
interaction rating 𝑦𝑡, and three previously interacted items 𝑣1, 𝑣2, 𝑣3 (assuming
𝑚 = 3). Thus, when user 𝑢 gives positive ratings to items 𝑣1, 𝑣2, 𝑣𝑡 and a
negative rating to item 𝑣3, it can be converted into a logical expression:

(𝑣1 ∧ 𝑣𝑡) ∨ (𝑣2 ∧ 𝑣𝑡) ∨ (¬𝑣3 ∧ 𝑣𝑡) = 1

Equation (1) represents that the reason for positive interaction between user
𝑢 and item 𝑣𝑡 may be related to 𝑣1, 𝑣2, or 𝑣3. Each conjunctive subformula is
independent, which encourages the model to filter out different feature solutions
and significantly reduces model coupling.

After converting historical interactions into logical expressions, the recommen-
dation problem becomes a logical expression solving problem. To combine the
advantages of symbolic logic and neural networks, this paper treats the three
basic logical symbols as three learnable neural networks: 𝐴𝑁𝐷(⋅, ⋅), 𝑂𝑅(⋅, ⋅),
and 𝑁𝑂𝑇 (⋅). This approach benefits from the model’s ability to sponta-
neously learn and understand logical reasoning rules from data. For example,
in one-dimensional space, 0 and 1 represent positive and negative, meaning
𝑁𝑂𝑇 (1) = 0; in two-dimensional space, for any vector 𝑣, there exists only one
vector ¬𝑣 with similarity 0 to represent 𝑁𝑂𝑇 (𝑣); when the dimension reaches
three or higher, for any vector, vectors with similarity 0 are no longer unique.
In other words, using classical logic systems alone makes it difficult to express
logical relationships between high-dimensional vectors, necessitating the intro-
duction of neural networks to fit complex logical relationships in different spaces.

Assuming all vectors have dimension 𝑑, the inputs of 𝐴𝑁𝐷(⋅, ⋅) and 𝑂𝑅(⋅, ⋅) net-
works are two 𝑑-dimensional vectors, and their output is a 𝑑-dimensional vector.
The 𝑁𝑂𝑇 (⋅) network takes one 𝑑-dimensional vector as input and outputs a 𝑑-
dimensional vector. All three networks in this paper use a fully connected neural
network structure with a single hidden layer. Taking the 𝑁𝑂𝑇 (⋅) network as
an example, its formula is:
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𝑁𝑂𝑇 (𝑣𝑡) = 𝜎(𝑊𝑛 ⋅ 𝑣𝑡 + 𝑏𝑛)

where 𝜎 is the activation function, and ReLU is used throughout this paper.

For example, the output of 𝐴𝑁𝐷(𝑣1, 𝑣𝑡) represents the result of 𝑣1 ∧ 𝑣𝑡, while
𝑁𝑂𝑇 (𝑣3) represents ¬𝑣3. Therefore, the solving process of Equation (1) in the
model is shown in Figure 1.

Notably, the model only captures first-order relationships between variables
because higher-order relationships grow exponentially with the number of vari-
ables, bringing massive computational demands and model overfitting problems.

Finally, the model’s output vector is compared with a randomly initialized
base vector 𝑇 for similarity to obtain the expression’s solution. The similarity
formula is:

𝑆𝑖𝑚(𝑜, 𝑇 ) = sigmoid(𝜑 ⋅ 𝑜𝑇 ⋅ 𝑇 )

where 𝜑 is a hyperparameter that scales the similarity to adapt the model to
datasets from different domains. Similarity closer to 1 indicates that the user’
s expected rating for the item tends to be more positive.

2.4 Implicit Logic Representation
The deep reasoning model encounters two problems in practical applications.
First, the process of solving the disjunctive normal form of logical expressions
is serial, causing continuous information loss for earlier logical units while in-
evitably giving later logical units greater influence on the final result. Second,
although retaining only first-order logical relationships between variables can
streamline the model, it also causes some loss of implicit information among
logical variables. When facing practical problems like recommendation tasks,
different variables always have complex implicit relationships—for example, dif-
ferent movies may have sequel relationships, and different products may belong
to the same brand or category. These implicit relationships affect recommenda-
tion results. However, in the deep reasoning module, each product is represented
as an independent logical variable. Using the assumption in Section 2.2 as an ex-
ample, the model neglects the second-order and third-order relationships among
historical interaction items 𝑣1, 𝑣2, 𝑣3:

In short, when higher-order relationships between variables are not considered,
the implicit information among 𝑣1, 𝑣2, 𝑣3 is actively discarded, which obviously
impacts model performance.

Therefore, it is necessary to construct an implicit logic representation module
to address these two problems in the deep reasoning model. First, self-attention
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mechanisms are used to mine implicit relationships among different logical vari-
ables, solving the problem caused by ignoring higher-order relationships. Second,
a Gated Recurrent Unit (GRU) layer is added to address the information loss
problem caused by serial execution of disjunctive normal forms. The specific
structure of the implicit logic representation module is shown in Figure 2.

First, the Attention module treats logical variables representing items as an
input sequence and mines implicit interaction information among different items
by learning correlation weights among logical variables. This process mainly
consists of three components: query, key, and value. Linear projection is used
to obtain three vectors 𝑄, 𝐾, and 𝑉 . The similarity matrix is obtained by dot
product of 𝑄 and 𝐾, with the similarity formula:

𝑓(𝑄, 𝐾) = 𝑄𝐾𝑇

√𝑑𝑘

After normalizing the similarity matrix, the weight distribution for vector 𝑉 is
obtained, and the weighted value of vector 𝑉 is calculated by dot product:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = softmax (𝑄𝐾𝑇

√𝑑𝑘
) 𝑉

To mine complex relationships among logical variables in different subspaces,
multi-head attention mechanisms are introduced to capture different interaction
information in multiple different projection spaces and effectively prevent the
model from falling into local optimal traps. The formula is as follows, where 𝑊
represents learnable parameter matrices:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉 ) = concat(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ..., ℎ𝑒𝑎𝑑ℎ)𝑊 𝑂

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 ).

Through the self-attention module, implicit logical variables 𝛼1, 𝛼2, 𝛼3 contain-
ing high-order implicit interaction information among variables are obtained.
Subsequently, a gated recurrent network is used to further optimize the model
and solve the information loss problem caused by serial computation in the deep
reasoning model.

The internal structure of the gated recurrent network is shown at the top of
Figure 3, mainly consisting of two important units: the update gate 𝑧𝑡 and the
reset gate 𝑟𝑡. The update gate controls the degree to which state information
from previous logical variables is brought into current information, while the
reset gate controls how much information from the previous state is written
into the current candidate hidden state ℎ̃𝑡. The calculation formulas are as
follows, where [⋅] represents vector concatenation:
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𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡])

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡])

ℎ̃𝑡 = tanh(𝑊ℎ ⋅ [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡])

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡

Through the gated recurrent network, the model can spontaneously learn and
control the selection of variable information at different positions in the ex-
pression, effectively improving the problem of information loss for front-end
variables in the deep reasoning model. Finally, the implicit logical variables ob-
tained through the implicit logic representation module are treated as a logical
expression and used as input for the deep reasoning model.

2.5 Output Layer
After the deep reasoning layer computes based on the input logical expression, it
outputs a 𝑑-dimensional solution vector. This vector is calculated with the base
vector 𝑇 using Equation (3) to obtain a value between 0 and 1, representing the
user’s expected preference for the target item. The closer this value is to 1, the
more positive the user’s expected rating for the item. In recommendation tasks,
items with more positive expected ratings rank higher in the recommendation
list.

Algorithm 1 presents the specific implementation of the IDCR model. The
algorithm description shows that: First, 𝑁 items interacted with by the same
user are sorted by interaction time to form sequence 𝑉 {𝑣1, 𝑣2, ..., 𝑣𝑛}, with the
(𝑁+1)-th item serving as the prediction item 𝑣𝑡. Then, each variable in sequence
𝑉 is embedded to generate high-dimensional vectors, and this set of vectors is
input into the self-attention module and gated recurrent network to generate
a set of implicit logical variables. Next, this set of implicit logical variables
is treated as a logical expression and solved via the logical symbol network to
obtain a solution vector. Finally, this solution vector and a randomly generated
base vector 𝑇 are processed through Equation (3) to obtain the solution value
of the logical expression, which serves as the predicted rating of the user for the
target item.
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3.1 Experimental Data
This paper uses three representative public datasets—MovieLens, Book-Crossing,
and Amazon-E—to evaluate the recommendation effectiveness of the proposed
IDCR model.

a) MovieLens [?]: A movie recommendation dataset established and main-
tained by Grouplens, commonly used in the recommendation field. It has rela-
tively high data density, containing over 100,000 rating data from 900+ users
on 1,000+ movies.

b) Book-Crossing [?]: A book recommendation dataset composed of ratings
from 240,000 readers in the Book-Crossing community. It is very sparse, posing
a significant challenge for deep learning methods based on statistical features.

c) Amazon-E [?]: An e-commerce recommendation dataset composed of online
shopping ratings from Amazon users. It has moderate density and a very large
data volume.

The basic information of the datasets is shown in Table 1.

3.2 Evaluation Metrics
This paper adopts the top-K recommendation method to evaluate the proposed
model. For each item that a user has rated positively, 100 items that the user
rated negatively or never interacted with are randomly selected to generate a
test sequence, and the 101 items are ranked for recommendation. Normalized
Discounted Cumulative Gain (NDCG) and Hit Ratio (HR) are used to measure
recommendation effectiveness:

NDCG@K: Higher rankings have greater impact on the final result. A larger
value indicates that the target item appears closer to the top of the TOP-K list,
defined as:

𝑁𝐷𝐶𝐺@𝐾 = 1
|𝑆|

|𝑆|
∑
𝑖=1

𝐷𝐶𝐺𝑖@𝐾
𝐼𝐷𝐶𝐺𝑖@𝐾

where 𝐷𝐶𝐺𝑖@𝐾 = ∑𝐾
𝑗=1

2𝑟𝑒𝑙𝑖𝑗 −1
log2(𝑗+1) .

HR@K: Hit indicates whether the target item appears in TOP-K (1 if yes, 0
otherwise). HR@K represents the probability of hitting the target item across
all test sets 𝑆, defined as:

𝐻𝑅@𝐾 = number of hits
|𝑆|
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To avoid randomness, this paper selects the average of eight metrics: HR@K
(K=1,5,10,20,50) and NDCG@K (K=5,10,20) as comparison parameters.

3.3 Comparison Models and Parameter Settings
The proposed model is compared with six classical models (two based on ma-
trix factorization, three based on neural networks, and LINN based on neural
network and logical reasoning combination):

a) SVD++ [?]: An improved matrix factorization method that integrates ex-
plicit and implicit feedback.
b) BiasedMF [?]: A representative pairwise learning matrix factorization
model focusing on item ranking over rating.
c) STAMP [?]: A model based on short-term attention and memory priority,
using attention mechanisms to capture long-term and short-term user prefer-
ences.
d) GRU4Rec [?]: A gated recurrent network model for recommendation prob-
lems.
e) NARM [?]: A model combining attention mechanisms with gated recurrent
networks, a popular sequential recommendation model.
f) LINN [?]: A model combining neural networks with logical reasoning. The
proposed model is also based on neural network and logical reasoning combina-
tion, adding an implicit logic representation module to further improve perfor-
mance on recommendation problems.

All models are implemented using PyTorch. For each model, the test results
from the epoch with the best performance on the validation set are taken as
the model’s optimal performance, and the average performance across multi-
ple random seeds is taken as the model’s average performance metric. The
hyperparameter settings for neural network baseline models are shown in Table
2.

3.4 Results and Analysis
The average performance of the seven models on the three datasets is shown in
Table 3. The results demonstrate that the proposed model outperforms the six
classical models on all three datasets, indicating that the method can effectively
improve recommendation accuracy.

On the high-density and high-quality MovieLens and Amazon-E datasets, neural
network-based methods significantly outperform matrix factorization methods,
likely because neural network methods provide non-linear learning capabilities
that can utilize more interaction information when facing feature-rich datasets.
On the Book-Crossing dataset, neural network models other than the proposed

chinarxiv.org/items/chinaxiv-202205.00081 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00081


method perform worse than matrix factorization methods, while matrix factor-
ization models maintain their recommendation performance on the other two
datasets. The analysis suggests that overly sparse datasets make it difficult for
neural networks to capture sufficient features, leading to poor convergence.

The proposed method achieves the best performance on all three different
datasets, primarily due to the added implicit logic representation module,
which preserves the model’s reasoning capability while compensating for LINN’
s difficulty in capturing high-order implicit information among variables and
the information loss problem caused by serial computation graphs.

From the perspective of stability under sparse conditions, matrix factorization-
based models show similar performance across different datasets, likely because
they are less dependent on dataset quality. The performance of the other five
neural network models declines significantly on the Book-Crossing dataset, but
the proposed method’s decline is substantially lower than other neural network
models. The analysis indicates that the added implicit logic representation mod-
ule enhances model robustness, enabling good performance even when facing
sparse data by mining implicit information among variables.

More detailed experimental results are shown in Tables 4-6. When different
K values are selected, the model ranking shows slight variations. For example,
on Book-Crossing dataset’s HR@1 and HR@5 metrics, SVD++ achieves excel-
lent performance, while on Amazon-E dataset’s NDCG@5 and HR@1 metrics,
LINN performs better. This may be because the proposed method’s consider-
ation of implicit interactions among different items makes similar items closer
in ranking, causing slight reductions in recommendation precision within very
small ranges. Future work will consider introducing additional information to
optimize embeddings and improve small-range recommendation precision.

3.5 Parameter Sensitivity Experiments
Parameter sensitivity tests are conducted on the proposed model’s embedding
dimensions and the number of self-attention layers in the implicit logic repre-
sentation module. Embedding dimensions are set to 64, 72, 84, 96, 108, and
the number of self-attention layers is set to 1, 2, 3 for testing on the three
datasets. The results in Figures 3-5 show that model performance improves
significantly when the number of self-attention layers is 2, indicating that a
2-layer self-attention network can mine implicit high-order relationships among
variables. Meanwhile, model performance also improves with increasing em-
bedding dimensions. The best-performing embedding dimensions on the three
datasets are 84, 96, and 96 respectively, suggesting that the richness of hidden
interaction information varies slightly across datasets with different structures.
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4 Conclusion
Based on the idea of transforming recommendation problems into logical expres-
sions for solving, this paper proposes an implicit deep collaborative reasoning
algorithm that fuses propositional logic with neural networks. The algorithm
treats a set of logical variables in the logical expression as a sequence and uses
multi-layer self-attention and gated recurrent networks to construct an implicit
logic encoder that mines implicit interaction information among variables and
generates implicit logical variables. This enables the model to utilize high-order
interaction relationships and information among different variables during solv-
ing, improving its ability to solve complex real-world problems. Meanwhile, the
memory mechanism of gated recurrent networks also alleviates the information
loss problem for earlier units caused by serial solving. Experimental results on
three public datasets—MovieLens, Book-Crossing, and Amazon-E—demonstrate
that the proposed method significantly outperforms baseline methods.

The proposed method has certain limitations. For example, it does not consider
the influence of prior knowledge from basic logical rules on symbolic modules,
nor does it fully utilize rich external auxiliary information. Instead, it mines im-
plicit interaction information among variables through model training. Future
work will consider adding more auxiliary information about users and items to
enrich features, while attempting to use basic logical rules to strengthen model
reasoning capability.
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