
AI translation ・View original & related papers at
chinarxiv.org/items/chinaxiv-202205.00080

Deep Reinforcement Learning-Based Stochastic
Resource-Constrained Multi-Project Dynamic
Scheduling Strategy Postprint
Authors: Guo Xiaojian, Hu Fangyong

Date: 2022-05-10T11:22:57+00:00

Abstract
Currently, research on the Stochastic Duration Distributed Resource-
Constrained Multi-Project Scheduling Problem (SDRCMPSP) is scarce,
with most studies focusing on static scheduling schemes that cannot adjust
and optimize strategies in real-time in response to environmental changes
or promptly address frequently occurring dynamic factors. To this end, a
Deep Reinforcement Learning (DRL) model for stochastic resource-constrained
multi-project dynamic scheduling is established with the objective of minimizing
total tardiness cost, a corresponding agent interaction environment is designed,
and the DDDQN algorithm from reinforcement learning is adopted to solve
the model. In the experiments, sensitivity analysis is first performed on the
algorithm’s hyperparameters, followed by training and testing the model under
two distinct conditions—variable activity durations and uncertain arrival times
—using the optimal hyperparameter combination. The results indicate that
the deep reinforcement learning algorithm can achieve scheduling outcomes
superior to any single rule, effectively reduce the expected total tardiness
cost for stochastic resource-constrained multi-projects, and provide a solid
foundation for multi-project scheduling decision optimization.

Full Text
Preamble
Stochastic Resource-Constrained Multi-Project Dynamic Scheduling
Strategy Based on Deep Reinforcement Learning

Guo Xiaojian, Hu Fangyong
(School of Economics & Management, Jiangxi University of Science & Technol-
ogy, Ganzhou, Jiangxi 341000, China)

chinarxiv.org/items/chinaxiv-202205.00080 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00080
https://chinarxiv.org/items/chinaxiv-202205.00080


Abstract: Current research on the Stochastic Distributed Resource-
Constrained Multi-Project Scheduling Problem (SDRCMPSP) remains
limited, with most existing approaches relying on static scheduling schemes
that cannot adjust strategies in real time in response to environmental changes
or promptly address frequently occurring dynamic factors. To address this
gap, this paper establishes a Deep Reinforcement Learning (DRL) model for
stochastic resource-constrained multi-project dynamic scheduling with the
objective of minimizing total tardiness cost. We design a corresponding agent
interaction environment and employ the DDDQN algorithm from reinforcement
learning to solve the model. The experiment first conducts sensitivity analysis
on the algorithm’s hyperparameters, then trains and tests the model under
two different conditions: variable activity durations and uncertain arrival
times. Results demonstrate that the deep reinforcement learning algorithm
yields scheduling outcomes superior to any single rule, effectively reducing the
expected total tardiness cost for stochastic resource-constrained multi-project
scheduling and providing a sound basis for multi-project scheduling decision
optimization.

Keywords: distributed multi-project; stochastic scheduling; deep reinforce-
ment learning; resource-constrained

0 Introduction
As society develops, project management technology has become increasingly
critical, with rational resource allocation and scheduling playing a decisive role
in project execution. This class of problems is commonly known as the Resource-
Constrained Project Scheduling Problem (RCPSP) [1]. In practice, multiple
resource-constrained projects often need to be scheduled simultaneously [2], with
constraints from both local and global resources, referred to as the Distributed
Resource-Constrained Multi-Project Scheduling Problem (DRCMPSP). How-
ever, in real engineering contexts, project implementation may be affected by
various uncertain factors such as lack of relevant project experience, production
equipment failures, resource unavailability, and weather conditions, causing de-
viations between actual activity durations or project arrival times and their
estimates [3]. These uncertainties render pre-established multi-project plans
infeasible, necessitating effective methods to reduce the Expected Total Tardi-
ness Cost (ETTC). This class of problems is termed the Stochastic Distributed
Resource-Constrained Multi-Project Scheduling Problem (SDRCMPSP).

Current literature on SDRCMPSP remains relatively scarce, with most schedul-
ing strategies being static [4], such as priority rule algorithms [5][6]. Song et
al. employed priority rule heuristics to generate baseline schedules and post-
poned affected activities to the earliest feasible execution times [7]. Tosselli et
al. adopted a repeated negotiation game approach [8]. Liu Dongning et al. uti-
lized a Multi-Priority Rule Heuristic (MPRH) method [9], which, while capable

chinarxiv.org/items/chinaxiv-202205.00080 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00080


of reducing multi-project delay costs in dynamic environments with variable
activity durations, required multiple simulation experiments at each decision
point and failed to effectively leverage past experience for timely, goal-oriented
responses to dynamic environments.

Reinforcement learning algorithms, particularly those that are goal-oriented,
have been widely applied to dynamic scheduling problems due to their advan-
tage of enabling offline learning and online application [10]. Previous literature
demonstrates that reinforcement learning algorithms have been successfully ap-
plied to dynamic scheduling problems in job shop operations with favorable
results [11][12][13][14]. However, no existing studies have investigated the ap-
plication of deep reinforcement learning algorithms to multi-project stochastic
scheduling problems. Therefore, this paper applies such algorithms to the dy-
namic scheduling of SDRCMPSP.

This paper addresses the impact of variable activity durations and project arrival
date deviations on increased Total Tardiness Cost (TTC) in multi-project opera-
tions. Through continuous simulation-based interaction between the agent and
environment in deep reinforcement learning, we optimize scheduling strategies
using the DDDQN algorithm from literature [14]. We first propose a mathemat-
ical model for multi-project scheduling in static environments and transform
it into a dynamic scheduling process using a parallel scheduling scheme. Sub-
sequently, we construct an interactive environment for the agent based on the
multi-project dynamic scheduling process and total tardiness cost. The DDDQN
algorithm enables the agent to continuously explore and exploit existing knowl-
edge to optimize strategies for different states based on current environmental
conditions, thereby reducing ETTC for stochastic resource-constrained multi-
project scheduling. We conduct hyperparameter strategy combination analysis
on the established model and algorithm to determine the optimal hyperparame-
ter combination, which is then applied to simulation studies under dynamic en-
vironments with either variable activity durations or uncertain project arrival
times. Simulation results demonstrate that the deep reinforcement learning
method enables the agent to learn scheduling strategies superior to any single
rule, providing sound decision-making support for multi-project scheduling in
dynamic environments.

1 Problem Formulation
1.1 Multi-Project Static Problem

Consider a multi-project composed of 𝑚 single projects 𝑖 (𝑖 = 1, … , 𝑚). In
project 𝑖, there exist 𝑎𝑖𝑗 (𝑗 = 1, … , 𝐽𝑖) real activities with duration 𝑑𝑖𝑗 and two
dummy activities 𝑎𝑖0 and 𝑎𝑖(𝐽𝑖+1) with zero duration and resource requirements.
Let 𝐴𝑖𝑗 denote the set of immediate predecessors of activity 𝑎𝑖𝑗; the start time of
activity 𝑎𝑖𝑗 must be greater than the maximum completion time of activities in
𝐴𝑖𝑗. Let 𝐿𝑖 represent the set of local resources for project 𝑖, with 𝑅𝑖𝑙 denoting the

chinarxiv.org/items/chinaxiv-202205.00080 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00080


available amount of local resource 𝑙; let 𝐺 represent the set of global resources
with 𝑅𝑔 denoting its available amount. When activity 𝑎𝑖𝑗 is executed at any
time, it requires 𝑟𝑙𝑖𝑗 units of local renewable resources and 𝑟𝑔𝑖𝑗 units of global
renewable resources. The arrival time of project 𝑖 is 𝑆𝑇𝑖, and its completion time
is represented by the completion time of activity 𝑎𝑖(𝐽𝑖+1), denoted as 𝐹𝑇𝑖(𝐽𝑖+1).
When 𝐹𝑇𝑖(𝐽𝑖+1) exceeds the due date, tardiness cost 𝑇 𝐶 (tardiness cost) is
incurred. For project 𝑖, its tardiness cost 𝑇 𝐶𝑖 is:

𝑇 𝐶𝑖 = 𝑐𝑖 × max{𝐹𝑇𝑖(𝐽𝑖+1) − 𝜔𝑖, 0}

where 𝑐𝑖 represents the unit tardiness cost of project 𝑖 and 𝜔𝑖 represents the
due date of project 𝑖. For multi-project scheduling problems considering global
resource allocation, the objective is to minimize the Total Tardiness Cost (TTC)
across all projects:

min 𝑇 𝑇 𝐶 =
𝑚

∑
𝑖=1

𝑇 𝐶𝑖

1.2 Multi-Project Dynamic Scheduling Transformation

In practice, activity durations vary due to environmental uncertainties and
follow certain probability distributions, transforming the static multi-project
scheduling problem into a dynamic one. Since serial scheduling’s principle of
scheduling activities as early as possible is unsuitable for multi-project schedul-
ing in dynamic environments, this paper adopts a parallel scheduling approach
to achieve dynamic multi-project scheduling. In the parallel scheduling process
for multi-projects, 𝑡 represents the current time (time elapsed since multi-project
commencement, initially 0). The relevant sets include: 𝐹 (set of completed ac-
tivities), 𝐷 (set of activities currently being executed), 𝑃 (set of candidate
activities whose predecessors are all completed), and 𝑈 (set of unselected activ-
ities for each project). The multi-project dynamic scheduling process proceeds
as follows:

a) Input multi-project scheduling information including project scales, ac-
tivity durations, precedence relationships, and local and global resource
requirements; clear all activity sets.

b) Determine whether the start time 𝑆𝑇𝑖 of any project not yet added to set
𝑈 satisfies 𝑆𝑇𝑖 ≤ 𝑡; if so, add all activities of the corresponding project to
𝑈 .

c) Determine whether any activity in 𝑈 has all its predecessors completed; if
such activities exist, add them to 𝑃 and remove them from 𝑈 ; otherwise,
proceed to step c).

d) If 𝑃 is non-empty: select the highest-priority activity from 𝑃 according to
the scheduling rule and check for resource conflicts between the selected

chinarxiv.org/items/chinaxiv-202205.00080 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00080


activity and activities in 𝐷; if a conflict exists, return to step d); otherwise,
remove the activity from 𝑃 , add it to 𝐷, and continue with step c). If 𝑃
is empty: proceed to step d).

e) Identify the earliest completing activity or activities in 𝐷, set 𝑡 equal to
their completion time, remove them from 𝐷, and add them to 𝐹 .

f) Determine whether all activities across all projects are completed; if so,
output the completion times 𝐹𝑇𝑖(𝐽𝑖+1) (𝑖 = 1, … , 𝑚) for each project and
calculate TTC; otherwise, return to step b).

2 DDDQN-Based Distributed Multi-Project Dynamic
Scheduling
The multi-project dynamic scheduling problem requires selecting priority ac-
tivities for execution from the current executable activity sets of each project
while satisfying local and global resource constraints until all project activities
are scheduled. This constitutes a sequential decision-making process that can
be formulated as a Markov or semi-Markov decision problem through proper
definition of states, actions, and immediate rewards.

2.1 State Description

State features should comprehensively reflect both local and global characteris-
tics of the agent’s environment at the current decision moment. When making
decisions, the agent must select appropriate actions based on current environ-
mental features. For problems with finite state sets, representation through
arrays or tables is feasible, known as Reinforcement Learning (RL). However,
real-world problems often involve large or continuous state spaces, requiring
deep neural networks’function approximation capabilities to eliminate the“curse
of dimensionality”faced by RL algorithms. In this paper, state features for multi-
project scheduling comprise three 𝑚 × max(𝐽𝑖 + 1) matrices, where max(𝐽𝑖 + 1)
represents the maximum activity scale across all projects. The three matrices
are: scheduling result matrix 𝐹𝑁 , activity execution matrix 𝐷𝑁 , and executable
activity matrix 𝑃𝑁 .

Matrix 𝐹𝑁 consists of the completion times of activities in each project. Before
network input, it undergoes max-normalization, with initial values set to zero.

Matrix 𝐷𝑁 indicates the current status of each activity in each project: 1 if be-
ing executed, 0 otherwise. Since values in this matrix are binary, normalization
is unnecessary.

Matrix 𝑃𝑁 indicates whether each activity in each project is executable at
the current time (i.e., all its predecessors are completed): 1 if executable, 0
otherwise. Similarly, normalization is not required.

chinarxiv.org/items/chinaxiv-202205.00080 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00080


Considering feature extraction from raw deep learning inputs, the three feature
matrices are treated as three different channels of an image with height equal to
the number of matrix rows and width equal to the number of matrix columns,
using convolutional input for training.

2.2 Action Definition

In the multi-project dynamic scheduling DRL model, the action space consists
of numerous single-rule scheduling algorithms. The reinforcement learning al-
gorithm selects appropriate scheduling rules for different states to overcome
the limitations of single rules. This paper employs 15 single scheduling rules,
with the first 7 being centralized rules and the latter 8 being composite rules.
Here, 𝑂𝐹𝑇𝑖 represents the optimal scheduling solution for project 𝑖 considering
only local resource constraints, obtained using an improved grey wolf algorithm
based on activity list encoding. The 15 scheduling rules are listed in Table 1,
where project 𝑖 denotes a project that has arrived with a non-empty candidate
activity set, and 𝑗 denotes a candidate activity within that project. Rules 1-
6 treat candidate activity sets across projects as a unified set, simultaneously
determining the activity and its project during selection. Rules 7-14 prioritize
project selection first, then select activities from the chosen project’s candidate
activity set.

2.3 Reward Function

Since the objective of this paper’s distributed multi-project dynamic scheduling
is to minimize total tardiness cost, the immediate reward is defined as follows
to accurately evaluate actions:

𝑟𝑡 = −
𝑚

∑
𝑖=1

(max{𝐹𝑇𝑖(𝐽𝑖+1) − 𝜔𝑖, 0} × 𝑐𝑖)

where max{𝐹𝑇𝑖(𝐽𝑖+1) − 𝜔𝑖, 0} × 𝑐𝑖 represents the tardiness cost of project 𝑖. Let
𝑢𝑡 = max{𝐹𝑇𝑖𝑗|𝑎𝑖𝑗 ∈ 𝐹} denote the maximum completion time of completed
activities in project 𝑖 at time 𝑡, with 𝑢0 = 0. The algorithm’s cumulative reward
is then calculated as:

𝑅 =
𝑇

∑
𝑡=1

𝑟𝑡 = −
𝑚

∑
𝑖=1

(max{𝐹𝑇𝑖(𝐽𝑖+1) − 𝑆𝑇𝑖 − 𝜔𝑖, 0} × 𝑐𝑖)

Therefore, maximizing cumulative reward 𝑅 is equivalent to minimizing 𝑢𝑇 .
Since all activity expected durations 𝑑𝑖𝑗 are constants, minimizing 𝑢𝑇 is equiva-
lent to minimizing the sum of products of project completion times and tardiness
costs, i.e., minimizing TTC.

chinarxiv.org/items/chinaxiv-202205.00080 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00080


2.4 Exploration-Exploitation Strategy

A reasonable exploration-exploitation strategy enables the agent to fully utilize
learned experience while ensuring exploration of new policy behaviors. This
paper employs a linearly decreasing greedy strategy, with the agent’s action
selection policy defined as:

𝑎 = {arg max𝑎′ 𝑄(𝑠, 𝑎′; 𝜃) if rand() < 𝜀
random action otherwise

where rand() is a random number in [0, 1] and 𝜀 follows the distribution:

𝜀 = max(𝜀min, 1 − 𝜀rate × 𝑡)

where 𝜀min is the minimum value of 𝜀 and 𝜀rate is the decay rate.

2.5 DDDQN Algorithm Flow

a) Define discount factor 𝛾, learning rate 𝛼, experience replay buffer capacity
𝑀 , network training period 𝐿, target network update period 𝑁 , minimum
training batch size mini_batch, and maximum training episodes 𝑇max.
Initialize Q-network and target Q-network parameters 𝜃 and 𝜃′, input
multi-project scheduling information, and set step = 0.

b) Reset all project scheduling information, clear scheduling result sets, and
initialize multi-project scheduling state 𝑠0.

c) Based on the current state, select the agent’s action (priority rule schedul-
ing algorithm) at the current decision point according to the exploration-
exploitation strategy, and execute steps b)-e) of the multi-project schedul-
ing process.

d) Calculate the immediate reward value using Equation (6), determine the
next state state_ and training termination flag done (True if terminated,
False otherwise), and store the tuple {state, action, reward, state_, done}
in the experience replay buffer.

e) Check whether network parameter update conditions are met; if so, update
network parameters based on TD error; otherwise, proceed to step f).

f) Determine whether all projects are completed; if so, increment step by 1
and proceed to step g); otherwise, return to step c).

g) Check whether the maximum training episodes is reached, i.e., step =
𝑇max; if so, stop training and save the Q-network parameters locally; oth-
erwise, return to step b).

Algorithm 1: Pseudocode for DDDQN-Based Multi-Project Dynamic
Scheduling

chinarxiv.org/items/chinaxiv-202205.00080 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00080


1. Initialize minimum training batch mini_batch, step-size 𝜂, experience re-
play buffer capacity 𝑀 , network training period 𝐿, target network update
period 𝑁 , maximum training episodes 𝑇max, and action selection counter
num = 0.

2. Randomly initialize Q-network parameters 𝜃 and copy them to target Q-
network 𝜃′.

3. For step = 1 to 𝑀 do:

4. Reset multi-project scheduling information, clear scheduling results, and
initialize scheduling state 𝑠1.

5. While not done do:

6. Based on current state 𝑠, select action 𝑎 according to the exploration-
exploitation policy.

7. Execute steps 2, 3, and 4 of the multi-project scheduling process until
resource conflicts occur.

8. Store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, done) in experience replay buffer 𝑀 .

9. If num%𝐿 == 0 and num > mini_batch then:

10. Randomly sample mini_batch tuples (𝑠, 𝑎, 𝑟, 𝑠′, done) from experience re-
play buffer.

11. Calculate TD error and update Q-network parameters.

12. If num%𝑁 == 0 then update target network parameters 𝜃′ ← 𝜃.

13. End if.

14. End while.

15. End for.

3 Simulation Experiments
To verify the effectiveness of the constructed simulation environment and the
DDDQN algorithm for solving distributed multi-project dynamic scheduling
problems, we select problem sets MP30_5 and MP90_2 from the MPSPLIB
standard library for testing. Each problem set contains 5 instances with specific
information detailed in Table 2. Experiments were conducted on a laptop with
Windows 10 64-bit system, 24GB RAM, and AMD R7 4800H processor, running
in a TensorFlow 2.0 environment.

chinarxiv.org/items/chinaxiv-202205.00080 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00080


3.1 Parameter Analysis

In reinforcement learning, hyperparameters critically impact network learning
performance. Currently, hyperparameter determination generally relies on man-
ual experience or random search. To identify the optimal hyperparameter combi-
nation, this paper uses instance MP30_{5_5} with U1 duration distribution to
conduct sensitivity analysis on network structure, learning rate, target network
update period 𝑁 , minimum training batch size mini_batch, discount factor 𝛾,
and other hyperparameters. During sensitivity analysis of each hyperparameter,
other hyperparameters remain fixed. Figure 1 shows the cumulative reward iter-
ation curves under different hyperparameter values, where training effectiveness
is judged by cumulative reward changes during training. Taking Figure 1(a) as
an example, the x-axis represents training episodes and the y-axis shows cumu-
lative reward curves. The figure demonstrates that different network structures
affect algorithm performance, with the structure shown by the red line deliv-
ering optimal performance, which is thus selected as the network structure for
this model while other parameters remain unchanged. Similarly, optimal values
for other hyperparameters are determined, with final hyperparameter strategies
summarized in Table 4.

Figure 1(a) illustrates the impact of five different convolutional layers, where
each row shows filter numbers and kernel sizes with stride (1, 1). The fourth
network structure provides more effective performance improvement compared
to the other four. Figure 1(b) shows the impact of different learning rates,
revealing that low rates yield the worst training performance while high rates
also degrade performance; therefore, a learning rate of 0.0001 is selected. Figure
1(c) demonstrates the effect of different target network update periods, showing
that 𝑁 = 100 delivers the best training performance. Figure 1(d) indicates
that minimum training batch size has minimal impact, though performance
degrades when mini_batch = 64. While mini_batch = 256 or 128 both show
stable convergence, 128 is selected to reduce training time. Figure 1(e) shows
the impact of different discount factors, where low values degrade performance
and high values slow convergence, leading to selection of 𝛾 = 0.99.

3.2 DRL Model Solving Problem Sets

This section applies the proposed DRL model to 10 instances across two problem
sets. Experiments consist of training and testing phases. In the training phase,
the DRL model undergoes 5,000 simulation training episodes for each of the 10
instances under different duration distributions, using hyperparameter values
from Table 4, with trained models saved locally. In the testing phase, each
trained model performs 50 simulation runs under 5 duration distributions on its
corresponding instance to obtain average TTC.

Table 4 summarizes the hyperparameter combinations. Figure 2 shows the train-
ing process for instance MP30_{5_5} under five duration distributions, with
x-axis representing total tardiness cost and y-axis representing training episodes.

chinarxiv.org/items/chinaxiv-202205.00080 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00080


For distributions with relatively small variance (U1, B1), TTC iteration curves
remain at the bottom with minimal fluctuation. For medium variance distribu-
tions (U2, B2), curves occupy the middle position with moderate fluctuation.
For the high-variance Exp distribution, curves appear at the top with significant
fluctuation, indicating that expected total tardiness cost increases with activity
duration uncertainty.

In the testing phase for the trained MP30_{5_5} model, Figure 3 compares its
performance against the 15 single scheduling rules in the action space, with each
approach performing 50 simulation runs under corresponding duration distribu-
tions to obtain average TTC. The results demonstrate that the DRL algorithm
overcomes the myopia of single rules and achieves better scheduling outcomes
in dynamic environments. Further comparison selects the best-performing rule
among the 15 across 5 duration distributions and compares it with the DRL
model results using improvement rate as the evaluation metric, calculated by
Equation (11). Table 5 shows the reinforcement learning improvement rates.

Table 6 compares the scheduling runtime between priority rule algorithms and
the DRL model across 50 multi-project scheduling processes. The trained model
can rapidly make optimal scheduling decisions based on current environmental
states, with speed comparable to priority rule algorithms.

Table 7 presents average TTC values for MP30_5 and MP90_2 problem sets
under different duration distributions across 50 scheduling runs. Compared
with literature [9], our results are inferior for MP30_5 under U1 distribution
but superior for MP90_2.

3.3 Uncertain Arrival Time

In practice, project arrival times often deviate from estimates due to local re-
source shortages. This section investigates the DRL model’s performance under
uncertain project arrival times, where activity durations follow constant distri-
bution while project arrival times follow the distribution types characterized in
Equation (12), with features identical to the duration distributions in Section
3.2. Here, 𝑎 is a random integer in [0, 4]; for example, 𝑎 = 0 indicates that
project 𝑖’s arrival time follows a U1 distribution.

The state space generated by uncertain multi-project arrival times is smaller
than that from uncertain durations, so DRL model training is set to 5,000
episodes with hyperparameters identical to Section 3.2. Figure 4 shows the
total tardiness cost during model training, where TTC continuously decreases
and stabilizes as training episodes increase, indicating effective training. Since
no existing literature addresses DRCMPSP with uncertain project arrival times,
the trained model’s average TTC of 3022.01 from 100 simulation experiments is
compared with the best single rule’s TTC of 4973.75, yielding an improvement
rate of 64.6%.

chinarxiv.org/items/chinaxiv-202205.00080 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00080


4 Conclusion
This paper pioneers the application of deep reinforcement learning to multi-
project scheduling problems, proposing a DRL-based distributed multi-project
dynamic scheduling model to minimize total tardiness cost under stochastic du-
rations. We constructed an interactive simulation environment for the agent and
conducted simulation experiments using instances from MP30_5 and MP90_2
problem sets. The study performed sensitivity analysis on model hyperparam-
eters and trained/tested the model on various instances. Results demonstrate
that the proposed DRL model offers advantages for distributed multi-project
dynamic scheduling in stochastic environments. The trained model makes de-
cisions at speeds comparable to priority rules while effectively reducing total
tardiness cost for stochastic distributed multi-project scheduling, thereby ex-
panding the application of deep reinforcement learning to stochastic project
scheduling problems.

References
[1] Lova A, Tormos P. Analysis of Scheduling Schemes and Heuristic Rules
Performance in Resource-Constrained Multiproject Scheduling [J]. Annals of
Operations Research, 2001, 102 (1-4): 263-286.

[2] Lee Y H, Kumara S, Chatterjee K. Multi-agent based dynamic resource
scheduling for distributed multiple projects using a market mechanism [J]. Jour-
nal of Intelligent Manufacturing, 2003, 14 (5): 471-484.

[3] Davari M, Demeulemeester E. Important classes of reactions for the proac-
tive and reactive resource-constrained project scheduling problem [J]. Annals of
Operations Research, 2019, 274 (1-2): 187-210.

[4] Satic U, Jacko P, Kirkbride C. Performance evaluation of scheduling policies
for the dynamic and stochastic resource-constrained multi-project scheduling
problem [J]. International Journal of Production Research, 2020, 60 (4): 1411-
1423.

[5] Wang Yanting, He Zhengwen, Kerkhove L P, et al. On the performance of
priority rules for the stochastic resource constrained multi-project scheduling
problem [J]. Computers & Industrial Engineering, 2017, 114 (DEC.): 223-234.

[6] Chen Haojie, Ding Guofu, Zhang Jian, et al. Research on priority rules for
the stochastic resource constrained multi-project scheduling problem with new
project arrival [J]. Computers & Industrial Engineering, 2019, 137 (2): 106060-.

[7] Song Wen, Xi Hui, Kang Donghun, et al. An Agent-based Simulation Sys-
tem for Multi-Project Scheduling under Uncertainty [J]. Simulation Modelling
Practice and Theory, 2018, 86 (11): 187-203.

[8] Tosselli L, Bogado V, E Martínez. A repeated-negotiation game approach
to distributed (re)scheduling of multiple projects using decoupled learning [J].
Simulation Modelling Practice and Theory, 2019, 98 (4): 101-112.

chinarxiv.org/items/chinaxiv-202205.00080 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00080


[9] Liu Dongning, Xu Zhe. A stochastic scheduling for distributed multi-project
with multi-PR heuristic [J/OL]. Systems Engineering-theory & Practice, 2021,
41 (12): 3294-3303.

[10] Han Xincheng, Yu Shengping, Yuan Zhiming, et al. High-speed railway
dynamic scheduling based on Q-learning method [J]. Control Theory & Appli-
cations, 2021, 38 (10): 1511-1521.

[11] Waschneck B, Reichstaller A, Belzner L, et al. Deep reinforcement learning
for semiconductor production scheduling [C]// SEMI Advanced Semiconductor
Manufacturing Conference (ASMC). 2018.

[12] Lin Chuncheng, Deng Derjiunn, Chih yenling, et al. Smart Manufacturing
Scheduling with Edge Computing Using Multi-class Deep Q Network [J]. IEEE
Trans on Industrial Informatics, 2019, 15 (7): 129-138.

[13] Liu Chienliang, Chang Chuanchin, Tseng C J. Actor-Critic Deep Reinforce-
ment Learning for Solving Job Shop Scheduling Problems [J]. IEEE Access,
2020, PP (99): 1-1.

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202205.00080 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00080

	Deep Reinforcement Learning-Based Stochastic Resource-Constrained Multi-Project Dynamic Scheduling Strategy Postprint
	Abstract
	Full Text
	Preamble
	0 Introduction
	1 Problem Formulation
	1.1 Multi-Project Static Problem
	1.2 Multi-Project Dynamic Scheduling Transformation

	2 DDDQN-Based Distributed Multi-Project Dynamic Scheduling
	2.1 State Description
	2.2 Action Definition
	2.3 Reward Function
	2.4 Exploration-Exploitation Strategy
	2.5 DDDQN Algorithm Flow

	3 Simulation Experiments
	3.1 Parameter Analysis
	3.2 DRL Model Solving Problem Sets
	3.3 Uncertain Arrival Time

	4 Conclusion
	References


