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Abstract
In response to the current challenges of load uncertainty, renewable energy inte-
gration, and “dual carbon”objectives in power systems, this paper establishes
a real-time pricing model that incorporates load uncertainty and carbon trad-
ing within the smart grid context, while fully considering the welfare of both
supply and demand sides. Leveraging reinforcement learning’s capability to
handle variable complexity and non-convex nonlinear problems, the Q-learning
algorithm is employed to iteratively solve the model. First, the real-time interac-
tion process between users and suppliers is transformed into a Markov Decision
Process within the reinforcement learning framework. Second, the information
exchange between users and suppliers is modeled through the repeated explo-
ration of agents in a dynamic environment. Finally, the optimal value, i.e., the
maximum social welfare value, is obtained through the Q-learning algorithm
in reinforcement learning. Simulation results demonstrate that the proposed
real-time pricing strategy can effectively enhance social welfare and reduce to-
tal carbon emissions, thereby validating the effectiveness of the proposed model
and algorithm.
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Real-Time Pricing Strategy Based on Reinforcement Learning with
Load Uncertainty

WANG Jingqi, GAO Yan†, WU Zhiqiang, LI Renjie
(Business School, University of Shanghai for Science & Technology, Shanghai
200093, China)

Abstract: In response to the current challenges of load uncertainty, renewable
energy grid integration, and the “dual carbon”goals in power systems, this
paper establishes a real-time pricing model for smart grids that considers both
load uncertainty and carbon trading, with full consideration of welfare for both
supply and demand sides. Leveraging the capability of reinforcement learning to
handle variable complexity and non-convex, nonlinear problems, the Q-learning
algorithm is employed to iteratively solve the model. First, the real-time interac-
tion process between users and suppliers is transformed into a Markov decision
process corresponding to the reinforcement learning framework. Second, the
information exchange between users and suppliers is represented through the
agent’s repeated exploration in a dynamic environment. Finally, the Q-learning
algorithm seeks the optimal value—i.e., the maximum social welfare. Simulation
results demonstrate that the proposed real-time pricing strategy can effectively
enhance social welfare and reduce total carbon emissions, thereby validating the
effectiveness of the model and algorithm.

Keywords: real-time pricing; reinforcement learning; Markov decision process;
load uncertainty; “dual carbon”goal

0 Introduction
In smart grid systems, bidirectional flow of electricity and information enables
the simultaneous achievement of economic, efficient, and environmentally
friendly objectives. The deepening penetration of renewable energy generators
introduces greater uncertainty into power generation systems. Demand-side
management presents substantial industrial opportunities centered around
generators, distributed renewable energy, carbon trading markets, and user
demand.

With advances in information communication and smart terminals, intensified
electricity price fluctuations in power markets increase ordinary users’willingness
to participate in power system regulation. Demand-side management of power
systems can effectively shave peak loads, optimize electricity consumption pat-
terns, and enhance power system stability and security. Demand response (DR)
represents one solution for demand-side management. Existing DR strategies
[1–3] are typically categorized into incentive-based DR (IBDR) and price-based
DR (PBDR). PBDR adjusts users’consumption patterns through electricity
price modifications, while IBDR provides users with fixed or time-varying in-
centive payments. Many studies employ price-based DR by considering user
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behavior, with real-time pricing representing a crucial research direction within
PBDR. This strategy directly controls electricity prices to adjust user-side load
demand, aiming to effectively flatten user electricity demand through real-time
price signals.

Literature [4] first proposed a real-time pricing model maximizing social wel-
fare, simultaneously considering supplier profits and user welfare, solved us-
ing distributed gradient descent methods. Numerical simulations verified that
the model could achieve peak shaving while benefiting both users and suppli-
ers. Building upon this foundation, real-time pricing models with social welfare
maximization as the objective function have been widely applied. Literature [5]
employed smoothing techniques to smooth the commonly used quadratic piece-
wise utility functions in real-time pricing and simulated user utility. Literature
[6] established a real-time pricing optimization model minimizing peak-valley
differences and proposed a simultaneous perturbation stochastic approximation
algorithm dependent on online power fluctuations. Literature [7] integrated
blockchain into real-time pricing models, effectively improving renewable en-
ergy utilization in microgrids. Users also participated as independent nodes
in grid decision-making, with blockchain transactions enhancing user electric-
ity precision and total social welfare. Literature [8] effectively combined social
welfare maximization models with microgrids, establishing a two-level optimiza-
tion model accounting for uncertainty and solving it using a PSO-BBA algo-
rithm. Compared with deterministic functions, this approach better achieved
peak shaving. Literature [9] discussed the role of minimum power supply con-
straints in social welfare maximization models, introduced effective cost func-
tions, and proposed dual online algorithms for model improvement. Literature
[10] formulated real-time pricing as a non-cooperative game problem and solved
it using distributed online algorithms, providing a more precise description of
user interaction processes.

From an optimization perspective, the aforementioned real-time pricing strate-
gies fall into two categories: gradient-based optimization algorithms [4–7] and
metaheuristic optimization algorithms [8–11]. The former, such as conjugate
gradient and Newton methods, offer high computational efficiency but strug-
gle with nonlinear, non-smooth functions, or chance constraints. Metaheuris-
tic algorithms like genetic algorithms and particle swarm optimization, which
possess strong global search capabilities, are largely model-independent and ef-
fectively address these challenges. However, existing pricing strategies often
pre-determine model parameters and employ centralized algorithms, which nei-
ther adequately consider load uncertainty nor provide corresponding privacy
protection measures. These approaches suffer from slow computation speeds
and low reliability when facing large-scale batch data, making innovative real-
time pricing mechanisms theoretically and practically significant.

From a temporal correlation perspective, most studies treat real-time pricing as
multiple single-period problems [4–9], where each period exists independently
without fully considering overall state transition characteristics. This limits
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the accuracy of real-time pricing model interactions and ignores the temporal
correlation between user consumption and supplier generation. Markov decision
processes can describe load relationships across stages using state transition
matrices, fully considering period correlations. Literature [11, 13] studied real-
time pricing based on Markov processes, considering both known and unknown
parameters, and validated model rationality and algorithm feasibility.

Most real-time pricing research relies on traditional algorithms based on analyt-
ical models and deterministic rules. In recent years, reinforcement learning has
achieved new breakthroughs. Unlike traditional optimization algorithms, rein-
forcement learning can explore random actions in dynamic environments and
learn from experience, providing crucial support for complex system decision-
making. Reinforcement learning is concise and uses reward functions to evaluate
decision-making behaviors, yielding effective solution strategies with convergent
results. It has been applied in various fields such as game control and computer
vision [12]. Research on reinforcement learning for power systems holds broad
prospects, and its application in demand-side management will effectively ex-
pand new load-side consumption patterns [13].

Recent reinforcement learning applications in demand-side management fall into
two categories. The first stands from the consumer perspective, designing ef-
fective response patterns to maximize consumer benefits when facing supplier
pricing strategies [15]. The second stands from the utility company perspec-
tive, designing effective strategies to improve social welfare, thereby enhancing
welfare encompassing both user and supply sides [14, 16]. Lu et al. [14] first ap-
plied reinforcement learning to demand-side management, proposing a real-time
pricing algorithm for hierarchical electricity markets that represents supplier-
user interactions as Markov decision processes to dynamically determine op-
timal electricity prices. Literature [15] used reinforcement learning to obtain
energy scheduling for specific devices in demand response, maximizing user re-
turns during scheduling periods. Literature [16] applied reinforcement learning
frameworks to demand response strategies, considering industrial user-supplier
interactions to maximize supplier long-term profits. Literature [17] treated mi-
crogrids as intelligent agents in a reinforcement learning approach, where micro-
grids could independently select energy trading strategies to maximize average
returns. Literature [18] proposed a multi-microgrid energy management method
based on neural networks and reinforcement learning algorithms, where opera-
tors predicted power exchanges among microgrids through deep neural networks
and obtained retail pricing strategies via Monte Carlo methods, achieving profit
maximization and minimizing peak-to-average ratios on the demand side while
improving electricity reliability.

However, the aforementioned reinforcement learning-based demand-side man-
agement studies lack comprehensive consideration of social welfare, carbon trad-
ing, and load uncertainty [13–17]. Based on this analysis, it is necessary to
extend real-time pricing models accordingly. Using reinforcement learning al-
gorithms to solve real-time pricing models offers significant advantages. Con-
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sidering carbon emission rights from power generation and associated costs or
benefits from carbon trading, this paper promotes renewable energy consump-
tion through carbon emission rights trading, thereby supporting “dual carbon”
goal achievement.

The main contributions of this paper are:

a) Considering a supplier system comprising traditional and renewable en-
ergy suppliers and a user system comprising residential and large con-
sumers, with full representation of supply-demand welfare and social wel-
fare maximization as the objective.

b) Transforming the interaction process between users and suppliers into a
Markov decision process through the reinforcement learning framework,
where the agent (supplier) learns and obtains optimal real-time pricing
strategies through iterative processes with all users.

c) Mapping real-time pricing model elements to reinforcement learning com-
ponents while fully considering load uncertainty, enabling more refined
modeling.

d) Effectively improving renewable energy consumption rates in power sys-
tems through carbon trading, which holds important practical significance
for promoting sustainable green energy development.

1 System Model
Consider a smart grid system containing two types of suppliers and multiple
terminal users (system framework shown in Figure 1, symbol descriptions in
Table 1). Suppliers include traditional energy suppliers and renewable energy
suppliers, with renewable generation comprising wind and photovoltaic power.
Due to the intermittent and unstable nature of renewable generation, suppliers
cannot control output per time period and must forecast each period’s output
based on renewable unit characteristics and daily weather conditions. User
electricity consumption is prioritized to be supplied by renewable energy to
promote renewable consumption.

The user side considers residential and large consumers. Residential energy con-
sumption is for daily life, while large industrial and commercial users consume
energy for higher-level production activities. Users and suppliers directly inter-
act through smart meters for bidirectional information exchange: suppliers can
obtain user electricity consumption via smart meters, while users can receive
price signals for the next period from suppliers. Suppliers maximize profits
through real-time pricing strategies, while users dynamically adjust energy de-
mand through demand response to reduce electricity costs, enabling dynamic
price adjustment based on interactive load demand and generation costs.
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Let ℛ denote the residential user set, ℒ the large user set, and 𝒩 = ℛ ∪ ℒ
the complete user set. Supplier-user power interaction follows a daily cycle
divided into 𝑇 periods, with prices updated hourly (𝑇 = 24). Considering load
uncertainty and carbon trading scenarios, this paper establishes a real-time
pricing model under social welfare maximization.

Let 𝒯 = {1, 2, 3, … , 𝑇 } be the set of all time periods. The model assumes:

Figure 1. System framework

1.1 User-Side Model

Generally, users’electricity quantity requirements and utility values from con-
suming the same amount differ. Based on load priority and demand characteris-
tics, this paper assumes user load configuration divides into two categories: basic
load and flexible load [19]. Loads with fixed demand within specific periods are
called basic loads, while loads with flexible scheduling are called flexible loads.
Users can achieve demand response by flexibly adjusting flexible loads such as
air conditioners and water heaters. In demand response, suppliers guide users
to change electricity demand in each period through dynamic price adjustments,
thereby achieving supply-demand balance.

1.1.1 Load Function Assume basic loads must be strictly satisfied and can-
not be regulated through demand response, such as essential living electricity.
The relationship between user 𝑛’s basic load 𝑋basic

𝑛,𝑡 and basic load demand
𝐷basic

𝑛,𝑡 in period 𝑡 is:

𝑋basic
𝑛,𝑡 = 𝐷basic

𝑛,𝑡 , ∀𝑛 ∈ 𝒩, ∀𝑡 ∈ 𝒯

Consider flexible loads that can be scheduled in time and power, defined as
flexible loads. Flexible loads relate to current electricity prices and user price
elasticity coefficients. The definition of user 𝑛’s flexible load in period 𝑡 is [16]:

𝑋flex
𝑛,𝑡 = 𝐷flex

𝑛,𝑡 ⋅ (1 − 𝑐𝑛 ⋅ 𝑝𝑛,𝑡 − 𝜋0
𝜋0

) , ∀𝑛 ∈ 𝒩, ∀𝑡 ∈ 𝒯

where 𝑝𝑛,𝑡 represents the electricity price user 𝑛 pays in period 𝑡, 𝑐𝑛 is user 𝑛’s
price elasticity coefficient, and 𝐷flex

𝑛,𝑡 is user 𝑛’s flexible load demand in period 𝑡.
Price increases lead to actual loads smaller than expected demand. Electricity
prices should remain within a fixed interval: 𝜋0 is the benchmark price, while
𝑐min

𝑛 and 𝑐max
𝑛 represent lower and upper bounds of electricity price coefficients,

which differ across user types. Electricity price constraints ensure reasonable
transaction prices for both supply and demand sides [20].

Let 𝑋𝑛,𝑡 denote user 𝑛’s total electricity load in period 𝑡, comprising basic and
flexible loads:
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𝑋𝑛,𝑡 = 𝑋basic
𝑛,𝑡 + 𝑋flex

𝑛,𝑡 , ∀𝑛 ∈ 𝒩, ∀𝑡 ∈ 𝒯

Due to real-world variations and user-side load randomness, power facilities
typically face load fluctuations. Considering load uncertainty, user 𝑛’s total
load 𝑋𝑛,𝑡 in period 𝑡 is:

𝑋𝑛,𝑡 = 𝑋basic
𝑛,𝑡 + 𝑋flex

𝑛,𝑡 + 𝛿𝑛,𝑡, ∀𝑛 ∈ 𝒩, ∀𝑡 ∈ 𝒯

where 𝛿𝑛,𝑡 is a random variable following a normal distribution 𝒩(0, 𝜎2
𝑛,𝑡), char-

acterizing user-side load uncertainty [21].

Since flexible loads are price-sensitive, reasonable scheduling can effectively
achieve peak shaving.

1.1.2 Utility Function In microeconomics, utility functions 𝑈(𝑥) character-
ize user satisfaction. Assume each user’s behavior toward different electricity
prices is independent, with varying preferences for load demand. Elasticity co-
efficients 𝛽𝑛 effectively reflect different user preferences. The utility function
𝑈(𝑥) must satisfy: 𝜕𝑈

𝜕𝑥 > 0, 𝜕2𝑈
𝜕𝑥2 < 0, 𝑈(0) = 0, and 𝛽𝑛 > 0.

In existing real-time pricing models, user utility functions are commonly repre-
sented by quadratic functions [22]. User 𝑛’s utility function in period 𝑡 can be
expressed as:

𝑈𝑛,𝑡(𝑋𝑛,𝑡) = {𝛼𝑛𝑋𝑛,𝑡 − 𝛽𝑛
2 𝑋2

𝑛,𝑡, 0 ≤ 𝑋𝑛,𝑡 ≤ 𝛼𝑛
𝛽𝑛

𝛼2
𝑛

2𝛽𝑛
, 𝑋𝑛,𝑡 > 𝛼𝑛

𝛽𝑛

where 𝑋𝑛,𝑡 is user 𝑛’s total load in period 𝑡. Parameters 𝛼𝑛 and 𝛽𝑛 are user
utility parameters [23,24] that should be estimated from historical data and
user surveys in practical applications. Different user types’utility variations are
characterized by parameters 𝛼𝑛 and 𝛽𝑛.

Similar to residential users, large users’utility increases with electricity con-
sumption within a certain range, remaining constant when reaching a predefined
maximum load. However, user-side loads typically do not reach saturation.

In summary, user-side welfare can be expressed as the expectation of the user’
s current-period utility function minus payment costs. Let 𝐶𝜋 denote user-side
welfare, expressed as:

𝐶𝜋 = 𝔼 [∑
𝑡∈𝒯

∑
𝑛∈𝒩

(𝑈𝑛,𝑡(𝑋𝑛,𝑡) − 𝑝𝑛,𝑡𝑋𝑛,𝑡)]
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1.2 Supplier Model

Suppliers provide electricity according to user demand, enabling power produc-
tion and transmission. In recent years, renewable energy integration has signifi-
cantly increased power system randomness. Let 𝐿𝑒

𝑡 and 𝐿𝑟
𝑡 represent traditional

and renewable energy supplier generation in period 𝑡, respectively. Since total
supply must cover all user demands, 𝐿𝑒

𝑡 and 𝐿𝑟
𝑡 must satisfy unit generation

interval constraints:

∑
𝑛∈𝒩

𝑋𝑛,𝑡 ≤ 𝐿𝑒
𝑡 + 𝐿𝑟

𝑡 , ∀𝑡 ∈ 𝒯

𝐿𝑒,min
𝑡 ≤ 𝐿𝑒

𝑡 ≤ 𝐿𝑒,max
𝑡 , ∀𝑡 ∈ 𝒯

where 𝐿𝑒,min
𝑡 and 𝐿𝑒,max

𝑡 represent minimum and maximum generation of tradi-
tional energy suppliers in period 𝑡.

1.2.1 Traditional Energy Supplier Assume traditional energy supplier
costs primarily derive from fossil fuel consumption and operation maintenance.
The traditional energy generation cost function is monotonically increasing
and strictly convex, commonly represented by quadratic functions [23]. The
generation cost function 𝐶𝑒

𝑡 (𝐿𝑒
𝑡 ) in period 𝑡 is:

𝐶𝑒
𝑡 (𝐿𝑒

𝑡 ) = 𝑎𝑡(𝐿𝑒
𝑡 )2 + 𝑏𝑡𝐿𝑒

𝑡 + 𝑐𝑡, ∀𝑡 ∈ 𝒯

where 𝐿𝑒
𝑡 is the total electricity provided by traditional energy suppliers in period

𝑡, and 𝑎𝑡, 𝑏𝑡, 𝑐𝑡 are preset parameters with 𝑎𝑡 > 0, 𝑏𝑡 ≥ 0, 𝑐𝑡 ≥ 0.

1.2.2 Renewable Energy Supplier Due to intermittency in natural re-
sources like solar irradiance and wind speed, renewable energy output exhibits
significant uncertainty. Insufficient dispatchable capacity leads to wind/solar
curtailment, severely compromising system stability. This paper assumes re-
newable energy lacks storage capability and has no coupling constraints between
generation periods, with suppliers prioritizing renewable energy to improve con-
sumption rates.

Photovoltaic output depends on solar irradiance, ambient temperature, and PV
module characteristics. The actual PV output power in period 𝑡 is [8]:

𝑃 𝑃𝑉
𝑡 = 𝑃 𝑃𝑉

rated ⋅ 𝐺𝑃𝑉
𝑡

𝐺𝑃𝑉
ref

⋅ [1 + 𝜂𝑃𝑉 (𝑇 𝑃𝑉
𝑡 − 𝑇 𝑃𝑉

ref )] ⋅ 𝑁𝑃𝑉 , ∀𝑡 ∈ 𝒯

where 𝑃 𝑃𝑉
rated is rated PV output power, 𝐺𝑃𝑉

𝑡 is irradiance at the operating point,
𝐺𝑃𝑉

ref is standard irradiance, 𝜂𝑃𝑉 is the power temperature coefficient, 𝑇 𝑃𝑉
𝑡 is
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cell temperature at the operating point, 𝑇 𝑃𝑉
ref is reference temperature, and 𝑁𝑃𝑉

is the number of PV devices.

Wind power output relates to actual wind speed in each period. Generally,
wind speed fluctuations follow a Rayleigh distribution. The actual wind turbine
output power in period 𝑡 is [8]:

𝑃 𝑊𝑇
𝑡 =

⎧{
⎨{⎩

0, 𝑣rated
𝑡 < 𝑣in or 𝑣rated

𝑡 > 𝑣out

𝑃 𝑊𝑇
rated ⋅ 𝑣rated

𝑡 −𝑣in
𝑣rated−𝑣in

, 𝑣in ≤ 𝑣rated
𝑡 < 𝑣rated

𝑃 𝑊𝑇
rated, 𝑣rated ≤ 𝑣rated

𝑡 ≤ 𝑣out

, ∀𝑡 ∈ 𝒯

where 𝑣rated
𝑡 is actual wind speed, 𝑣rated is rated wind speed, 𝑣in and 𝑣out are

cut-in and cut-out wind speeds, 𝑃 𝑊𝑇
rated is rated output power, and 𝑁𝑊𝑇 is the

number of wind turbines.

Renewable energy supply comprises wind and PV outputs. Let 𝐿𝑟
𝑡 denote total

renewable energy supply in period 𝑡:

𝐿𝑟
𝑡 = 𝑃 𝑃𝑉

𝑡 + 𝑃 𝑊𝑇
𝑡 , ∀𝑡 ∈ 𝒯

Since renewable generation costs are negligible, assume renewable supplier costs
derive from operation and maintenance expenses. This paper uses a quadratic
cost function for renewable equipment maintenance loss costs in period 𝑡 [25]:

𝐶𝑟
𝑡 (𝐿𝑟

𝑡 ) = 𝛿RE(𝐿𝑟
𝑡 )2 + 𝜎RE𝐿𝑟

𝑡 , ∀𝑡 ∈ 𝒯

where 𝛿RE is the renewable equipment maintenance loss cost coefficient.

1.2.3 Carbon Trading Model Carbon emission rights trading promotes
“dual carbon”goal achievement in power systems. Under carbon trading mech-
anisms, the state allocates carbon emission quotas based on suppliers’total
generation. If actual emissions are less than allocated quotas, the surplus can
be sold for profit; if actual emissions exceed quotas, suppliers must purchase
excess emission rights, incurring carbon over-emission costs [26].

Suppliers obtain carbon emission rights through traditional and renewable gen-
eration. The carbon emission quota 𝐸𝐷

𝑡 allocated to generation units in period
𝑡 is:

𝐸𝐷
𝑡 = 𝛿𝑒𝐿𝑒

𝑡 + 𝛿𝑟𝐿𝑟
𝑡 , ∀𝑡 ∈ 𝒯

where 𝛿𝑒 and 𝛿𝑟 are unit carbon emission quota allocation rates for traditional
and renewable generation, respectively.
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Considering traditional energy generation as the carbon emission source, actual
carbon emissions 𝐸𝑡 from traditional generation units in period 𝑡 are [27]:

𝐸𝑡 = 𝜆𝑒𝐿𝑒
𝑡 , ∀𝑡 ∈ 𝒯

where 𝜆𝑒 is the carbon emission coefficient per unit of electricity from traditional
generators.

The carbon trading cost 𝐶𝐸
𝑡 in period 𝑡 is calculated as:

𝐶𝐸
𝑡 = 𝑝𝑒 ⋅ (𝐸𝑡 − 𝐸𝐷

𝑡 ), ∀𝑡 ∈ 𝒯

where 𝑝𝑒 is the market price per unit of carbon emission rights. 𝐶𝐸
𝑡 ≥ 0 repre-

sents carbon trading costs from excess emissions, while 𝐶𝐸
𝑡 < 0 indicates carbon

trading revenue.

1.3 Real-Time Pricing Model Under Load Uncertainty

Considering social welfare maximization objectives, the smart grid real-time
pricing model accounting for load uncertainty is formulated as:

max
𝑝𝑛,𝑡,𝐿𝑒

𝑡 ,𝐿𝑟
𝑡

𝜇1⋅𝔼 [∑
𝑡∈𝒯

∑
𝑛∈𝒩

(𝑈𝑛,𝑡(𝑋𝑛,𝑡) − 𝑝𝑛,𝑡𝑋𝑛,𝑡)]+𝜇2⋅𝔼 [∑
𝑡∈𝒯

( ∑
𝑛∈𝒩

𝑝𝑛,𝑡𝑋𝑛,𝑡 − 𝐶𝑒
𝑡 (𝐿𝑒

𝑡 ) − 𝐶𝑟
𝑡 (𝐿𝑟

𝑡 ) − 𝐶𝐸
𝑡 )]

subject to constraints (8), (9), and (13).

where 𝜇1 and 𝜇2 are weighting coefficients for user-side and supplier-side welfare,
respectively, with 𝜇1, 𝜇2 ∈ (0, 1) and 𝜇1 + 𝜇2 = 1. These values are determined
jointly by supplier pricing strategies and user demand elasticity. Optimal social
welfare occurs when total user load equals total supplier generation.

1.4 Objective Function Transformation

The objective function (19) can be separated into user and supplier components.
Based on expectation properties:

𝔼[𝑋𝑛,𝑡] = 𝑋basic
𝑛,𝑡 + 𝑋flex

𝑛,𝑡 + 𝔼[𝛿𝑛,𝑡] = 𝑋basic
𝑛,𝑡 + 𝑋flex

𝑛,𝑡 + 𝜇𝛿

where 𝜇𝛿 represents the mean of random variable 𝛿𝑛,𝑡.

The transformed deterministic model (21) becomes:

max
𝑝𝑛,𝑡,𝐿𝑒

𝑡 ,𝐿𝑟
𝑡

𝜇1⋅∑
𝑡∈𝒯

∑
𝑛∈𝒩

( ̂𝑈𝑛,𝑡(𝑋𝑛,𝑡) − 𝑝𝑛,𝑡𝔼[𝑋𝑛,𝑡])+𝜇2⋅∑
𝑡∈𝒯

( ∑
𝑛∈𝒩

𝑝𝑛,𝑡𝔼[𝑋𝑛,𝑡] − 𝐶𝑒
𝑡 (𝐿𝑒

𝑡 ) − 𝐶𝑟
𝑡 (𝐿𝑟

𝑡 ) − 𝐶𝐸
𝑡 )
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where ̂𝑈𝑛,𝑡(𝑋𝑛,𝑡) incorporates the variance of 𝛿𝑛,𝑡.

2 Algorithm Design
This section transforms the real-time pricing model into a Markov decision
process. Reinforcement learning based on Markov processes applies well to
single-agent environments. This paper employs an efficient Q-learning algo-
rithm adaptable to various environments.

Reinforcement learning (RL) is an optimal action decision-making technique
that self-learns in different environments [28]. Its most important feature is that
agents learn and record corresponding feedback, aiming to maximize long-term
cumulative rewards. Agents spontaneously select actions with higher reward
values through parameter adjustment, offering advantages in self-learning and
self-updating. The interaction process is shown in Figure 2.

Temporal-difference (TD) learning is the core RL algorithm, with Q-learning
being a common TD method. Its value function update formula is:

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡, 𝑎𝑡)]

where 𝛼 ∈ [0, 1] is the learning rate and 𝛾 ∈ [0, 1] is the discount factor indicating
the relative importance of future rewards.

Figure 2. The interaction process between agent and environment in
reinforcement learning

TD learning combines Monte Carlo and dynamic programming (DP) methods.
Similar to Monte Carlo, it learns directly from historical experience. Similar to
DP, it updates current state value functions using successor state value func-
tions.

In each time period, the agent aims to maximize cumulative discounted returns
—the sum of current and future period returns:

𝑅𝑡 =
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘

The Q-value function update for real-time pricing is:

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)]

RL solving for optimal policies transforms into seeking optimal state-action
value functions. Implementing policy 𝜋 transfers state 𝑠 to 𝑠′ with transition

chinarxiv.org/items/chinaxiv-202205.00076 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00076


probability 𝒫𝑎
𝑠𝑠′ and reward function ℛ𝑎

𝑠𝑠′ , yielding the Bellman equation for
action-value functions [14]:

𝑄𝜋(𝑠, 𝑎) = ∑
𝑠′

𝒫𝑎
𝑠𝑠′ [ℛ𝑎

𝑠𝑠′ + 𝛾 ∑
𝑎′

𝜋(𝑎′|𝑠′)𝑄𝜋(𝑠′, 𝑎′)]

where 𝑠 ∈ 𝒮 represents the state set.

The optimal state-value function 𝑉 ∗(𝑠) under optimal policy 𝜋∗ is:

𝑉 ∗(𝑠) = max
𝑎∈𝒜

∑
𝑠′

𝒫𝑎
𝑠𝑠′ [ℛ𝑎

𝑠𝑠′ + 𝛾𝑉 ∗(𝑠′)]

where 𝑉 ∗(𝑠) is the state-value function under optimal policy and 𝒜 represents
all possible actions in state 𝑠.

When transition probabilities 𝒫𝑎
𝑠𝑠′ and cumulative rewards ℛ𝑎

𝑠𝑠′ are known, the
Bellman optimality equation is nonlinear. Optimal policy 𝜋∗ is typically solved
iteratively [29], with algorithms classified as value iteration or policy iteration
based on whether value functions or state-action value functions are iterated.

The optimal policy is:

𝜋∗(𝑎|𝑠) = {arg max𝑎 𝑄∗(𝑠, 𝑎), if 𝑎 = arg max𝑎 𝑄∗(𝑠, 𝑎)
0, otherwise

When applying Q-learning to solve real-time pricing, the electricity pricing prob-
lem can be formulated as a Markov decision process requiring RL model elements
(𝒮, 𝒜, 𝒫, ℛ, 𝛾) [30]. Through continuous strategy selection by the agent against
the environment and iterative feedback, the optimal strategy—i.e., the optimal
real-time electricity price—is obtained. Suppliers set prices based on current-
period user consumption (strategy), then users transition from previous to next
states according to prices. This transition depends primarily on current actions
and previous user states. The RL framework (Figure 3) represents energy trad-
ing strategies between suppliers and users to maximize overall social welfare.

a) State space 𝒮: State space definition must comprehensively consider fac-
tors affecting decision-making. For real-time pricing, 𝒮 comprises load demand,
supply, and time periods. 𝑝𝑛,𝑡 represents the electricity price suppliers offer user
𝑛 in period 𝑡. 𝑋𝑛,𝑡 represents user energy demand after receiving price signals,
updated in real-time as user feedback to prices. The state space is:

𝒮 = {(𝑝𝑛,𝑡, 𝑋𝑛,𝑡, 𝐿𝑒
𝑡 , 𝐿𝑟

𝑡 ) ∣ 𝑛 ∈ 𝒩, 𝑡 ∈ 𝒯}
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b) Action space 𝒜: The agent outputs actions—i.e., supplier-offered prices
𝑝𝑛,𝑡—as continuous variables without discretization. The action space is set as
a continuous price interval:

𝒜 = {𝑝𝑛,𝑡 ∣ 𝑝𝑛,𝑡 ∈ [𝑐min
𝑛 , 𝑐max

𝑛 ]}

c) State transition probability 𝒫: Corresponding to equation (24), 𝒫𝑎
𝑠𝑠′

represents the probability that the environment transitions to next state 𝑠′

when the agent takes action 𝑎 in state 𝑠.

d) Discount factor 𝛾: 𝛾 ∈ [0, 1] is the discount factor representing the pro-
portion of future reward expectations under current decisions. Larger 𝛾 values
increase future rewards’importance relative to current rewards, making current
decisions more impactful on subsequent states. A discount rate of 0 (considering
only current rewards) causes algorithmic “short-sighted”optimization.

e) Reward ℛ: In this section, the real-time pricing model considers social
welfare maximization as its objective, mapping rewards to social welfare values.
The single-stage reward is defined as:

𝑟𝑡 = 𝜇1⋅ ∑
𝑛∈𝒩

(𝑈𝑛,𝑡(𝑋𝑛,𝑡) − 𝑝𝑛,𝑡𝑋𝑛,𝑡)+𝜇2⋅( ∑
𝑛∈𝒩

𝑝𝑛,𝑡𝑋𝑛,𝑡 − 𝐶𝑒
𝑡 (𝐿𝑒

𝑡 ) − 𝐶𝑟
𝑡 (𝐿𝑟

𝑡 ) − 𝐶𝐸
𝑡 )

Figure 3. Real-time pricing mechanism based on reinforcement learn-
ing

At iteration start (𝑡 = 0), the model aims to maximize total benefits across all
periods. After the first period, the objective converts to maximizing remaining
periods’total rewards. Maximizing rewards for remaining periods at each period’
s end fully considers temporal correlation. The Q-learning real-time pricing
mechanism is as follows:

Algorithm 1: Q-Learning Real-Time Pricing Mechanism

Input: Preset parameters, initial load values 𝑋𝑛,0, generation 𝐿𝑒
0, 𝐿𝑟

0, and price
𝑝𝑛,0.

Output: Optimal action-value function 𝑄∗, optimal generation 𝐿𝑒∗
𝑡 , 𝐿𝑟∗

𝑡 , and
electricity price 𝑝∗

𝑛,𝑡.

1. Initialize data: Set 𝑄(𝑠, 𝑎) = 0 for all 𝑠, 𝑎, iteration counter 𝑘 = 0.
2. Iterate:

a) Repeat for each episode:
b) If |𝑄𝑘 − 𝑄𝑘−1| < 𝛿, stop iteration and output 𝑄∗. Otherwise proceed.
c) Observe state 𝑠𝑡 and select action 𝑎𝑡 under initial policy.
d) Agent observes reward 𝑟𝑡 and next state 𝑠𝑡+1.
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e) Update action-value function:

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)]

f) Check episode completion: If 𝑡 = 𝑇 , exit loop. Otherwise proceed.
g) Calculate real-time prices, generation, and loads using equations (2),

(7), and (28).

A common RL optimization method is the 𝜖-greedy policy [31], which selects
random actions with given probability distribution. At day start, the agent (sup-
plier) first randomly selects initial policy 𝑎0 (initial price) within price bounds.
After selecting the initial policy, the agent immediately receives a reward and
observes the environment to update Q-values (social welfare values). Through
repeated price adjustments, Q-values increase and converge to maximum values
through agent-environment learning. When |𝑄𝑘 − 𝑄𝑘−1| < 𝛿, the termination
condition is met, and the model converges to the optimal value—maximum social
welfare—while obtaining optimal state-action pairs.

3 Case Study
3.1 Case Background

This section presents numerical simulation experiments to verify model ratio-
nality and algorithm effectiveness. Assume a region with suppliers and a com-
munity containing 20 residential users and 5 large users. Smart meters can
aggregate same-type user information for unified scheduling while protecting
user privacy. Typical daily PV and wind outputs are considered (see Figures
A1-A3 in appendix). Users directly participating in electricity trading represent
aggregated loads across different user types. Residential and large user load
data from literature [33] are adjusted proportionally as data sources, with load
demands shown in Figures A2 and A3.

Price elasticity coefficients are in Appendix Table 3. Carbon trading price 𝑝𝑒
(price per carbon emission right in the carbon market) is set at 130 yuan/ton
under the benchmark scenario [27]. Different utility parameters are set for
different user types [32], with user utility parameters 𝛽𝑛 following uniform dis-
tributions. User-side model parameters are detailed in Table 4. RL algorithm
initial parameters and supply-side parameters are in Appendix Table 5, with
weighting coefficient 𝜇1 adaptively selected by the algorithm. Shanghai’s time-
of-use (TOU) pricing is compared with the proposed real-time pricing model,
with TOU pricing shown in Table 6.
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3.2 Results Analysis

User-side real-time prices and load reduction are shown in Figures 4 and 5.
Figure 4 shows similar real-time price trends for both user types. Compar-
ing peak periods (10:00-15:00, 18:00-21:00) with off-peak periods (21:00-7:00),
peak-period price change rates and load reduction ratios are higher due to
greater price elasticity coefficients, enabling better demand-side peak shaving
with smaller price adjustments. Price interval constraints maintain reasonable
price ranges. Figure 5 shows total load reduction: large users’reduction ex-
ceeds residential users due to higher prices and greater price volatility during
peak periods.

Figure 4. Real-time electricity prices for the user side

Figure 5. Load reduction of the user side

Figure 6. Welfare values of the user side

Figure 7. Total power supply, the amount of power supplied by tra-
ditional and new energy suppliers

Figure 8. Welfare values and carbon trading costs of the supply side

User-side welfare values are shown in Figure 6. Large users exhibit higher wel-
fare than residential users, with larger price change rates during peak periods,
indicating higher willingness to participate in load regulation. Users adjust loads
according to welfare maximization objectives when facing price changes.

Figures 7 and 8 reflect final supplier generation, supplier welfare, and carbon
trading costs. At optimal social welfare, total user load equals total supplier
generation. With carbon trading, suppliers prioritize wind and PV generation,
reducing fossil fuel pressure and generation costs. Negative carbon emission
costs in Figure 8 indicate carbon trading increases supplier welfare—renewable
generation earns carbon emission quotas exceeding actual emissions, effectively
improving supply-side welfare. The case validates model rationality and effec-
tiveness under carbon trading, demonstrating that carbon trading promotes
green energy development and renewable consumption at the societal level.

To further compare model rationality and effectiveness, the proposed real-time
pricing scenario (Scenario 1) is compared with three alternatives: (2) real-time
pricing under deterministic load, (3) “short-sighted”optimization under deter-
ministic load, and (4) social welfare under TOU pricing. Table 2 shows model
indicator values for four scenarios in a typical day.

Assuming identical base parameters across scenarios, simulation results show
the proposed real-time pricing achieves similar social welfare values that are
always superior to TOU pricing. Although welfare under uncertainty is slightly
lower than under deterministic conditions, uncertain real-time pricing better
matches actual user consumption patterns. The proposed strategy achieves
favorable social welfare while ensuring model robustness, validating effectiveness
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and rationality.

Table 2. Model indicator values in four types of scenarios

Scenario

Social
Welfare
Value

User-Side
Welfare Value

Supplier-Side
Welfare Value

Carbon Trading
Cost (yuan)

Scenario
1
(Pro-
posed)

[Value] [Value] [Value] [Value]

Scenario
2 (De-
ter-
minis-
tic)

[Value] [Value] [Value] [Value]

Scenario
3
(Short-
sighted)

[Value] [Value] [Value] [Value]

Scenario
4
(TOU)

[Value] [Value] [Value] [Value]

4 Conclusion
This paper employs the Q-learning algorithm within a reinforcement learning
framework to solve real-time pricing. Case simulations verify the proposed strat-
egy’s effectiveness with the following advantages:

a) The RL framework transforms real-time pricing into a Markov decision
process, where suppliers as agents learn and obtain optimal pricing strate-
gies through iterative interactions with all users, enabling automatic price
optimization.

b) User classification effectively improves system performance while matching
actual consumption patterns.

c) The Q-learning algorithm suits the proposed real-time pricing model.
The load-uncertainty-aware strategy effectively balances energy supply-
demand in electricity markets and improves power system robustness.

d) The carbon emission trading mechanism effectively supports“dual carbon”
goals, enabling supply-side optimization to fully dispatch renewable energy
like wind and PV, improving power system economics and environmental
sustainability.
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Future extensions can introduce constraints such as consumption limits and
user budget constraints for greater realism; apply multi-agent RL to integrate
regional energy microgrids with electric vehicles and storage; and implement big
data-driven distributed RL for larger-scale users to achieve superior demand-side
management.

5 Appendix
Table 3. Elasticity of demand

Time Period Residential Users Large Users
(21:00-7:00) [Value] [Value]
(7:00-10:00) [Value] [Value]
(10:00-15:00) [Value] [Value]
(15:00-18:00) [Value] [Value]
(18:00-21:00) [Value] [Value]

Table 4. User-side parameter setups

Parameter Value Range
𝛼𝑛 (1,2)
𝛽𝑛 [3,4]
𝜎𝑛,𝑡 (2.5,5)
𝑐𝑛 [5,8]

Table 5. Power supply side and RL parameter setups

Parameter Value
Learning rate 𝛼 0.01
Discount factor 𝛾 0.9
Exploration rate 𝜖 0.05
Convergence threshold 𝛿 0.01

Table 6. TOU pricing setups

Time Period Price (yuan/kWh)
Peak (6:00-22:00) 0.7
Valley (22:00-6:00) 1.0
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Figure 9. Renewable power supplier’s outputs of typical day

Figure 10. Load demand of residential users

Figure 11. Load demand of large users
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