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Abstract

Action Recognition (AR) represents a research hotspot in the field of computer
vision, with extensive application prospects in security surveillance, autonomous
driving, production safety, and other domains. First, the connotation and ex-
tension of action recognition are analyzed, and the technical challenges encoun-
tered are identified. Second, the working principles of action recognition are
analyzed and compared from three perspectives: temporal feature extraction,
high-efficiency optimization, and long-term feature capture. Third, the perfor-
mance characteristics of 43 benchmark AR methods from the past decade are
compared on the UCF101, HMDB51, Something-Something, and Kinetics400
datasets, facilitating the selection of appropriate AR models for different appli-
cation scenarios. Finally, future development directions for the action recogni-
tion field are indicated, and the research findings can provide theoretical ref-
erences and technical support for video feature extraction and visual content
understanding.

Full Text

Preamble

Review of Video Action Recognition Technology Based on Deep
Learning

Li Chen, He Mingf, Wang Yong, Luo Ling, Han Wei
(Command & Control Engineering College, Army Engineering University of
PLA, Nanjing 210007, China)

Abstract: Action recognition (AR) is a hot research area in computer vision
with extensive application prospects in security monitoring, autonomous driving,
production safety, and other domains. This paper first analyzes the connotation
and denotation of AR and identifies key technical challenges. Second, it analyzes
and compares the working principles of AR from three perspectives: temporal
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feature extraction, efficient optimization, and long-term feature capture. Third,
to facilitate selection of appropriate AR models for different application scenar-
ios, it compares the performance characteristics of 43 benchmark AR methods
from the past decade on UCF101, HMDB51, Something-Something, and Kinet-
ics400 datasets. Finally, the paper points out future development directions in
the AR field, with research results providing theoretical reference and technical
support for video feature extraction and visual content understanding.

Key words: action recognition; deep learning; convolutional neural networks;
Transformer; RGB video

0 Introduction

Video data has become an important form of information presentation and
is widely used across various industries. Consequently, video understanding
technology—enabling computers to comprehend video content—has gradually
emerged as a research hotspot. In 2017, the Computer Vision and Pattern
Recognition Conference (CVPR) defined video understanding as comprising five
subtasks: Untrimmed Video Classification, Trimmed Action Recognition, Tem-
poral Action Proposal, Temporal Action Localization, and Dense-Captioning
Events [1]. The action recognition (AR) discussed in this paper falls within the
category of trimmed action recognition.

The focus of AR varies depending on the specific action categories and tasks.
When “Action” represents single-person movements (such as abstract events
like jumping, walking, or climbing), the action granularity is finer, requiring
classification models with strong temporal modeling capabilities. When “Action”
represents activities involving one or more persons (such as scene/object events
like eating bread or playing soccer), recognition models can rely more on scene
identification with less demanding temporal reasoning. “Recognition”carries two
meanings: (a) classification, which involves categorizing behaviors in trimmed
video clips; and (b) detection, which involves first localizing the start and end
times of actions in untrimmed videos before classification. Additionally, input
data exists in various forms including RGB video frames, skeleton diagrams, and
depth maps. While AR research encompasses combinations of these concepts,
this paper focuses primarily on action classification in trimmed RGB videos.

Feature extraction and classification constitute the core challenges of AR. Since
video is a sequence of image frames over time, AR models must consider tem-
poral information when extracting spatial features. Currently, two feature ex-
traction approaches exist: First, manually designed features based on human
sensitivity to various characteristics, creating feature extractors with physical
meaning. While highly targeted, this approach neglects implicit information in
data and suffers from poor generalization. Second, deep features extracted from
data through deep learning, which designs model structures based on cortical
visual theory and trains feature extractors using datasets and backpropagation
algorithms. This approach is applicable to various data types but offers lim-
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ited feature interpretability [2, 3]. While academia has not reached a definitive
conclusion on the superiority of handcrafted versus deep features, this paper fo-
cuses on deep learning-based AR models, given that current classification tasks
predominantly employ deep learning.

Although deep learning-based image recognition models have moved from labs
to practical applications, AR—as a temporal extension of image classification—
requires additional temporal feature extraction, hindering its real-world deploy-
ment. In summary, AR faces the following technical challenges:

a) Difficulty in video dataset creation. Improving recognition accuracy
requires training on large-scale annotated datasets, but video data anno-
tation and action localization are extremely time-consuming, constraining
both dataset scale and AR model development.

b) Low model training efficiency. Video data volume grows exponen-
tially compared to images, making the training process for AR models to
fit spatiotemporal features highly demanding in terms of hardware config-
uration and time.

¢) High intra-class variance and low inter-class variance. AR encom-
passes diverse behaviors with significant variation within the same action
category while different categories may appear similar, imposing more re-
fined requirements on feature extractors.

d) Insufficient real-time performance. Current AR models prioritize
high accuracy over lightweight design, and most operate in offline environ-
ments with pre-trimmed videos, making online streaming video recognition

difficult.

Research Status: Liu et al. [4] described the application workflow of action
recognition in smart homes. Liu et al. [5] discussed skeleton-based action recog-
nition methods using deep learning. Zhang et al. [6] analyzed abnormal be-
havior discrimination from both recognition and detection perspectives. Pei et
al. [7] compared traditional methods with deep models. Distinguishing itself
from these studies, this paper categorizes AR models from three perspectives—
temporal feature extraction, efficient optimization, and long-term feature cap-
ture—while summarizing public video datasets and performance comparisons of
mainstream and state-of-the-art models, as illustrated in Fig. 1.

1 Deep Models for Spatiotemporal Feature Extraction

In the early stages of AR development, handcrafted methods such as improved
dense trajectories (iDT) [8] dominated. After Hinton et al. [9] discussed the
principles and advantages of deep learning in 2015, AR research based on deep
learning gradually expanded. Karpathy et al. [10] employed convolutional neural
networks (CNN) to learn spatiotemporal features from stacked video frames for
end-to-end action classification, evaluating various 2D CNN connection meth-
ods including late fusion, early fusion, and slow fusion. However, recognition
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accuracy remained far below traditional handcrafted methods, demonstrating
that simple frame fusion cannot effectively extract temporal features.

Unlike image recognition, AR must focus on spatiotemporal features that in-
clude the temporal domain to understand motion information. This section
analyzes and compares AR spatiotemporal feature extraction work across three
strategies: two-stream convolution, 3D convolution, and temporal modeling.

1.1 Two-Stream Convolutional Models

When humans observe moving objects, continuous images flow across the retina,
with pixel movements called optical flow [11, 12]. Optical flow carries motion
information by representing image changes, making it an effective method for
temporal feature extraction. Simonyan et al. [13] designed a two-stream network
based on optical flow, where two 2D CNN pathways extract spatial and temporal
features from video frames and stacked optical flow images, respectively. The
two-stream network achieved performance comparable to iDT, validating the
effectiveness of optical flow for AR.

Feichtenhofer et al. [14] explored various fusion methods based on the two-
stream network. With the popularization of residual networks (ResNet), they
connected two streams using ResNet in subsequent work [15, 16] to achieve
residual interaction of spatiotemporal information. Building on the two-stream
approach, Wang et al. [17] increased network depth based on the VGGNet-16 ar-
chitecture and mitigated overfitting from deeper networks using small learning
rates and restricted cropping regions.

Given the strong performance of two-stream networks, Wang et al. [18] placed
deep features from two-stream networks at the center of iDT trajectories,
constructing Trajectory-Pooled Deep-Convolutional Descriptors (TDD). TDD
shared handcrafted and deep features, achieving higher discriminative power
and automatic learning, making this fusion approach an effective method for
improving AR accuracy. Ding et al. [19] improved the two-stream network
architecture by introducing BN-Inception and ResNet, establishing a spatiotem-
poral heterogeneous two-stream network that validated the effectiveness of
heterogeneous design.

In summary, two-stream networks significantly elevated the status of deep learn-
ing methods in video action recognition and gradually developed into an impor-
tant branch of AR.

1.2 3D Convolutional Models

While optical flow can extract temporal features, it is sensitive to lighting
changes, demands high storage and computational resources, and its small dis-
placement characteristics struggle with high-speed actions. Since 2D convo-
lution achieved excellent results in image recognition, researchers extended it
directly to extract spatiotemporal features from videos.

chinarxiv.org/items/chinaxiv-202205.00068 Machine Translation


https://chinarxiv.org/items/chinaxiv-202205.00068

ChinaRxiv [$X]

Ji et al. [20] used 3D convolutional kernels to learn spatiotemporal features,
proving the effectiveness of 3D convolution for AR. However, without detailed
3D CNN design, recognition accuracy remained inferior to two-stream networks
and handcrafted methods. Later, C3D [21] achieved good recognition results
using 3$x3x$3 3D convolutional kernels based on the VGG-16 architecture
from image recognition. However, C3D’ s accuracy still lagged behind two-
stream networks, with large parameter counts that led to long training cycles
and overfitting given the lack of large-scale datasets at the time. Additionally,
gradient vanishing/explosion issues limited C3D’ s depth extension.

Since ResNet can mitigate degradation problems in deep networks, Tran et
al. [22] designed 3D Residual Networks (R3D), extending ResNet’ s 2D convolu-
tions to 3D and reducing parameters by nearly 50% compared to C3D. Hara et
al. [23] further improved recognition accuracy through deeper extensions based
on R3D. T3D [24] also improved upon C3D but used the DenseNet architec-
ture, halving parameters compared to R3D though dense connections increased
computational load.

Early 3D CNNs consistently underperformed optical flow-based two-stream net-
works until I3D [25] broke this impasse in 2017. Carreira et al. [25] reasoned
that duplicating a single image from an image dataset multiple times could gen-
erate a “static video” for training 3D CNNs. Similarly, parameters from 2D
convolutional kernels in image dataset pre-trained 2D CNNs could be duplicated
along the temporal axis to initialize 3D CNNs, facilitating the use of mature
architectures from image recognition for AR. They applied this idea to the 2D
convolutional pathways of two-stream networks and further pre-trained on the
Kinetics dataset for the first time, resulting in the Inflated 3D ConvNet (I3D).
Deeper than C3D yet with fewer parameters, 13D became a benchmark method
for AR.

In summary, 3D CNNs gradually surpassed optical flow-based two-stream net-
works to become another important branch of AR.

1.3 Temporal Convolutional Models

Two-stream networks and 3D CNNs generally involve high computational costs,
hindering real-time applications, and exhibit weak temporal reasoning capabil-
ities. Since AR models need to understand action information over time, some
research focuses on designing temporal modules with temporal modeling mech-
anisms and low computational complexity.

Temporal Relation Network (TRN) [26] learns inter-frame temporal relations at
multiple scales and can be plugged into CNN architectures, but suffers from
training difficulties when input frames are numerous due to excessive mod-
ules. Based on the decomposability of 3D convolution into shift operations and
multiply-accumulate operations, Temporal Shift Module (TSM) [27] shifts par-
tial channels along the temporal axis to extract inter-frame information. TSM
modules can be embedded into various 2D CNN recognition models, enabling ef-
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ficient recognition without additional computation. TSM’ s extension, TIN [28],
performs shift operations on the channel dimension and automatically learns
shift direction and activation, achieving slight accuracy improvements over TSM.
TEI [29] modules separate channel correlation and temporal interaction model-
ing, while TAM [30] uses dynamic temporal convolutional kernels to adaptively
aggregate temporal information. Temporal Excitation and Aggregation mod-
ule (TEA) [31] proposes ME and MAT modules based on STM [32] to process
short-range and long-range features.

Luo et al. [33] designed Spatial Convolutional Attention (SCA) and Temporal
Convolutional Attention (TCA) modules. SCA uses self-attention to capture
spatial feature relationships and 1D convolution to extract temporal features,
while TCA obtains temporal features through self-attention and learns spatial
features using 2D convolution. Wu et al. [34] proposed a channel-temporal mod-
ule that preserves more effective channel and temporal information by adjusting
the order of pooling and convolutional layers.

In summary, temporal convolutional methods can integrate spatiotemporal and
motion features into 2D CNNs without requiring optical flow or 3D convolution,
offering temporal modeling capabilities while reducing computational overhead.

2 Efficiency Optimization in Deep Models

While temporal convolutional models demonstrate temporal modeling with effi-
ciency advantages, efficiency remains a crucial metric for AR models. Optical
flow in two-stream CNNs is expensive in terms of storage and computation, and
3D CNNs involve large parameter counts and computational loads, prompting
research into efficiency optimization for AR.

2.1 Input Data Optimization

Wang et al. noted that not all video frames contain useful information. Based
on two-stream CNNs, they proposed Temporal Segment Networks (TSN) [35]
using uniform sampling of video frames to improve efficiency. TSN reduces in-
formation redundancy and enables end-to-end learning at lower cost. The key
frame mining framework [36] abandons random strategies by scoring frames to
sample key frames, though gains are not significant. References [37, 38] con-
sidered all frames beneficial for classification tasks, clustering forward outputs
from all frames to improve efficiency.

To address the computational difficulty of optical flow, FlowNet [39] and
FlowNet2.0 [40] predict optical flow fields from images using neural networks.
Piergiovanni et al. [41] proposed representation flow based on TV-L1 optical
flow to simulate iterative optical flow parameters through end-to-end learning
of flow convolutional layers. The hidden two-stream network [42] connects
MotionNet, which can generate optical flow-like features from video frames,
with temporal stream CNNs to alleviate optical flow computation overhead.
Motion-Augmented RGB Stream (MARS) [43] uses trained optical flow to
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teach neural networks to learn optical flow performance. Zhang et al. [44]
eliminated optical flow dependency through small displacements of motion
boundaries.

2.2 Spatiotemporal Decomposition of 3D Convolution

Compared to 2D convolution, 3D convolution involves significantly larger param-
eter counts and computational loads. A 3D convolutional kernel has dimensions
FCxFTxFHXxFW, where FC represents the number of channels, FHxFW the
spatial receptive field, and FT the temporal receptive field. Excluding channels
FC, the spatiotemporal decomposition approach factorizes a 3D kernel of size
FTxFHxFW into the outer product of a 2D spatial kernel (1xFHxFW) and
a 1D temporal kernel (FT$x1x$1), as illustrated in Fig. 4.

Based on this decomposition, P3D [45] uses 1$x3x32Dconvolutionand3x1x11Dconvolutiontosimulate3x3x $
3D convolution, significantly reducing parameters compared to C3D while

enabling initialization from 2D CNNs. Tran et al. [46] proposed R(2+1)D, a

similar structure to P3D-A with 2D convolution followed by 1D convolution.

However, R(2+1)D leverages efficiency gains to increase channel numbers,

improving accuracy over R3D. S3D [47] adopts a Top-heavy approach to

simplify feature volume and optimize efficiency. Recently, Sudhakaran et

al. [48] proposed Gate-Shift Modules (GSM) for 3D spatiotemporal decomposi-

tion, which can adaptively find and combine features over time with minimal

additional parameters.

While spatiotemporal decomposition offers efficiency optimization, this rigid
separability can affect optimal iteration of AR models and consequently impact
accuracy.

2.3 Depthwise Separable 3D Convolution

Unlike spatiotemporal decomposition, depthwise separable convolution
splits the convolutional kernel into different depth groups. As shown in
Fig. 5, depthwise separable convolution decomposes a 3D kernel of di-
mension FOCXFTXFHxFW into two parts: a depthwise convolution kernel
(IxXFTxFHxFW) and a pointwise convolution kernel (FC$x1x1x$1). The
pointwise kernel performs weighted combination of features in the depth
direction, with both parts working together within a Bottleneck structure to
optimize model efficiency.

MFNet [49] applies depthwise separable convolution to ResNet, splitting
ResNet modules into multi-fiber ResNet modules. Experiments demonstrate
that MFNet reduces computation by 9x and 13x compared to I3D and
R(2+41)D, respectively. Channel-Separated Convolutional Networks (CSN) [50]
design three Bottleneck structures based on depthwise separable convolution
on 3D ResNet modules, reducing computation by 2-3x compared to R(2+1)D.
Grouped Spatial-Temporal Aggregation (GST) [51] improves upon P3D using
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depthwise separation to perform spatial and temporal operations on different
channels for efficiency gains.

Depthwise separable convolution reduces parameters, but its depthwise convolu-
tion lacks cross-channel information, resulting in insufficient spatial correlation
and hindering spatiotemporal feature extraction for AR models.

2.4 Hybrid 2D and 3D Convolution

Given the impact of convolutional decomposition on recognition performance,
methods combining 2D and 3D convolution attempt to optimize efficiency while
maintaining accuracy. MiCT [52] extends depth by concatenating 2D CNN
after 3D convolution, while parallel 2D CNN prevents gradient vanishing and
training errors from increased depth, effectively controlling 3D CNN complexity.
Conversely, Efficient Convolutional Network (ECO) [53] connects 3D CNN after
2D CNN to obtain feature maps for classification, supporting fast processing
capable of classifying 230 video segments within one second.

ARTnet [54] adopts a two-stream approach with 2D and 3D convolutions in
separate streams to extract spatial and temporal features. The SlowFast [55]
network resembles ARTnet’ s two-stream pathways but designs slow and fast
pathways. As shown in Fig. 6, the slow pathway focuses on spatial features
using low frame rates and larger channel numbers, accounting for about 80%
of computation. The fast pathway focuses on temporal features using high
frame rates and smaller channel numbers, accounting for about 20% of model
computation. However, action tempos vary, requiring SlowFast to set differ-
ent frame rates, which is impractical to predefine. To address this, Temporal
Pyramid Network (TPN) [56] extracts pyramid-shaped feature maps at differ-
ent levels using a single frame rate to represent various tempos, while BQN [57]
automatically separates slow and fast information for greater generality. Liu
et al. [58] proposed temporal zero-padding convolutional networks to reduce
3D CNN parameters, first using 3D convolution without temporal padding to
extract spatiotemporal information, then converting 3D convolution to 2D con-
volution through network reorganization for further feature extraction.

In summary, AR efficiency optimization involves expansion or compression
across depth, space, time, channels, and sampling, but manual settings provide
suboptimal balance between accuracy and efficiency. Recently, X3D [59] auto-
matically performed progressive expansion across metrics with evaluation feed-
back, achieving excellent accuracy while greatly improving runtime efficiency.
Unlike X3D’ s defined expansion, MoViNet [60] uses neural architecture search
to generate efficient and diverse 3D CNNs, achieving an excellent efficiency-
accuracy balance.

3 Deep Models for Long-Term Feature Capture

Previous models extract short-term action features, performing poorly on ac-
tions with long intervals between start and end (such as high jump and long

chinarxiv.org/items/chinaxiv-202205.00068 Machine Translation


https://chinarxiv.org/items/chinaxiv-202205.00068

ChinaRxiv [$X]

jump). Long-Term Temporal Convolution (LTC) [61] stacks more video frames
to enhance long-term feature performance, while FOF [39] and FCF [40] stack
multiple representation flow layers to capture longer temporal features. How-
ever, these methods involve large computation and risk losing relationships be-
tween long-interval frames, prompting research on capturing long-term behav-
ioral features.

3.1 Global Uniform Sampling

TSN [35] from Section 2 uses sparse sampling to fix computational cost while
simultaneously obtaining globally sampled frames for long-term feature extrac-
tion. Consequently, sparse sampling strategies have been widely adopted in AR
model data preprocessing.

However, TSN simply averages prediction scores from sampled frames, unable to
compensate for false label losses. Lan et al. [62] aggregated features into global
features and trained mapping functions on the same training data to map global
features to global labels. ActionVLAD [63] pooled and aggregated two-stream
spatiotemporal features to achieve global feature integration. Diba et al. [64]
fused sampled features for temporal linear encoding (TLE) to capture long-term
dynamic processes. Wang et al. [65] proposed Temporal Difference Networks
(TDN) based on TSN, designing channel attention enhancement methods based
on different features to strengthen inter-segment motion change information.

3.2 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) [66] demonstrates remarkable effectiveness
in representing language sequences with strong long-term feature capture ca-
pabilities. Since video shares similar temporal contextual relationships with
language, Srivastava et al. [67] considered LSTM an effective approach to pro-
mote AR models in learning long sequence relationships.

As shown in Fig. 7, Ng et al. [68] first used 2D CNN to extract spatial features,
then input them into LSTM for fusion to achieve temporal feature extraction.
Building on this, Long-term Recurrent Convolutional Networks (LRCNs) [69]
optimized end-to-end training. TS-LSTM [70] divided feature matrices into mul-
tiple segments, applying average or max pooling before sequentially inputting
into LSTM layers. I3D-LSTM [71] attempted to combine 3D CNN and LSTM
based on I3D. Li et al. [72] modified LSTM’ s weight dot product into convo-
lution operations, demonstrating that Conv-LSTM better facilitates attention
mechanisms than standard LSTM.

While LSTM enhances CNN’ s long-term representation capabilities to some
extent, LSTM itself is difficult to train, and the strict sequential iteration sig-
nificantly impacts training efficiency.
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3.3 Transformer

CNN and LSTM can only capture long-term dependencies through repeated
stacking, yet features gradually decay with increasing distance while incurring
substantial computational overhead. In 2017, Google proposed Transformer [73]
for natural language processing. Transformer’ s multi-head self-attention mecha-
nism can directly focus on global information between any sequences regardless
of distance, offering strong computational parallelism. Wang et al. [74] proposed
Non-Local Neural Networks (NLNN) based on self-attention, which can calcu-
late relationships between any two spatiotemporal positions to rapidly capture
long-term features. Neimark et al. [75] proposed VIN, a CNN+Transformer-
based AR model that uses 2D CNN for feature extraction followed by Trans-
former structures to focus on long-term information. UniFormer [76] uses spa-
tiotemporal self-attention to learn local and global label similarities in shallow
and deep CNN layers respectively, addressing spatiotemporal redundancy and
dependency for better balance between computation and accuracy.

ViViT [77] completely abandons CNN based on ViT [78], using pure Trans-
former for AR tasks. As shown in Fig. 8, ViViT constructs video as a set of
spatiotemporal tokens with spatiotemporal position encoding as Transformer
input for classification. MViT [79] creates multi-scale feature pyramids based
on ViT, first modeling low-level visual information at high resolution and later
modeling complex high-dimensional features at low resolution. Li et al. [80] im-
proved MViT by decomposing relative position embeddings and residual pooling
connections. Due to significant local redundancy and complex global dependen-
cies between video frames, VidTr [81] and STAM-32 [82] proposed separable
attention performing spatial and temporal attention separately, inspired by con-
volutional decomposition, to reduce encoding computational consumption.

Different temporal ordering of the same video frames may represent different
actions—for example, walking might become running. However, traditional at-
tention mechanisms lack directional information. Therefore, DirecFormer [83]
transforms Transformer attention mechanisms into directed temporal and spa-
tial attention based on cosine similarity to understand human actions in the
correct order.

BEVT [84] conducted BERT pre-training for AR tasks, adopting a decoupled
design that first performs masked image modeling on image data, then jointly
performs masked image and video modeling on image and video data through
weight sharing. BEVT simplifies AR Transformer learning while preserving
spatial knowledge learned from images.

Due to Transformer’ s versatility across data types, multimodal AR research
based on Transformer has developed. Alfasly et al. [85] used BERT to build
a Semantic Audio-Video Label Dictionary (SAVLD) that maps video labels to
their most relevant audio labels, then jointly estimates audio-visual modality
correlations with pre-trained audio multi-label models during training. Zellers
et al. [86] designed a joint encoder (Transformer) applicable to all modalities and
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timesteps, providing video frames and sequence-level representations of words
or audio to the joint encoder to predict data content.

Since 2021, Transformer-based AR models have continuously refreshed accuracy
benchmarks across datasets, demonstrating excellent long-term feature capture
capabilities. However, Transformer models lack inductive bias capabilities, lack-
ing CNN’ s translation invariance and locality, thus generalizing poorly to AR
when data is insufficient.

4 Deep Model Evaluation

This section introduces public video datasets in Section 4.1 and analyzes recog-
nition accuracy and runtime efficiency of various AR models based on UCF101,
HMDB51, Kinetics400, and Something-Something datasets in Sections 4.2 and
4.3.

4.1 Video Datasets

Efficient and accurate model design constitutes core AR research, but video
data is equally important. Video datasets should feature balanced categories,
sufficient data, correct labeling, and task relevance. Duan et al. [87] trained
video recognition models using web data to overcome format barriers. Zhang et
al. [88] jointly trained Transformers across different video datasets to learn bet-
ter action representations. Ryoo [89] learned to mine dataset labels from visual
data, with TokenLearner trained on this dataset achieving excellent recogni-
tion results. These examples demonstrate the important role of datasets in AR
models. Therefore, Table 1 introduces 16 public datasets for AR tasks.

HMDB51 [90] from public databases contains 6,849 trimmed videos across 51
action categories, including facial actions, general body movements, object inter-
actions, and human interactions. UCF101 [91] collected from YouTube contains
13,320 trimmed videos divided into 25 groups, with categories including person-
object interactions, single-person actions, human-human interactions, playing
instruments, and sports.

Kinetics is currently the primary dataset for AR. The first-generation Kinetics-
400 [92] from YouTube contains 400 action classes with 306,245 videos. The
second-generation Kinetics-600 [93] expanded to 600 classes with 482,622 videos.
The third-generation Kinetics-700 [94] extended to 700 classes with 650,317
videos. Kinetics-700-2020 [95] expanded the 700 classes to at least 700 clips per
class.

Something-Something [96] (Sth-Sth) contains numerous action labels emphasiz-
ing actions themselves, comprising basic actions people perform on everyday
objects, with 174 action classes. Version V1 has 108,499 videos, while V2 con-
tains 220,847 videos with durations of 2-6 seconds.

Table 1. Comparison of AR Datasets
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Dataset Year Action Classes Clips Description

Hollywood2 2009 12 3,669 Movie actions

HMDB51 [90] 2011 51 6,849 Body interaction actions
UCF101 [91] 2012 101 13,320 YouTube videos
Sports-1M [98] 2014 487 1,000,000  Sports videos
ActivityNet [99] 2015 200 19,994 Untrimmed videos
Kinetics [92] 2017 400 306,245  YouTube videos
Charades [100] 2016 157 9,848 Daily activities
Moments in Time [101] 2019 339 1,020,000 Verb action labels
Sth-Sth [96] 2017 174 108,499 Daily basic actions
TITAN [102] 2020 700 700 Vehicle/pedestrian actions
20BN-JESTER [103] 2019 27 148,092 Hand gestures

MMA¢t [104] 2019 37 36,000 Multimodal actions
RareAct [105] 2020 122 3,000 Unusual interactions
TinyVIRAT [106] 2021 26 12,829 Low-resolution actions
UAV-Human [107] 2021 155 67,428 UAV-view actions
Action Genome [108] 2021 101 10,000 Multi-view actions

Action Genome [108] is a multi-view action dataset with multiple modalities
and viewpoints, supplemented by hierarchical activity and atomic action labels
along with dense scene composition labels, featuring definitions for both high-
level activities and low-level actions.

4.2 Accuracy Evaluation

This section disregards parameters, computation, training iterations, data pre-
processing, and hardware/software configurations, focusing instead on single-
label dataset accuracy to provide reference for efficiency evaluation in Section
4.3. Table 2 cites accuracy values from original papers for various methods
on UCF101 and HMDB51, arranged chronologically and by technical principle,
indicating optical flow usage, architecture, and pre-training.

Table 2. Comparison of AR Model Accuracy on UCF101 and
HMDB51 Datasets

Year Model Backbone Pre-training UCF101 HMDB51
2014 Slow AlexNet ImageNet 65.4 -
fusion
CNN
[10]
2015 Two- VGG-M- ImageNet 88.0 59.4
stream 2048
[13]
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Year Model Backbone Pre-training UCF101 HMDB51

2016 Fusion VGG-M- ImageNet 92.5 65.4
two- 2048
stream
[14]

2016 ST- ResNet50 ImageNet 94.6 70.3
ResNet+iDT
[15]

2017 Two- BN- ImageNet+Kinetics 93.4 66.9
Stream Inception
13D [25]

2017 TSN BN- ImageNet 94.2 69.0
[35] Inception

2018 R3D ResNet-18 Sports-1M 87.2 -
[22]

2018 ResNeXt ResNet-101  Kinetics 95.1 72.2
23]

2018 TDD+iDT VGG-M- ImageNet 90.3 63.2
[18] 2048

2019 TRN BN- ImageNet - -
[26] Inception

2019 TSM ResNet-50 ImageNet 94.5 70.7
[27]

2019 STM ResNet-50 ImageNet 96.2 72.8
32]

2020 TEA ResNet-50 ImageNet 96.9 73.3
31]

2020 PAN ResNet-101  ImageNet+Kinetics 96.6 75.1
44]

2020 TDN ResNet-50 ImageNet+Kinetics 97.4 76.3
[65]

2020 BQN ResNet-101  ImageNet+Kinetics 97.6 7.7
[57]

2021 UniFormer-I3D+TransfornlemageNet+Kinetics 98.6 94.5
B [76]

Table 2 reveals several key insights: Early attempts with Slow fusion CNN
[10] were unsatisfactory due to 2D CNN’ s lack of temporal feature extraction
capability. Optical flow-based Two-stream CNN [13] demonstrated excellent
recognition performance, confirming the positive role of optical flow temporal
features. 3D CNN models like C3D [21-23, 25, 61] proved the effectiveness of 3D
convolutional kernels for spatiotemporal feature extraction. Temporal modules
like TSM [27, 31, 32, 57] showed powerful temporal representation capabilities
for CNNs. Conversely, LSTM provided limited accuracy gains for CNN-based
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AR [68, 70, 71]. Finally, pure Transformer-based AR models [81, 82] achieved
recognition accuracy comparable to other representative models like SMART
[38], Two-Stream I3D [25], BQN [57], and I3D-LSTM [71].

Horizontal comparisons show that in the two-stream category, TDD+IDT [18]
provides slight gains over Two-stream [11], while Fusion two-stream [14] and
ST-ResNet [15] demonstrate that two-stream fusion and ResNet-based depth
increase are suitable methods for improving two-stream accuracy. In the 3D and
temporal module categories, models like R3D [22], ResNeXt [23], Two-Stream
I3D [25], TSM [27], TEA [31], and BQN [57] all use ResNet or BN-Inception
architectures to deepen convolutional layers for accuracy improvement. The
sampling and spatiotemporal decomposition sections show that sparse sampling
or horizontal model compression combined with vertical depth extension are
effective choices for improving accuracy [35, 38, 46, 47, 64].

Regarding pre-training in Table 2, two-stream and temporal module meth-
ods based on 2D CNN like Two-stream [13] and TSN [35] use ImageNet pre-
training. In the 3D category, I3D [25] introduced inflation, enabling ImageNet
pre-training and, for the first time, Kinetics video dataset pre-training. 13D
achieved excellent recognition results, with subsequent AR methods adopting
similar pre-training strategies. This underscores the importance of datasets for
AR accuracy improvement, as demonstrated by Omni [87] s large-scale data
joint statistical training showing excellent recognition performance.

Table 3. AR Model Accuracy Comparison on Kinetics-400 and
Something-Something V1/V2 Datasets

Kinetics- Kinetics- Sth-Sth  Sth-Sth ~ Sth-Sth  Sth-Sth

400 400 Vi1 Vi1 V2 V2
ModelBackboitep-1 Top-5 Top-1 Top-5 Top-1 Top-5
TSN ResNet69.1 88.7 19.7 - - -
[35] 50
3D BN- T71.1 89.3 41.6 72.2 - -
[25] Inception
S3D- BN-  74.7 93.4 48.2 78.1 - -
G Inception
[47)

CSN ResNet76.7 92.2 46.6 76.1 - -
[50] 101

Slow FistsN¥t79.8 93.9 61.0 86.2 63.1 87.6
[55] 101

TSM ResNet74.7 91.4 47.3 77.1 63.4 88.5
[27] 50

STM ResNet78.3 93.5 50.2 80.1 64.2 89.8
[32] 50

TEA ResNet76.1 92.5 48.9 79.1 62.1 87.9
[31] 50
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Kinetics- Kinetics- Sth-Sth  Sth-Sth~ Sth-Sth ~ Sth-Sth

400 400 V1 V1 V2 V2
ModelBackboitep-1 Top-5 Top-1 Top-5 Top-1 Top-5
PAN ResNet77.7 93.2 52.4 81.9 65.4 90.1
[44] 101
TDN ResNet79.4 94.4 54.4 83.2 67.0 91.2
[65] 50
BQN ResNet78.8 93.9 53.7 82.5 66.8 91.0
[57] 101
ViViTViT- 82.9 94.5 60.9 87.3 71.2 92.8
[77] B
MViTViT- 85.8 96.5 64.7 89.2 74.1 94.1
L B
(80]

MaskPédt- 87.0 974 - - - -
B+MViT-
L

Table 3 reveals: First, TSN [35] and I3D [25] show similar performance on
Kinetics-400, but TSN lags significantly behind I3D on Something-Something,
indicating TSN’ s sparse sampling strategy loses substantial motion information.
Second, with the same ResNet-50 architecture, TSN and I3D in the first section
are not superior to TSM [27], STM [32], and TEA [31] in the second section on
Kinetics-400, with the gap widening on Something-Something. Third, with the
same ResNet-101 architecture, CSN [50] and SlowFast [55] have slight advan-
tages over PAN [44], TDN [65], and BQN [57] on Kinetics-400, but fall behind
again on Something-Something. This demonstrates that separately designed
temporal modules on CNNs extract motion features more effectively than 3D
convolutional kernels and optical flow. Finally, Transformer-based AR mod-
els emerging in 2021 have continuously topped accuracy leaderboards on both
Kinetics-400 and Something-Something, directly surpassing years of CNN-based
model development.

In summary, for scene-related AR tasks, focus on Transformer technology, tem-
poral module design, horizontal model compression, residual connections, and
large-scale dataset pre-training. For action-related tasks with weakened scene
correlation, avoid overly sparse sampling strategies and concentrate on temporal
modules or Transformer technology for model design.

4.3 Efficiency Evaluation

Section 4.2 compared models’ temporal modeling capabilities based on recog-
nition accuracy, but AR model evaluation must also emphasize efficiency for
practical applications. Disregarding training iterations, data preprocessing, and
hardware/software configurations, Table 4 cites pre-training status, architecture
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usage, input frames, parameters (representing GPU memory usage), GFLOPS
(representing execution time depending on GPU computing power), and accu-
racy metrics from original papers for benchmark model efficiency evaluation.

Table 4. Efficiency Evaluation of AR Models on Kinetics-400
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Parameters Kinetics-400
Model Backbone Framesx View(M) GFLOPSx Vidiwp-1
TSN BN- 253 x10x 1|118T3Bx10%x1|69.1||TSN[35]|ResNet—

[35]  Inception 50[8x10x1]23.7|33x10x1|71.2||I3D[25]| BN—
Inception|64x N /AxN /A|12.1]108x N /A|71.1||S3D—
G[47]|BN -
Inception|64x10x3]11.6|71.4x10x3|74.7||ART Net[54]| ResNet—
18]16x 25 10[15.4(23.7x 25 10|71.8|| R(2+
1)D[46]|ResNet—
34|32 10x 1|28.1|152% 10x 1|74.3|| M F—
Net[49]|ResNet—
34|16 % 10 5(2.9|11.1x 10x5|72.8]|ip—
CSNI50]|ResNet—
101]32x10x3[15.1|83.0x 10 3| 76.7||ir—
CSNI[50]|ResNet—
101|32x10x3]15.1|73.8x10x3|75.5||SlowFast[55])| ResNet—
50((8 +
32)x10%3|34.6]65.7x10x3|79.8||SlowF ast[55]| ResNet—
101|(8 +
64) % 10 3|53.8]106 x 10x 3[81.8||Slow Fast+
NLI[55]|ResNet—

101 +

NL|(16 +

64)x 10x3(60.1|234 x 10x 3|82.1|| MoViNet—
AB[60]|MobileNet|50% 1x1|2.9]386x 1 x 1[81.5||ViViT—
LI77)|ViT—
BJ|250%x1x1]310.0/1059x1x 1|82.9||Token Learner[89]|ViT—
B|250%1x1|28.5/1989% 1 x 1|85.4/[ M ViTvl—
S[79]|ViT—
B|323x4[36.0|3992x 3% 4/80.3| | MViTv1 —
B[79]|ViT—

B|32x3x4]52.0[4076 x 3% 4(82.1|| MViT—

S[80]|ViT—

B|16x1x5(25.4/70.3x 1x5(83.8|[ M ViT—

B[80)|ViT—

B|321x5(36.6|170x 1 5(85.8| | M ViT—

L[80]|ViT—
B|16x1x5|69.7/64x1x5|86.3|| M askFeat|ViT—

B+

MViT —

L|32x1x5]|169.0]225x1x$5

Table 4 reveals several insights: First, TSN [35] shows that ResNet achieves
higher accuracy than BN-Inception with smaller FLOPS (ResNet with 8 frames
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outperforms Inception with 25 frames). Consequently, current AR models pre-
dominantly adopt ResNet as the base architecture, though ResNet demands
more parameters. Second, in 3D CNN efficiency optimization, spatiotemporal
decomposition in S3D-G [47] significantly reduces operations compared to 13D
while slightly improving accuracy. Decomposition in ARTNet [54] and MF-
Net [49] improves efficiency at the cost of accuracy. SlowFast [55] maintains
considerable parameters and computation to preserve accuracy. Recent work
like X3D [59] with progressive model expansion and MoViNet [60] with neural
architecture search achieve excellent efficiency-accuracy balance. Third, tempo-
ral convolution models like TSM [27] have comparable size to decomposed 3D
models while maintaining stable accuracy on Kinetics-400. TDN [65] greatly
improves accuracy without increasing TSN’ s size, proving the high efficiency
and strong temporal modeling capability of inserted temporal modules. Finally,
Transformer-based AR models [77, 79, 80, 89] break through 80% accuracy
without increasing computation, surpassing most CNN-based models.

In summary, for online AR tasks, focus on convolutional decomposition, tempo-
ral module design, and Transformer approaches. However, Transformer-based
AR models require large-scale data to be effective, making transfer learning a
suitable solution for data-scarce applications.

5 Conclusion

This paper analyzed AR models from three perspectives—temporal feature ex-
traction, efficiency optimization, and long-term feature capture—and compared
the accuracy and efficiency performance of benchmark models after introduc-
ing public video datasets. Although current AR models perform well on public
datasets, gaps remain for practical application. The following are reference
insights for future AR development:

a) Few-shot learning. Training AR models requires massive labeled videos,
but annotation costs are enormous, hindering practical application of su-
pervised learning-based AR models. Additionally, different environmental
backgrounds affect models trained in different environments. Therefore,
few-shot learning involving cross-domain learning, transfer learning, and
unsupervised learning can alleviate annotation costs while improving gen-
eralization, such as methods that fully aggregate spatiotemporal context
using limited samples [109], convert image datasets to video model pre-
training sources [110], or use unlabeled videos for pre-training [111].

b) Video semantic understanding. Current AR methods directly extract
single-action features, but actual human behaviors are complex activities
involving what is happening, when, who is performing the action, and
where. Recognizing composite behaviors requires not only classification
models but also video content semantic understanding. Generating basic
semantics from video data to understand complex semantics effectively
bridges the meaning gap between low-level and high-level behaviors.
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¢) Fine-grained action recognition. Fine-grained action recognition re-
quires attention to subtle spatiotemporal differences, such as whether a
person is walking slowly or quickly. Understanding detailed execution
patterns and designing AR feature extractors that represent how actions
occur to better distinguish fine-grained categories is a worthwhile research
direction.

d) Multimodal action recognition. Humans perceive environments
through multiple modalities including audio, tactile, visual, and skeleton
information, which differ in form yet complement each other. Beyond
visual information, AR can research how to leverage complementary
multimodal data during training to learn better feature extractors.

e) Multi-view action recognition. Current AR primarily addresses single
video views, but practical applications involve cameras placed at different
orientations capturing information from various angles. This multi-view
data presents challenges and opportunities. Reconstructing multi-view
data into comprehensive 3D information to design feature extractors for
3D video data is a future direction worth exploring.

f) Efficient model development. Practical AR applications require fast
processing, low computational cost, and small storage space. Previous
efficiency optimization methods were mostly manual. Using neural archi-
tecture search to generate efficient and diverse architectures for integration
represents the future direction for AR efficiency optimization.
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