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Abstract

In the IoT service discovery process, users typically express their requirements
through their own intentions, whereas service descriptions constitute explana-
tions of service functionalities; consequently, mismatches between these two
elements impact the accuracy of service discovery. Simultaneously, as the di-
versity of services continues to proliferate, the accuracy of service discovery
progressively diminishes. To address these challenges, this paper proposes a
methodology that incorporates intent service ontology into IoT service descrip-
tions and extends service context and QoS (Quality of Service) within the intent
service ontology. The extended intent service ontology is stored in semantic ser-
vice description OWL-S (Ontology Web Language for Services) files, enabling
the expression of service functionalities in an intent-based manner, thereby en-
riching the semantics of IoT service descriptions and enhancing service discovery
accuracy. Simulation results demonstrate that the proposed service description
method and corresponding service discovery algorithm achieve a 6.7% improve-
ment in accuracy relative to traditional service discovery methods.
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Abstract: In IoT service discovery, users typically express their needs through
intentions, while service descriptions merely explain functional capabilities.
This mismatch between user intentions and service functionality descriptions
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negatively impacts discovery accuracy, a problem exacerbated as service vari-
eties proliferate. To address these challenges, this paper proposes incorporating
intentional service ontology into IoT service descriptions, extending it with
service context and QoS (Quality of Service). The enhanced intentional service
ontology is stored in OWL-S (Ontology Web Language for Services) files,
enabling service functions to be expressed through intentions, enriching IoT
service description semantics, and improving discovery accuracy. Simulation
results demonstrate that the proposed service description method and cor-
responding discovery algorithm achieve a 6.7% accuracy improvement over
traditional approaches.

Keywords: intentional service ontology; context; QoS (Quality of Service);
service description; service discovery

0 Introduction

IoT technology has become indispensable across industries, extending the Inter-
net by incorporating “things” to connect everyday objects and devices. As IoT
technology advances, the proliferation of service types continuously degrades ser-
vice discovery accuracy, rendering generic description and discovery mechanisms
inadequate. This paper proposes improved service description and discovery al-
gorithms to address these limitations.

Ontology forms the foundation of the semantic web, representing a model of con-
cepts and their relationships within a domain. In service description languages,
WSDL (Web Services Description Language) [1] suffers from low accuracy due
to its keyword-based matching approach, prompting researchers to develop se-
mantic service description languages. Existing semantic service description lan-
guages include OWL-S (Web Ontology Language for Service) [2], WSMO (Web
Service Modeling Ontology) [3], and WSDL-S [4]. OWL-S facilitates the tran-
sition from syntactic-level (WSDL) to semantic-level (OWL-S) service descrip-
tions through ontology introduction, serving as a standard semantic markup
language that enables automated processing by machines. Consequently, this
paper proposes enhancing service descriptions within OWL-S.

In IoT services, intention represents both the user’ s desired goals/actions and
the objectives/actions realized by services [5]. Users typically express needs as
intentions, while service providers offer only functional descriptions, creating a
mismatch during service discovery. By introducing intentional service ontology
into OWL-S, this paper describes service functions through intentions, enabling
both user needs and service capabilities to be expressed uniformly and resolv-
ing the mismatch problem. The intentional service ontology combines service
intentions with other information, defining the relationship between intentions
and services as one of satisfaction—intentions satisfy services.

As IoT technology evolves, considering only functional (including intentional)
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information reduces both recall and precision in service discovery. When two
users request functionally identical services, their context and QoS requirements
may differ, preventing discovery from identifying truly suitable services. This pa-
per extends non-functional attributes—context and QoS—within the intentional
service ontology, linking service context with device context to ensure discovery
accuracy. Related work in this domain is discussed below.

Service-Oriented Architecture (SOA) [6] is widely adopted for service commu-
nication, composition, and utilization, with applications in IoT as well. For
instance, literature [7] proposed a large-scale IoT SOA ontology supporting
interoperability, heterogeneity, flexibility, manageability, scalability, and exten-
sibility; literature [8] applied SOA and IoT concepts to smart home lighting for
device control. Literature [9] introduced intention into traditional SOA mod-
els, presenting the ISOA (Intentional Service Oriented Architecture) model as
a foundational framework for intention-based service description and discovery.

Literature [10] surveyed recent advances in intent-based technology, suggesting
that rapid natural language understanding developments will enhance adaptabil-
ity. Literature [11] extended service descriptions by adding intentional service
descriptors to SAWSDL (Semantic Annotations for WSDL and XML Schema)
[12] files, introducing a framework for publishing and matching intentional ser-
vices. Literature [13] extracted domain knowledge about service functions (i.e.,
service goals) from textual descriptions, helping requesters query relevant ser-
vices through intention information using natural language parsing and seman-
tic similarity-based clustering for service recommendation. Literature [14] pre-
sented an intention ontology model for storing user intention information and
proposed an intention-based service composition architecture.

While these works introduced intention into service description and discovery,
accuracy degrades as service varieties increase and similarly-intentioned services
proliferate, making intention-only matching insufficient.

Literature [15] proposed an intention-based proactive service method for drink-
ing service robots, considering user context and environmental factors alongside
intentions. Literature [16] introduced a context-aware intentional service dis-
covery mechanism based on OWL-S extensions, centering on user requirements.
Literature [17] presented a dynamic web service composition method based on
user intention and context, employing Al planning techniques with semantic
descriptions. Literature [18] proposed a service composition method incorpo-
rating context and user intention to correctly respond to user needs. These
approaches consider both intention and context but overlook varying user QoS
requirements, leading to mismatched services.

Literature [19] introduced an efficient multi-objective automatic service compo-
sition method, balancing computational cost and QoS. Literature [20] compre-
hensively discussed intent-driven management systems, addressing intent defini-
tion, modeling, and end-to-end architecture generation considering QoS perfor-
mance. Literature [21] proposed a requirement-centric approach using keywords
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extracted from ISM (Intentional Service Model) specifications to discover and
automatically select high-QoS services. These works consider intention and QoS
but neglect context impact, which is crucial as service and user contexts evolve.

Literature [22] used user requirement structures concretized by intention graphs,
enriched with context information for service selection based on semantic match-
ing, user context, and QoS. Literature [23] constructed composite services from
user intention, context, and QoS information, describing service publication and
matching. These approaches consider functional and non-functional parameters
but lack non-functional attribute models and corresponding discovery mecha-
nisms.

Most existing literature applies intention, context, or QoS to the Internet do-
main, whereas IoT applications require consideration of device context informa-
tion. Additionally, none present complete service discovery mechanisms incor-
porating all three elements. This paper’ s main contributions are: (1) proposing
an intention-based service discovery framework with complete processes and
matching algorithms; (2) extending the intentional service model with context
and QoS classes, integrating IoT device context information into service context.

1 Intention-Based Service Discovery Framework

The proposed service discovery framework, illustrated in Fig. 1, involves four en-
tities: service description, service registration, service matching, and language
parsing. Service descriptions are stored as OWL-S files. Service registration
enrolls provider information in a UDDI repository containing all provider offer-
ings. Service matching identifies services satisfying user needs from the registry.
Language parsing converts user requirements into intention, context, and QoS
formats using Stanford natural language processing.

The discovery process proceeds as follows: providers supply OWL-S files regis-
tered in the UDDI repository. Upon user request, Stanford NLP parses require-
ments into intention, context, and QoS information for service matching. Match-
ing first performs intention matching (functional attribute matching) against
the registry, producing a similarity-ranked service list. Non-functional attribute
matching—context and QoS matching—follows. Since service context and QoS
are computed in real-time, UDDI database information is updated concurrently.
Post-matching, service description files are returned, enabling users to bind with
providers and invoke services. This paper details the service matching process
and proposes adding intention, context, and QoS information to OWL-S service
descriptions.

2 Intention-Based Service Description

Intention-based service description manifests in the service description compo-
nent of the framework, storing intention, context, and QoS information within
OWL-S through intentional service ontology introduction.
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2.1 Intentional Service Ontology with Context and QoS

The Intentional Service Model (ISM) [24], originally proposed by R.S. Kaabi,
stores service information ontologically with intentions representing service func-
tions. This paper extends ISM with context and QoS, proposing the CQISM
(Context and QoS Intentional Service Model) ontology (Fig. 2). Ontology-
based representation is chosen because extending service descriptions requires
no changes to existing files or parsing tools while standardizing IoT intentional
service description conventions.

CQISM design considers three aspects: (1) standardizing service information
including basic details (intention, I/O parameters); (2) adding service context
and QoS for IoT, storing availability location, status, associated devices, etc.; (3)
including a service composition class for computing aggregated service context
and QoS. Accordingly, CQISM comprises five classes:

a) Intention Class: Represents service intention information parsed from
descriptions, consisting of verb, target, and optional parameters.

b) Service I/O Class: Comprises pre-condition and post-condition classes
and their states, including initial situation, final situation, preconditions,
and postconditions.

c¢) Service Composition Class: Indicates service type—atomic or aggre-
gate—where aggregate services combine atomic or other aggregate services.

d) Service Context Class: Contains service time, status, location, and
associated devices.

e) Service QoS Class: Includes availability, security, scalability, etc.

In ToT, CQISM stores service intentions while considering non-functional
attributes, improving discovery accuracy through intention, context, and
QoS matching. For example, in UAV inspection systems, services include
video/image transmission and path control, but the UAV’ s environment and
status constantly change. Thus, discovery must consider both functional and
non-functional attributes including service context, device context, and QoS.

The following sections detail CQISM classes.

2.1.1 Intention Class Intentions comprise words or phrases maximally ex-
pressing service functions or user needs. The intention model (Fig. 3), originally
from N. Prat [25], includes: verb (dominant action), target (most relevant noun),
and optional parameters (direction, beneficiary, time, manner, quality, quantity,
location, etc.).

In UAV inspection systems, the service “TransmitlmageByWIFI” transmits im-
age information via WIFI. Input is null, output includes image information and
capture time. The intention is expressed as verb (Transmit), noun (Image), and
parameter (By WIFI), where the parameter belongs to the manner category.
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Verb, target, and parameter extraction uses Stanford CoreNLP’ s English depen-
dency parsing to obtain word relationships and generate intention expressions.

2.1.2 Service Composition Class Service composition divides into atomic
and aggregate services. Atomic services are indivisible minimum units stored
as Service_{name} in the Atomic class. Aggregate services combine atomic or
other aggregate services, with expressions stored as Service_{expression} in the
Aggregate class. Expression generation requires MAP graphs and composition
operators.

1) MAP Graphs: A MAP graph is a labeled directed graph whose minimal
unit (Fig. 4) contains Start (source intention), Stop (target intention), and
Strategy (edge). MAP graphs represent all atomic or aggregate services, where
aggregate services decompose into sub-aggregate services until fully resolved

into atomic services. Aggregate service expressions are derived from all paths
in the MAP graph.

In UAV inspection systems, the aggregate service “PerformInspection” executes
inspection tasks. Its MAP graph (Fig. 5) shows that performing inspection
requires first checking remaining battery level via a voltmeter, then collecting
information through either non-designated or designated position strategies.

For the aggregate service “CollectInformationByDesignatedPosition” (collecting
information at a given position), the MAP graph (Fig. 6) shows the UAV
must first fly to the position, then transmit position and image information.
Position transmission uses absolute or relative positioning; image transmission
uses OFDM or WIFT.

2) Service Composition Operators: Services combine through operators to
generate new aggregate services, classified as composite or variant services.

Composite services execute sequentially or in parallel. Sequential composite
services (operator “e” ) require ordered execution, as shown in Eq. (1) for Fig.
6. Parallel composite services (operator “” ) execute simultaneously without

order constraints, as shown in Eq. (2).

Variant services include three types: selective, alternative, and multi-path. Se-
lective variant services (operator “” ) offer non-exclusive strategies—e.g., Fig. 6’
s position transmission allows choosing absolute, relative, or both positions (Eq.
3). Alternative variant services (operator “” ) have mutually exclusive strate-
gies—e.g., Fig. 5 s information collection must choose either non-designated or
designated position (Eq. 4). Multi-path variant services (operator “” ) achieve
the same intention through multiple paths, simplifying context and QoS com-
putation for aggregate services.

3) Aggregate Service Expression Generation: OWL-S Process Model con-
tains all process information for extracting MAP graphs, which completely rep-
resent complex aggregate services. Expressions are generated from all MAP
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graph paths. Since IoT services are predominantly aggregate and their con-
text/QoS computation requires sub-service and device information, expressions
enable context/QoS calculation. Tables 1 and 2 show expressions for Figs. 5
and 6 (asterisk “*” indicates repeated service invocation), listing atomic services
and aggregate service expressions.

2.1.3 Context and QoS Classes Traditional OWL-S-based semantic
descriptions and intention-based descriptions match services by functional-
ity.  To improve IoT discovery accuracy, this paper additionally considers
non-functional attributes: context and QoS classes.

1) Context Class: Unlike traditional web services, IoT services involve sensors,
actuators, and other devices with tight service-device coupling. Thus, the IoT
service context class adds the SC_{attachedDevice} field (Fig. 7). Atomic
service context and single device context are provider-supplied; aggregate service
context includes sub-service context and associated devices.

Fig. 7 shows the IoT service context class with: SC_{ID} (unique
identifier), SC_{type} (atomic/aggregate), SC_{status} (availability),
SC_ {time} (invocable timeframes), SC_ {position} (invocable locations), and
SC_ {attachedDevice} (associated devices). During context matching, device
context (stored in device ontologies, Fig. 8) updates service context in real-time.
The device ontology model includes static attributes (fixed information) and
dynamic attributes (energy, status, location, time). Capabilities include
communication, control, events, and presentation. Dynamic attributes affect
service context—e.g., service status (SC_{Status}) is available only when
associated devices have sufficient energy and are operational.

2) QoS Class: Considering diverse user QoS requirements (e.g., high security
priority), the CQISM extends ServiceQos class (Fig. 9, based on IoT QoS
metrics from [26]). QoS includes availability, performance, security, scalability,
reliability, interoperability, and accessibility, qualitatively rated as “1” (very
low), “2” (low), “3” (high), “4” (very high) to unify provider-user representations.
Each metric’ s level is provider-defined. Atomic service QoS is provider-supplied;
aggregate service QoS derives from sub-service QoS.

2.2 OWL-S Service Description File Extension

OWL-S files comprise three main parts: Service Profile (what the service does—
name, description, QoS, provider), Process Model (how to use the service and its
results), and Grounding (how to access the service—protocols, message formats,
ports) [27].

Extension involves adding CQISM ontology to base semantic descriptions, as
shown in Fig. 10. CQISM is added to the ServiceProfile section. Since OWL-S
stores atomic and aggregate service information in ProcessModel, the composi-
tion relationships are extracted to generate MAP graphs and service composi-
tion expressions, stored as ServiceComposition class in CQISM. The extended
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description enriches OWL-S semantics, resolves concept mismatches between
provider descriptions and user needs, and improves discovery accuracy by con-
sidering non-functional attributes.

3 Intention-Based Service Matching

Intention-based service matching operates in the service matching component
of Fig. 1, retrieving services from the UDDI registry through functional and
non-functional attribute matching.

Before matching, CQISM ontology is extracted from OWL-S files to parse inten-
tion, context, and QoS information into the service registry. Upon user input,
Stanford NLP first parses user intentions for intention matching (Algorithm 1).
Post-matching, services are similarity-ranked, and the top candidates undergo
context and QoS matching.

Services include atomic and aggregate types with various IoT devices, requiring
context computation and matching (Algorithm 2). For atomic services, con-
text correlates with device context. Device context computation follows: (a)
character attributes (status, location, time) use intersection ( )—for j associated
devices (Device_1--Device_j) with attribute q values vj, the atomic service’ s
q value is vy v, === v ; (b) numeric attributes (energy, security) use minimum
values—v = min(vy, v,, -, v ). For example, two devices at positions NJSH and
NJ yield atomic service position NJ.

For aggregate services, context derives from sub-service contexts per the aggre-

”» “

gate expression. Composite services (operators “e” or ) use intersection
and minimum calculations. Variant services (operators “” | “” jor “” ) use
union and maximum calculations. When expressions involve nested aggregate
services, rules (a) and (b) apply recursively until all sub-services resolve to

atomic services.

Real-time context computation involves only similarity-ranked services (top 100)
to balance accuracy and performance. Algorithm 2 s pseudocode (lines 14-20)
selects services matching user context requirements.

QoS matching precedes similarly. Atomic service QoS is provider-supplied; ag-
gregate QoS computation mirrors context computation but excludes associated
devices.

4 Experiments
4.1 Development Environment

The implementation uses Python (cross-platform, running on Windows, Mac,
and Linux/Unix) with Anaconda’ s Jupyter notebook. Ontology construction
employs Protégé-5.5.0 for CQISM development. Stanford NLP handles intention
extraction. The test dataset is OWLS-TC_ {v2}.2 {revision}3, a collection
spanning healthcare, education, food, and industry domains.
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4.2 Service Description File Extension

Using a UAV image transmission service via WIFI as an example, Table 3 shows
partial OWL-S content after CQISM extension. <profile:CQISMPath> stores
the CQISM ontology path; <profile:CQISMIRI> stores the IRI (International-
ized Resource Identifier). Both uniquely identify the intentional service ontology
for Python-based OWL-S parsing and CQISM extraction.

Parsing CQISM yields intention, context, aggregate expressions, and QoS for
matching. Table 4 shows sample CQISM data: lines 3-5 contain intention infor-
mation (verb, target, parameters); lines 9-10 show context (availability status
“1” = available, associated device); line 14 shows QoS (reliability level 4).

TIoT context matching requires device context. Table 5 shows a camera device
(Camera_ 1) ontology excerpt, with line 7 indicating 80% remaining energy.

4.3.1 Service Discovery Accuracy

First, we validate intention-only vs. function-only impact on accuracy. Using
identical requests across varying service counts (functional information only),
accuracy is computed via Eq. (5). Results (Fig. 11) show intention-based
descriptions consistently outperform function-based descriptions, with function-
based accuracy declining sharply as service count increases. Averaging across
200, 400, and 800 services yields 77.5% accuracy for function-based vs. 88.3%
for intention-based—a 10.8% improvement, confirming intention extraction’ s
feasibility and effectiveness.

In IoT discovery, considering only intentions or functions is insufficient.
Traditional matching (e.g., OWLS-MX [28]) combines function with I/0
information. Intention-based matching adds context and QoS (e.g., [16] inten-
tion-+context, [21] intention+QoS). Fig. 12 compares OWLS-MX, [16], [21],
and our approach (intention+context+QoS). Averaged across 200, 400, and 800
services, accuracies are: intention+context+QoS (84%), OWLS-MX (77.3%),
intention+context (80%), intention+QoS (73%). Simultaneously considering
functional and non-functional attributes improves discovery accuracy.

4.3.2 Service Discovery Time

Table 6 compares discovery times for intention-based vs. OWLS-MX matching
at 200, 400, and 800 services (10 requests shown). Time units are seconds (R__1
= first request). Average discovery time is computed via Eq. (6). Fig. 13 shows
both methods’ times increase with service count, but intention-based matching
requires more time due to more parameters and the extra intention extraction
step. Averaged across 200, 400, and 800 services, OWLS-MX takes 7.0951s
vs. 8.8865s for intention-based—an average overhead of 1.7914s.

After intention matching, a similarity-ranked list is generated. Using the top
100 services for context and QoS matching, Table 7 shows query times for 20
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requests. Averaged context and QoS times are 0.268015s and 0.06888s respec-
tively—negligible overhead relative to intention matching time (Fig. 13) while
significantly improving accuracy.

5 Conclusion

This paper proposes an intention, context, and QoS-based service description
method and matching algorithm. CQISM ontology stores service intention, con-
text, and QoS information within OWL-S files for matching. Intention extrac-
tion resolves description-need mismatches; context and QoS incorporation fur-
ther improves accuracy. Using ontology standardizes intentional service descrip-
tion without altering existing OWL-S parsing tools. Comparative experiments
with [16] and [21] demonstrate that simultaneous context and QoS consideration
improves accuracy within acceptable timeframes.

Future work will focus on improving matching algorithms, standardizing discov-
ery mechanisms, reducing intention-based discovery time, and enhancing IoT
applications.
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