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Abstract
Existing mobile crowdsensing task recommendation methods share common
drawbacks: on one hand, they fail to fully consider the impact of spatio-temporal
information on worker preferences, resulting in low recommendation accuracy;
on the other hand, they ignore the influence of task popularity on recommenda-
tions, leading to poor recommendation coverage. To address these issues, this
paper proposes a mobile crowdsensing task recommendation method based on
spatio-temporal information and task popularity analysis. First, we fully utilize
relevant information from worker execution records (such as the time and loca-
tion when workers perform tasks) to accurately predict worker preferences for
tasks. Second, we analyze task popularity based on worker reputation and task
execution status, and design a task popularity penalty factor to improve the
coverage of recommendation results. Then, we generate a task recommendation
list by combining worker preferences and the popularity penalty factor. Experi-
mental results demonstrate that, compared with existing baseline methods, the
proposed method achieves an average improvement of 3.5% in recommendation
accuracy and 25% in recommendation coverage.
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Abstract: Existing task recommendation methods in mobile crowd sensing
suffer from two common drawbacks: first, they fail to adequately consider the
influence of spatial-temporal information on worker preferences, resulting in
low recommendation accuracy; second, they ignore the impact of task popu-
larity on recommendations, leading to poor coverage. To address these issues,
this paper proposes a novel task recommendation approach based on spatial-
temporal information and task popularity analysis. The method first leverages
relevant information from worker execution records (e.g., task execution time
and location) to accurately predict worker preferences. Second, it analyzes task
popularity based on worker reputation and task execution patterns, designing
an appropriate task popularity penalty factor to improve recommendation cov-
erage. Finally, it generates task recommendation lists by combining worker pref-
erences with the popularity penalty factor. Experimental results demonstrate
that compared with existing baseline methods, the proposed approach improves
recommendation accuracy by 3.5% on average and increases recommendation
coverage by 25%.

Keywords: mobile crowd sensing; task recommendation; spatial-temporal in-
formation; popularity bias; task popularity

0 Introduction
Mobile Crowd Sensing (MCS) represents a promising sensing paradigm that
has been widely applied across numerous domains, including environmental
monitoring, health data collection, industrial control management, geological
surveying, and transportation planning. A typical MCS system comprises three
components: task publishers, task workers, and an MCS platform. The work-
flow proceeds as follows: task publishers submit requests to the MCS platform,
which establishes task lists for workers based on received requests; workers se-
lect tasks from these lists to execute, upload sensed data to the platform, which
then delivers the data back to publishers. Throughout this process, task selec-
tion likelihood is influenced by worker preferences. Consequently, mining worker
preferences to recommend the most probable task lists becomes crucial. The ef-
ficiency and quality of task recommendations not only affect workers’willingness
to participate but also impact the quality of sensed data.

Existing research tends to employ single models to learn worker preferences for
task recommendation. For instance, methods based on worker similarity or task
similarity, and approaches using logistic regression models, require predefining
factors that influence worker preferences. However, in MCS, numerous factors
affect preferences, making it impractical to predetermine all of them. To ad-
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dress this limitation, some studies have begun applying recommender systems
to MCS task recommendation, predicting worker preferences from historical ex-
ecution records. For example, certain works utilize matrix factorization models
to predict preferences and generate recommendation lists, while others propose
feature-based Bayesian methods to learn latent task features and address cold-
start scenarios for new tasks. Some approaches integrate both worker prefer-
ences and reliability for task recommendation.

These methods inadequately consider the spatial-temporal dynamics of worker
preferences, which affects recommendation accuracy. On one hand, preferences
evolve over time, with recent task selections better representing current inter-
ests. On the other hand, MCS tasks are distributed across different sensing
regions, requiring workers to travel to execution locations. Considering cost fac-
tors, workers prefer tasks nearer to their current location. Although one study
employs tensor decomposition for location-based recommendation, worker mo-
bility necessitates frequent model updates to adapt to location changes, prevent-
ing timely capture of new preferences. Therefore, accurately predicting worker
preferences by incorporating spatial-temporal information remains a significant
challenge.

Furthermore, existing MCS task recommendation research overlooks the impact
of task popularity on recommendation effectiveness, leading to popularity bias
and reduced coverage. For example, popular tasks like urban traffic monitoring
may attract many workers due to their simplicity. If the platform recommends
such tasks to all workers, it creates data redundancy, while unpopular tasks
like mountainous geological surveys may fail due to insufficient samples. Typi-
cally, in recommender systems, task popularity is determined by the proportion
of workers executing it—the higher the proportion, the greater the popularity.
In MCS platforms, workers exhibit herd mentality, easily influenced by others
to execute certain tasks, causing popularity fluctuations. Task popularity is
closely related to worker reputation, as higher-reputation workers exert greater
influence on others, consequently impacting task popularity more significantly.
Thus, analyzing task popularity based on worker reputation and execution pat-
terns, and designing reasonable popularity penalty factors to improve coverage,
presents another challenge.

To address these challenges, this paper proposes the TimeMF-BiLSTM method
(Time Matrix Factorization and Bidirectional Long Short-Term Memory) for
MCS task recommendation. This approach comprehensively considers worker
preferences and task popularity penalty factors to generate recommendation
lists, ensuring both accuracy and coverage. The main contributions are:

a) A time-aware matrix factorization model learns implicit relationships be-
tween workers and tasks from historical execution data, while a BiLSTM
model extracts location preference information from worker trajectory
data. Fusing these two models yields more accurate task recommenda-
tions.
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b) Social networks are introduced to calculate worker reputation, and a task
popularity calculation method based on worker reputation is proposed for
more precise popularity analysis. A reasonable task popularity penalty
factor is designed to ensure recommendation coverage.

1 System Model
Figure 1 illustrates the overall architecture of the TimeMF-BiLSTM task rec-
ommendation method. The approach first employs a time-aware matrix fac-
torization model (TimeMF) to learn implicit relationships between workers and
tasks (i.e., latent worker feature vectors and task latent features) from execution
records, deriving worker preferences (denoted as TimeMF preference scores) to
address the dynamic temporal changes in preferences. Second, a Bidirectional
Long Short-Term Memory (BiLSTM) network learns workers’likely next lo-
cations from GPS trajectory sequences, generating worker preferences based
on distances between tasks and that location (denoted as BiLSTM preference
scores) to address dynamic spatial changes in preferences. Third, the prefer-
ences learned by TimeMF and BiLSTM are fused using logistic regression to
obtain comprehensive worker preference scores, ensuring recommendation accu-
racy. Additionally, social networks are introduced to calculate worker reputa-
tion, and influence factors among workers are analyzed based on task execution
patterns. Combining worker reputation and influence factors enables task popu-
larity calculation, constructing a penalty factor negatively correlated with pop-
ularity. The final worker-task score is obtained by multiplying the popularity
penalty factor with worker preferences, addressing coverage imbalance caused
by popularity bias. Finally, tasks are ranked by these final scores in descending
order to generate Top-N recommendation lists for each worker.

Key parameters are described as follows: the worker set contains 𝑚 workers
{𝑢1, 𝑢2, ..., 𝑢𝑚}, the task set contains 𝑛 tasks {𝑣1, 𝑣2, ..., 𝑣𝑛}, worker execution
records are represented as ℍ, containing all tasks executed by worker 𝑢𝑖, each
task’s execution record is represented as 𝔼, including all worker IDs who executed
task 𝑣𝑗, and 𝕃 represents worker 𝑢𝑖’s GPS trajectory sequence where 𝑙𝑠 is a
latitude-longitude pair denoting worker 𝑢𝑖’s location at time 𝑡𝑠. This paper
proposes an effective method to accurately compute the worker-task scoring
matrix 𝑌 , generating Top-N recommendation lists for each worker with the goal
of maximizing recommendation accuracy and coverage, where 𝑁 is set by the
platform based on actual conditions.

2.1 Time-Aware Matrix Factorization
To address dynamic temporal changes in worker preferences, the TimeMF model
learns preferences through iterative updates of latent worker feature vectors 𝑈
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and task latent feature vectors 𝑉 , using their product to predict the worker-task
scoring matrix ̂𝑀𝑃 and fill in zero values in the original matrix 𝑀𝑃 . TimeMF
comprises three components: (a) initial worker-task scoring matrix construction
based on execution records with temporal factors; (b) model learning using
appropriate algorithms to iteratively update task latent features until reaching
an optimal solution where the product of worker and task latent feature vectors
approximates the original matrix; (c) preference score generation based on the
final latent vectors to predict worker-task scores.

2.1.1 Initial Worker-Task Scoring Matrix Construction

Worker-task scores represent preferences. Since MCS platforms rarely require
explicit ratings, this paper uses task execution frequency as implicit ratings,
represented as a triple {𝑢𝑖, 𝑣𝑗, 𝑡𝑖𝑗} where 𝑡𝑖𝑗 is the execution time. If worker
𝑢𝑖 executes task 𝑣𝑗 at time 𝑡𝑖𝑗, it indicates interest {𝑢𝑖, 𝑣𝑗, 𝑡𝑖𝑗} = 1; otherwise
{𝑢𝑖, 𝑣𝑗, 𝑡𝑖𝑗} = 0.

Considering the temporal dynamics of preferences, recent tasks better represent
current interests. Therefore, inspired by Newton’s law of cooling, an exponential
decay function 𝑒−𝜆(𝑡−𝑡𝑖𝑗) is introduced, making score weights decay exponentially
over time, where 𝑡 is the current time, 𝑡𝑖𝑗 is the execution time, and 𝜆 > 0
is the temporal decay factor (larger 𝜆 means lower importance of historical
preferences). The original worker-task scoring matrix 𝑀𝑃 is constructed where
each element 𝑚𝑝𝑖𝑗 is calculated as:

𝑚𝑝𝑖𝑗 = ∑
{𝑡𝑖𝑗|(𝑢𝑖,𝑡𝑖𝑗)∈ℍ}

𝑒−𝜆(𝑡−𝑡𝑖𝑗)

2.1.2 TimeMF Model Learning

Worker and task latent feature vectors are represented by two 𝑘-dimensional
low-rank matrices 𝑈 ∈ ℝ𝑚×𝑘 and 𝑉 ∈ ℝ𝑛×𝑘, where each row of 𝑈 represents
worker 𝑢𝑖’s latent vector 𝑈𝑖 and each row of 𝑉 represents task 𝑣𝑗’s latent vector
𝑉𝑗. Values are randomly initialized. The training objective minimizes the error
between ̂𝑀𝑃 and the original matrix 𝑀𝑃 :

arg min
𝑈,𝑉

1
2 ||𝑀𝑃 − 𝑈𝑉 𝑇 ||2𝐹 + 𝜆𝑈

2 ||𝑈||2𝐹 + 𝜆𝑉
2 ||𝑉 ||2𝐹

where 𝑐𝑖,𝑗 indicates worker 𝑢𝑖’s interest level in task 𝑣𝑗, defined as 𝑐𝑖,𝑗 = 1 +
𝛼 ⋅ 𝑚𝑝𝑖𝑗 with 𝛼 as a decay parameter. || ⋅ ||𝐹 denotes the Frobenius norm, and
𝜆𝑈 and 𝜆𝑉 are regularization terms. Equation (2) can be solved using gradient
descent methods.
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2.1.3 TimeMF Preference Score Generation

Using the final learned latent vectors, the preference score is generated as:

̂𝑚𝑝𝑖𝑗 = 𝑈𝑖𝑉 𝑇
𝑗

2.2 Spatial-Aware Bidirectional Long Short-Term Memory
To address dynamic spatial changes in worker preferences, BiLSTM learns pref-
erences through: (a) trajectory data processing with missing value imputation;
(b) BiLSTM prediction of workers’likely next locations from GPS trajectories;
(c) preference score generation based on distances between the predicted location
and task locations.

2.2.1 Trajectory Data Processing

For missing values in worker trajectory data, imputation first leverages spatio-
temporal correlations within the worker’s own trajectory. If worker 𝑢𝑖’s location
at time 𝑡𝑠 is missing, the system searches the preceding and following 5 time
slots. If location information is found, it fills the missing value 𝑙𝑠.

For remaining missing values, trajectory similarity between worker 𝑢𝑖 and other
workers is compared to fill gaps using similar workers’location information at
that time. If only one similar worker has location data, it is used directly; if
multiple workers have data, the most similar worker’s location is selected.

Trajectory similarity between workers 𝑢𝑖 and 𝑢𝑤 is calculated as:

𝜉(𝑙(𝑢𝑖)
𝑠 , 𝑙(𝑢𝑤)

𝑠 ) = ∑
𝑡𝑠∈𝐿𝑆

𝜉(𝑙(𝑢𝑖)
𝑠 , 𝑙(𝑢𝑤)

𝑠 )

where 𝜉(𝑙(𝑢𝑖)
𝑠 , 𝑙(𝑢𝑤)

𝑠 ) represents location similarity at time 𝑡𝑠:

𝜉(𝑙(𝑢𝑖)
𝑠 , 𝑙(𝑢𝑤)

𝑠 ) = {1 if 𝑑(𝑙(𝑢𝑖)
𝑠 , 𝑙(𝑢𝑤)

𝑠 ) ≤ 𝜖
0 if 𝑑(𝑙(𝑢𝑖)

𝑠 , 𝑙(𝑢𝑤)
𝑠 ) > 𝜖

𝑑(𝑙(𝑢𝑖)
𝑠 , 𝑙(𝑢𝑤)

𝑠 ) denotes the distance between workers at time 𝑡𝑠. If the distance
is less than or equal to threshold 𝜖, the locations are considered similar. The 𝜖
value is set by the platform.
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2.2.2 BiLSTM Prediction

Since BiLSTM requires fixed-length input sequences, a sliding window method
is introduced (window size determined experimentally). Trajectory sequences
are converted into fixed-length input-output samples for training.

The BiLSTM model consists of 5 layers: (a) Input layer receiving worker-task
trajectory sequences; (b) Embedding layer using Word Embedding to convert
GPS sequences into vector representations 𝑥𝐼𝐷; (c) BiLSTM layer with forward
and backward LSTM hidden layers processing 𝑥𝐼𝐷 to produce vectors ℎ1 (for-
ward) and ℎ2 (backward); (d) Dropout layer to prevent overfitting; (e) Output
layer predicting the next likely location 𝑙𝑛𝑒𝑥𝑡.

2.2.3 BiLSTM Preference Score Generation

The worker-task preference matrix 𝐿𝑃 is constructed where each element 𝑙𝑝𝑖𝑗 is
derived using Euclidean distance:

𝑙𝑝𝑖𝑗 = ||𝑙𝑛𝑒𝑥𝑡 − 𝑙𝑣𝑗 ||2

𝑙𝑣𝑗 represents task 𝑣𝑗’s required sensing location. If the predicted next location
𝑙𝑛𝑒𝑥𝑡 is close to task 𝑣𝑗, the worker is more likely to execute it.

2.3 Preference Fusion
The final worker preference score 𝑃 is obtained by fusing TimeMF scores ̂𝑀𝑃
and BiLSTM scores 𝐿𝑃 using logistic regression:

𝑝𝑖𝑗 = 1
1 + exp(−( ̂𝑚𝑝𝑖𝑗 + 𝑙𝑝𝑖𝑗))

Each element 𝑝𝑖𝑗 represents worker 𝑢𝑖’s fused preference score for task 𝑣𝑗.

3 Task Popularity Penalty Factor Design
Traditional popularity calculation methods treat all workers’impact on task
popularity as homogeneous, introducing errors. In MCS platforms, task popu-
larity is closely related to worker reputation. Workers exhibit herd mentality,
easily influenced by others. When high-reputation workers execute a task, it at-
tracts more workers in the next time slot, causing popularity spikes. Therefore,
incorporating worker reputation enables better prediction of future popularity.

chinarxiv.org/items/chinaxiv-202205.00061 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00061


First, the worker influence factor matrix 𝐼𝑁 is computed, representing how
easily workers affect each other. The influence factor 𝑖𝑛𝑖𝑤 between workers 𝑢𝑖
and 𝑢𝑤 is:

𝑖𝑛𝑖𝑤 = |ℍ𝑖 ∩ ℍ𝑤|
|ℍ𝑖 ∪ ℍ𝑤|

where ℍ𝑖 and ℍ𝑤 are task sets executed by each worker. More common tasks
indicate higher intimacy and mutual influence.

Second, social networks are introduced to compute worker reputation, estab-
lishing reputation matrix 𝑊𝑃 . Reputation can be quantified through likes,
comments, and friend relationships. The impact of worker 𝑢𝑖’s reputation on
task 𝑣𝑗’s popularity is 𝑤𝑝𝑖 ⋅ 𝑖𝑛𝑖𝑤. Thus, task popularity is redefined as:

𝑝𝑜𝑝𝑗 = ∑
𝑢𝑖∈𝕌𝑗

∑
𝑢𝑤∈𝕌

𝑤𝑝𝑖 ⋅ 𝑖𝑛𝑖𝑤

where 𝕌𝑗 is the set of workers who executed task 𝑣𝑗.

Task popularity values are normalized to the range [0,1]:

𝑝𝑜𝑝𝑛𝑜𝑟𝑚
𝑗 = 𝑝𝑜𝑝𝑗 − 𝑝𝑜𝑝𝑚𝑖𝑛

𝑝𝑜𝑝𝑚𝑎𝑥 − 𝑝𝑜𝑝𝑚𝑖𝑛

where 𝑝𝑜𝑝𝑚𝑎𝑥 and 𝑝𝑜𝑝𝑚𝑖𝑛 are maximum and minimum popularity values in the
task set.

The popularity penalty factor 𝑚𝑗 for task 𝑣𝑗 adjusts recommendation weights
to ensure coverage:

𝑚𝑗 = {
1 if 𝑠𝑎𝑚𝑝𝑙𝑒𝑗 < 𝜙
1 − 𝑠𝑎𝑚𝑝𝑙𝑒𝑗−𝜙

𝑠𝑎𝑚𝑝𝑙𝑒𝑡𝑜𝑡𝑎𝑙
𝑗 −𝜙 ⋅ 𝑝𝑜𝑝𝑛𝑜𝑟𝑚

𝑗 if 𝜙 ≤ 𝑠𝑎𝑚𝑝𝑙𝑒𝑗 < 𝑠𝑎𝑚𝑝𝑙𝑒𝑡𝑜𝑡𝑎𝑙
𝑗

𝑠𝑎𝑚𝑝𝑙𝑒𝑗 is the current number of collected samples, 𝑠𝑎𝑚𝑝𝑙𝑒𝑡𝑜𝑡𝑎𝑙
𝑗 is the required

sample count (defined by task publishers), and 𝜙 is the median execution count
of all tasks in the platform.

4 Task Recommendation List Generation
Based on the popularity penalty factor, the final worker-task prediction score
is:

𝑦𝑖𝑗 = 𝑝𝑖𝑗 ⋅ 𝑚𝑗

chinarxiv.org/items/chinaxiv-202205.00061 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00061


where 𝑝𝑖𝑗 is the fused spatial-temporal preference and 𝑚𝑗 is the popularity
penalty factor. When 𝑠𝑎𝑚𝑝𝑙𝑒𝑗 < 𝑠𝑎𝑚𝑝𝑙𝑒𝑡𝑜𝑡𝑎𝑙

𝑗 , tasks are ranked by 𝑦𝑖𝑗 in de-
scending order, and the top 𝑁 tasks form the recommendation list. When
𝑠𝑎𝑚𝑝𝑙𝑒𝑗 ≥ 𝑠𝑎𝑚𝑝𝑙𝑒𝑡𝑜𝑡𝑎𝑙

𝑗 , the task is removed from the candidate set.

Algorithm 1: TimeMF-BiLSTM

Input: Worker set 𝕌, task set 𝕍, worker execution records ℍ, task execution
records 𝔼, worker trajectory records 𝕃, required sample counts 𝑠𝑎𝑚𝑝𝑙𝑒𝑡𝑜𝑡𝑎𝑙

Output: Worker task recommendation lists

a) Randomly initialize worker latent vectors 𝑈 and task latent vectors 𝑉

b) Construct original scoring matrix 𝑀𝑃 using equation (1)

c) Construct loss function from equation (2) and train TimeMF via gradient
descent; if loss < threshold, proceed to (d), else repeat (c)

d) Build TimeMF preference matrix ̂𝑀𝑃 using equation (3)

e) Compute trajectory similarity between workers 𝑢𝑖 and 𝑢𝑤 using equation
(5)

f) For each worker 𝑢𝑖, traverse trajectory record 𝕃; if 𝑙(𝑢𝑖)
𝑠 = 0, fill using the

most similar worker’s location at that slot

g) Train BiLSTM model to output predicted next location 𝑙𝑛𝑒𝑥𝑡

h) Compute similarity 𝑙𝑝𝑖𝑗 between 𝑙𝑛𝑒𝑥𝑡 and task 𝑣𝑗’s location using
equation (6), constructing BiLSTM preference matrix 𝐿𝑃

i) Fuse preferences using equation (7) to obtain final preference matrix 𝑃

j) Construct popularity penalty factor matrix 𝑀 using equation (13)

k) Compute final prediction score matrix 𝑌 using equation (14)

l) For each worker 𝑢𝑖, sort row 𝑖 of 𝑌 in descending order, output top 𝑁 tasks
as recommendation list; if 𝑠𝑎𝑚𝑝𝑙𝑒𝑗 ≥ 𝑠𝑎𝑚𝑝𝑙𝑒𝑡𝑜𝑡𝑎𝑙

𝑗 for task 𝑣𝑗, remove 𝑣𝑗
from 𝕍 and restart training

5.1 Datasets
The proposed method is validated on two real datasets: Gowalla and Foursquare.

Gowalla Dataset: Contains 196,591 users’check-in records from August 2009
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to September 2010. After preprocessing (removing workers with <20 check-ins),
216,245 records remain, including 78 workers, 117 tasks, and 371 locations.

Foursquare Dataset: Contains 2,153,471 users, 1,143,092 venues, 1,021,970
check-ins, 27,098,490 social relations, and 2,809,581 ratings extracted via public
API. After preprocessing, 622,841 records remain, including 285 workers, 105
tasks, and 168 locations.

Experiments run on a Dell laptop with Intel Core i5-10210U processor and 8GB
RAM, Windows 10 OS, Python 3.6. Main parameters are listed in Table 1.

Table 1. Parameter Settings

Parameter Value Range
Time slot 𝑇 30min
Task count 𝑛 [20,100]
Worker count 𝑚 [10,25]
Latent feature dimension 𝑘 [0.001,0.05]
Learning rate 𝛼 [0.01,0.9]
Regularization 𝛽 -
Time window 𝑡 -
Dropout -

5.3 Evaluation Metrics
a) Precision

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1
𝑚

𝑚
∑
𝑖=1

ℎ𝑖𝑡𝑐𝑜𝑢𝑛𝑡𝑖
𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟𝑖

where ℎ𝑖𝑡𝑐𝑜𝑢𝑛𝑡𝑖 is the number of tasks executed by worker 𝑢𝑖 from the recom-
mendation list.

b) Normalized Discounted Cumulative Gain (NDCG)

NDCG measures ranking quality, with values in (0,1). Higher NDCG indicates
better alignment with worker preferences.

𝑁𝐷𝐶𝐺 = 𝐷𝐶𝐺
𝐼𝐷𝐶𝐺

where DCG is Discounted Cumulative Gain:

𝐷𝐶𝐺 =
𝑏

∑
𝑖=1

𝑟𝑒𝑙𝑖
log2(𝑖 + 1)
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𝑏 is the number of tasks in the recommendation list, and 𝑟𝑒𝑙𝑖 is 1 if the worker
executed the task, 0 otherwise.

c) Coverage

Coverage describes the proportion of tasks that can be recommended:

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 1 − 1
𝑛

𝑛
∑
𝑐=1

𝑝𝑜𝑝(𝑣𝑐)
∑𝑛

𝑗=1 𝑝𝑜𝑝(𝑣𝑗)

where 𝑣𝑐 is the 𝑐-th task sorted by popularity in descending order.

5.4 Comparison Methods
The proposed method is compared against six baselines:

• TR-UMCR: Collaborative ranking combining hybrid user models with
list-wise ranking learning

• FLTE: Logistic regression-based task recommendation
• RTRA: Matrix factorization only (learns implicit worker-task relation-

ships)
• PRTR: Integrates location information using tensor decomposition, ig-

noring temporal dynamics
• TCTR: Considers only temporal factors, ignoring spatial dynamics
• RLIN: Linear weighted fusion of two models (vs. logistic regression in

TimeMF-BiLSTM)

5.5 Performance Evaluation
Precision: Tables 2 and 3 show precision results on both datasets. TimeMF-
BiLSTM significantly outperforms FLTE by leveraging implicit worker-task re-
lationships. When 𝑁 > 15, TimeMF-BiLSTM exceeds TR-UMCR, PRTR, and
TCTR, demonstrating that fusing spatial-temporal factors better captures pref-
erences. TR-UMCR and PRTR perform similarly as both use basic matrix
factorization with location information, confirming location’s importance in
MCS. Compared to RLIN, TimeMF-BiLSTM achieves slightly higher precision
because integer ratings from execution history cause rounding errors in linear
regression. Precision increases with 𝑁 , converging to ~94.3% on Gowalla when
𝑁 = 20.

Table 2. Precision on Gowalla Dataset
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Method N=5 N=10 N=15 N=20
TimeMF-BiLSTM 32.2% 59.6% 88.4% 94.3%
TR-UMCR 36.8% 21.9% 25.2% 39.6%
FLTE 37.7% 30.2% 58.4% 30.7%
RTRA 38.1% 59.9% 60.3% 58.5%
PRTR 82.9% 64.1% 73.8% 78.3%
TCTR 80.8% 82.1% 90.2% 70.5%
RLIN 82.4% 88.9% 87.6% 91.6%

Table 3. Precision on Foursquare Dataset

Method N=5 N=10 N=15 N=20
TimeMF-BiLSTM 33.9% 57.5% 78.9% 92.1%
TR-UMCR 27.7% 21.0% 25.2% 20.7%
FLTE 37.7% 31.6% 57.1% 25.1%
RTRA 33.9% 43.5% 60.3% 53.4%
PRTR 77.5% 57.1% 70.1% 77.4%
TCTR 84.8% 81.8% 89.2% 63.3%
RLIN 78.5% 89.2% 85.1% 89.5%

When 𝑁 < 10, TimeMF-BiLSTM’s precision is slightly lower than PRTR due
to the popularity penalty factor slightly reducing accuracy for coverage improve-
ment. To verify this, worker ID 9 from Foursquare is analyzed using tasks 1-20
as training data. Table 4 shows that predicted preferences 𝑃 closely match
true preferences (MSE = 0.414152). However, without penalty, tasks 2,3,4,8
(high-scoring) would dominate the top-5 recommendations, causing popularity
bias. After applying the penalty factor, final scores 𝑌 reduce weights for pop-
ular tasks, enabling tasks from regions C1 and C2 to rank higher, improving
coverage at a slight precision cost. As 𝑁 increases, coverage requirements are
met and precision improves.

Table 4. Sample Instance

Task ID True Score Region Predicted P Final Y
1 4 C1 3.8 3.8
2 8 C3 7.9 5.2
3 10 C3 9.8 6.1
4 7 C4 6.9 4.8
5 3 C1 2.9 2.9

NDCG: With 𝑁 = 20 and parameter 𝑏 = 𝑛 (current task count), TimeMF-
BiLSTM achieves significantly higher NDCG than baselines, nearly double that
of logistic regression fusion, confirming superior ranking accuracy.
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Coverage: Figures 4 and 5 show coverage positively correlates with 𝑁 .
TimeMF-BiLSTM achieves higher coverage by penalizing popular tasks, en-
abling more diverse task selection. When worker-task ratio increases, coverage
decreases proportionally, but the decline is slower with reputation integration
(Figures 6-7). At a 10:1 ratio, coverage exceeds 71%. More social relationship
entries further slow the coverage decline, validating the importance of worker
reputation.

6 Conclusion
This paper addresses low accuracy and coverage in MCS task recommendation
by proposing a method that fuses spatial-temporal information with task popu-
larity analysis. The approach accurately mines worker preferences while mitigat-
ing popularity bias. By separately computing temporal and spatial influences,
it reduces the need for frequent model updates. The method is applicable to all
spatial-temporal recommendation problems, supports easy integration of addi-
tional factors due to model independence, and enables separate optimization of
accuracy and coverage with good scalability. Experiments on two real datasets
demonstrate superior performance compared to baselines, proving its effective-
ness for practical MCS applications. Future work will consider more influencing
factors and explore faster training to capture preference changes promptly.

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202205.00061 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00061

	Mobile Crowdsensing Task Recommendation Based on Spatiotemporal Information and Task Popularity Analysis: Postprint
	Abstract
	Full Text
	Preamble
	0 Introduction
	1 System Model
	2.1 Time-Aware Matrix Factorization
	2.1.1 Initial Worker-Task Scoring Matrix Construction
	2.1.2 TimeMF Model Learning
	2.1.3 TimeMF Preference Score Generation

	2.2 Spatial-Aware Bidirectional Long Short-Term Memory
	2.2.1 Trajectory Data Processing
	2.2.2 BiLSTM Prediction
	2.2.3 BiLSTM Preference Score Generation

	2.3 Preference Fusion
	3 Task Popularity Penalty Factor Design
	4 Task Recommendation List Generation
	5.1 Datasets
	5.3 Evaluation Metrics
	5.4 Comparison Methods
	5.5 Performance Evaluation
	6 Conclusion


