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Abstract
Bullens et al. left an open problem in CSI-Fish, namely designing an identifi-
cation protocol that allows the system challenge space to be #1;, rather than
a small set #1;. This paper proposes a zero-knowledge proof scheme based
on supersingular isogenies. The scheme treats the challenge C as an isogeny,
thereby solving this problem and achieving a smaller soundness error as well
as shorter public key length. The scheme can also be transformed into a non-
interactive zero-knowledge proof via the Fiat-Shamir transform, consequently
enabling the realization of supersingular isogeny-based signature schemes and
group signature schemes in the quantum random oracle model. Moreover, this
paper analyzes the security and correctness of the scheme.

Full Text
Zero-Knowledge Proof and Group Signature Scheme Based
on Supersingular Isogeny
Zhao Xingbo, Li Mengdong†, Wang Ying, Zhu Yilin
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nology Institute, Beijing 100070, China)

Abstract: Bullens et al. left an open problem in CSI-FiSh to devise an identifi-
cation protocol that allows the challenge set to be the entire class group rather
than a small subset. This paper proposes a zero-knowledge proof scheme based
on supersingular isogeny that addresses this problem by treating the challenge
𝐶 as an isogeny itself, thereby achieving a smaller soundness error and reduced
public key length. The scheme can be transformed into a non-interactive zero-
knowledge proof via the Fiat-Shamir transform, enabling the construction of
supersingular isogeny-based signature and group signature schemes under the
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quantum random oracle model. This paper analyzes the security and correctness
of these proposed schemes.

Key words: zero-knowledge proof; supersingular; isogeny; group signature

0 Introduction
Isogeny-based cryptography represents a promising and valuable candidate for
post-quantum cryptography. An isogeny is a morphism between elliptic curves
that preserves the base point and constitutes a group homomorphism [1]. While
early isogeny-based cryptographic systems primarily studied ordinary curves
[2,3], the existence of subexponential-time quantum algorithms for the ordinary
curve isogeny problem led to a shift toward supersingular curves, for which Bi-
asse et al. [4] established that quantum algorithms require exponential time.
Consequently, most contemporary isogeny-based schemes operate on supersin-
gular elliptic curves.

Current constructions of isogeny-based signatures rely fundamentally on two
isogeny problems: the Computational Supersingular Isogeny (CSSI) problem
[5] and the Group Action Inverse Problem (GAIP) [6]. Most isogeny-based
signatures combine these problems with the Fiat-Shamir transform [7,8]. Signa-
ture schemes based on CSSI [9,10] produce signatures of at least 12KB even in
their most optimized variants [10]. In contrast, De Feo and Galbraith proposed
SeaSign [11], which leverages GAIP and employs the Fiat-Shamir-with-aborts
technique to achieve remarkably compact signatures under 1KB at the 128-bit
security level. More recently, Beullens et al. [12] improved upon SeaSign by com-
puting the ideal class group, yielding the first practical isogeny-based signature
scheme, CSI-FiSh. This scheme enables uniform sampling from the ideal class
group with canonical representation, requiring only 390 milliseconds for signing
or verification while producing 263-byte signatures. Thus, CSI-FiSh represents
a highly practical isogeny-based signature scheme.

Through analysis of CSI-FiSh and other supersingular isogeny-based signature
schemes, this paper proposes a zero-knowledge proof system that improves upon
the proof system in CSI-FiSh. Our scheme resolves the open problem posed in
CSI-FiSh by expanding the challenge space from a small set to the order 𝑁
of the ideal class group in CSIDH-512. Compared to CSI-FiSh, our scheme
achieves a smaller soundness error and shorter public key length, requiring only
a single elliptic curve as the public key. Building upon this proof system, we
construct both a supersingular isogeny-based signature scheme and a group
signature scheme, providing security proofs for the signature scheme.

1.1 Supersingular Elliptic Curves and Isogenies
An isogeny 𝜑 ∶ 𝐸 → 𝐸1 between elliptic curves is a morphism that is also a
group homomorphism. Tate [13] established that two elliptic curves 𝐸, 𝐸1 over
a finite field are isogenous if and only if #𝐸(𝔽𝑞) = #𝐸1(𝔽𝑞). The endomorphism
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set End(𝐸), equipped with point addition and function composition, forms a
ring structure [14]. In 𝔽𝑝, the Frobenius endomorphism 𝜋 satisfies the charac-
teristic equation 𝜋2 − 𝑡𝜋 + 𝑞 = 0, where 𝑡 is the Frobenius trace. A curve 𝐸 is
supersingular if and only if 𝑡 = 0.

The 𝔽𝑝-rational endomorphism ring End𝑝(𝐸) always contains the subring ℤ[𝜋].
Let 𝒪 be an order in the imaginary quadratic field 𝐾 = ℚ(√−𝑝). The ideal
class group cl(𝒪) acts freely and transitively on the set of supersingular elliptic
curves 𝐸 defined over 𝔽𝑝 with End𝑝(𝐸) ≅ 𝒪. For any ideal 𝔞 ∈ cl(𝒪), there
exists a Frobenius map such that 𝔞 ⋆ 𝐸 represents this action [15]. Recently,
this action ⋆ has been used to design several cryptographic primitives—CSIDH
and its derived signature schemes SeaSign and CSI-FiSh—whose security relies
on the Group Action Inverse Problem, defined as follows:

Problem 1 (Group Action Inverse Problem: GAIP). Given two curves
𝐸, 𝐸′ with End𝑝(𝐸) ≅ End𝑝(𝐸′) ≅ 𝒪, find an ideal 𝔞 ⊂ 𝒪 such that 𝐸′ = 𝔞 ⋆ 𝐸.

1.2 CSI-FiSh
Beullens et al. proposed an efficient signature scheme based on the hard-
ness of CSIDH-512. For the prime 𝑝 selected in CSIDH for the CSIDH-
512 parameter set, Beullens et al. determined that the relevant class
group of the endomorphism ring is cyclic, generated by 𝑔 with order 𝑁 =
337140718515936042952958677442935848893159941450468199585300827874558732204909174.
For any ideal 𝔞 ∈ cl(𝒪), one can write 𝔞 = 𝑔𝑎 where 𝑎 ∈ ℤ𝑁 . As long as the
CSIDH-512 parameter set is used, anyone can uniformly sample class group
elements and obtain a canonical representation. For a supersingular elliptic
curve 𝐸0 isogenous to 𝐸, we simplify the notation 𝔞 ⋆ 𝐸0 to [𝑎]𝐸0.

1.3 Zero-Knowledge Proof
A zero-knowledge proof (ZKP) is a two-party protocol between a prover and a
verifier where the prover demonstrates knowledge of secret information without
revealing anything beyond the validity of the statement itself. For a language
𝐿 ⊆ {0, 1}∗ where each string 𝑥 is accompanied by a witness 𝑤 such that (𝑥, 𝑤) ∈
𝑅, we define a Σ-protocol following [16]:

Definition 1. A Σ-protocol for a relation 𝑅 with challenge set 𝐶 is a three-move
protocol between prover 𝑃 and probabilistic polynomial-time (PPT) verifier 𝑉
with the following properties:

• Three-move form: The protocol proceeds as: (1) Prover 𝑃 computes
commitment 𝑡 and sends it to verifier 𝑉 ; (2) Verifier 𝑉 selects challenge
𝑐 ∈ 𝐶 and sends it to 𝑃 ; (3) Prover sends response 𝑟 to verifier, who finally
accepts or rejects based on the transcript (𝑡, 𝑐, 𝑟).

• Completeness: For honest prover 𝑃 and verifier 𝑉 , when (𝑥, 𝑤) ∈ 𝑅,
the verifier accepts with probability at least 1 − 𝛼.
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• Special Soundness: There exists a PPT knowledge extractor 𝐾 that,
given two accepting transcripts (𝑡, 𝑐, 𝑟) and (𝑡, 𝑐′, 𝑟′) with 𝑐 ≠ 𝑐′, outputs
𝑤′ such that (𝑥, 𝑤′) ∈ 𝑅. The soundness error is 𝛿 = 1/|𝐶|.

• Honest-Verifier Zero Knowledge (HVZK): There exists a PPT sim-
ulator that, on input 𝑥 ∈ 𝐿 and 𝑐 ∈ 𝐶, produces transcripts indistinguish-
able from real protocol executions [16].

A 3-round special-sound HVZK proof protocol can be converted to a non-
interactive zero-knowledge proof via the Fiat-Shamir transform.

Definition 2. A canonical identification scheme 𝐼𝐷 = (𝐾, 𝑃 , 𝑉 , 𝑐) consists
of: 𝐾 is a PPT key generation algorithm outputting (𝑝𝑘, 𝑠𝑘); 𝑃 is a PPT
algorithm that, on input 𝑠𝑘, outputs a message 𝑚; 𝑐 ≥ 1 is the integer bit length
of challenges; and 𝑉 is a deterministic polynomial-time verification algorithm
outputting 0 or 1 [17].

1.4 Signatures
A signature scheme 𝑆 = (KeyGen, Sign, Verify) consists of three algorithms.
Definition 3 (EUF-CMA Security). A signature scheme 𝑆 is existentially
unforgeable under chosen-message attacks (EUF-CMA) if for all PPT adver-
saries 𝐴, AdvEUF-CMA

𝐴,𝑆 (1𝜆) = Pr[𝐴 wins] = negl(𝜆).
Theorem 1 [10]. Let 𝑅 with generation algorithm 𝐾 be a hard relation, and
let (𝑃 , 𝑉 ) be the prover and verifier in a Σ-protocol for 𝑅 with 𝑐-bit challenges
for some integer 𝑐 ≥ 1. If the Σ-protocol is complete, special-sound, and honest-
verifier zero-knowledge, then the derived identification scheme is secure against
passive attacks.

Theorem 2 [10]. Let 𝐼𝐷 be a canonical identification scheme secure against
passive attacks. Let 𝑆 be the signature scheme derived from 𝐼𝐷 via the Fiat-
Shamir transform. Then 𝑆 is existentially unforgeable under chosen-message
attacks in the random oracle model.

1.5 Group Signatures
A group signature scheme comprises five polynomial-time algorithms:

• GSetup: Takes a security parameter and generates system public param-
eters and group public key.

• GJoin: An interactive protocol between user and group manager; if
successful, the user becomes a valid group member and obtains a pub-
lic/private key pair.

• GSign: For a given message 𝑚, the signature is jointly produced by the
manager and group member.

• GVerify: Verifies signatures using the group public key and message 𝑚.
• GTrace: Enables the group manager to identify the actual signer of mes-

sage 𝑚.
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Security properties required for group signatures include: (1) correctness, (2)
unforgeability, (3) anonymity, (4) traceability, and (5) collusion resistance.

2.1 Zero-Knowledge Proof Identification Protocol
For the CSIDH-512 parameter set, CSI-FiSh establishes that its ideal class group
is cyclic with known order 𝑁 and generator 𝔤. Using CSIDH-512, anyone can
uniformly sample class group elements with unique representation. We describe
our new supersingular isogeny-based identification protocol (Figure 1), which
achieves a smaller soundness error and reduced public key length compared to
CSI-FiSh.

Protocol Setup: Select a large prime 𝑝 = 4 ∏𝑙
𝑖=1 ℓ𝑖 − 1 where ℓ𝑖 are small

distinct odd primes. Given the set {ℓ𝑖}𝑙
𝑖=1, the ideal class group cl(𝒪), and a

supersingular elliptic curve 𝐸0 over 𝔽𝑝 with endomorphism ring 𝒪, the prover
and verifier execute the following Σ-protocol (Figure 2) to prove knowledge of
secret 𝑎:

• Key Generation: Select a random isogeny [𝑎] ∶ 𝐸0 → 𝐸1. The public
key is 𝑝𝑘 = 𝐸1 and the secret key is 𝑠𝑘 = 𝑎.

• Commitment: Prover randomly selects 𝑏 ∈𝑅 ℤ𝑁 , computes 𝐸𝑏 = [𝑏]𝐸0,
and sends 𝐸𝑏 to verifier.

• Challenge: Verifier checks 𝐸𝑏 ≠ 𝐸1, then randomly selects challenge
𝑐 ∈𝑅 ℤ𝑁 and sends it to prover.

• Response: Prover computes 𝑟 = 𝑐 + 𝑏 − 𝑎 mod 𝑁 and sends 𝑟 to verifier.
• Verification: Verifier checks whether [𝑟]𝐸0 = [𝑐]𝐸1+𝐸𝑏; if equal, accepts;

otherwise rejects.

2.2 Security Analysis
Theorem 3. The isogeny-based identification protocol is a complete and secure
Σ-protocol satisfying completeness, special soundness, and honest-verifier zero-
knowledge.

Proof. Completeness: Assuming an honest prover who knows secret 𝑎, the
verifier always accepts honestly generated proofs because [𝑟]𝐸0 = [𝑐+𝑏−𝑎]𝐸0 =
[𝑐]𝐸1 + 𝐸𝑏.

Special Soundness: Given two valid proofs with distinct challenges (𝑡, 𝑐, 𝑟)
and (𝑡, 𝑐′, 𝑟′) where 𝑐 ≠ 𝑐′, we have [𝑟]𝐸0 = [𝑐]𝐸1 + 𝐸𝑏 and [𝑟′]𝐸0 = [𝑐′]𝐸1 +
𝐸𝑏. Subtracting yields [𝑟 − 𝑟′]𝐸0 = [𝑐 − 𝑐′]𝐸1, providing a solution to the
GAIP problem. The cheating prover cannot succeed unless it correctly guesses
challenge 𝑐. With challenge space ℤ𝑁 containing 𝑁 elements, the protocol
achieves soundness error 1/𝑁 .

Honest-Verifier Zero Knowledge: To simulate a proof, the simulator ran-
domly samples 𝑐, 𝑟 ∈𝑅 ℤ𝑁 and computes 𝐸𝑏 = [𝑟]𝐸0 − [𝑐]𝐸1, outputting tran-
script (𝐸𝑏, 𝑐, 𝑟). By the decisional GAIP assumption, simulated proofs are indis-
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tinguishable from real protocol executions where the challenge equals 𝑐, as both
produce uniformly random 𝑟 and 𝐸𝑏 values as responses. Thus, the protocol is
honest-verifier zero-knowledge.

2.3 Signature Scheme
Algorithms 1-3 describe our isogeny-based signature scheme, whose security re-
lies on the GAIP hardness assumption. The scheme applies the Fiat-Shamir
transform to the zero-knowledge proof protocol from Section 2.1, replacing chal-
lenge 𝑐 with a hash of the ephemeral key 𝐸 and message 𝑚, i.e., 𝑐 = 𝐻(𝐸, 𝑚).
Signature 𝜎 consists of (𝑟, 𝐸), and the verifier computes 𝑐 = 𝐻(𝐸, 𝑚). The
detailed scheme follows:

Algorithm 1 KeyGen
Input: Initial curve 𝐸0 and ideal class group order 𝑁
Output: Public/private key pair (𝑝𝑘, 𝑠𝑘)
1. 𝑠𝑘 ← 𝑎 ∈𝑅 ℤ𝑁
2. 𝑝𝑘 ← 𝐸1 = [𝑎]𝐸0
3. return (𝑝𝑘, 𝑠𝑘)
Algorithm 2 Sign
Input: Message 𝑚 and private key 𝑠𝑘
Output: Signature 𝜎
1. 𝑏 ←𝑅 ℤ𝑁
2. 𝐸 ← [𝑏]𝐸0
3. 𝑐 ← 𝐻(𝐸, 𝑚)
4. 𝑟 ← 𝑐 + 𝑏 − 𝑎 mod 𝑁
5. 𝜎 ← (𝑟, 𝐸)
6. return 𝜎
Algorithm 3 Verify
Input: Message 𝑚, public key 𝑝𝑘, signature 𝜎
Output: Valid or Invalid
1. Compute 𝑐′ ← 𝐻(𝐸, 𝑚)
2. if [𝑟]𝐸0 = [𝑐′]𝐸1 + 𝐸 then
3. return Valid
4. else
5. return Invalid

2.4 Security Analysis
Theorem 4. In the random oracle model, the supersingular isogeny-based sig-
nature scheme is existentially unforgeable under chosen-message attacks (EUF-
CMA).

Proof. As shown in Section 2.2, the identification scheme (Σ-protocol) is special-
sound and honest-verifier zero-knowledge. By Theorem 1, this implies the identi-
fication scheme is secure against impersonation under passive attacks. Applying
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Theorem 2, the resulting signature scheme is EUF-CMA secure in the random
oracle model.

2.5 Comparative Analysis
The basic identification protocol in CSI-FiSh operates as follows: To prove
knowledge of a group element 𝔞 such that 𝐸1 = 𝔞 ⋆ 𝐸0, the prover randomly
selects 𝑏 ∈𝑅 ℤ𝑁 , computes 𝐸𝑏 = [𝑏]𝐸0, and sends 𝐸𝑏 to the verifier. The verifier
randomly selects a bit 𝑐 ∈ {0, 1}. If 𝑐 = 0, the prover responds with 𝑟 = 𝑏 and
the verifier checks [𝑟]𝐸0 = 𝐸𝑏; if 𝑐 = 1, the prover responds with 𝑟 = 𝑏 − 𝑎 and
the verifier checks whether 𝐸 equals [𝑟]𝐸1. This protocol’s challenge space is
binary (𝑐 ∈ {0, 1}) with public key length of one curve.

To reduce soundness error, CSI-FiSh expanded the challenge space at the cost
of increased public key size. Their approach selects a positive integer 𝑆 where
the secret key is an (𝑆 − 1)-dimensional vector (𝑎1, … , 𝑎𝑆−1) appearing in the
public key list as ([𝑎1]𝐸0, … , [𝑎𝑆−1]𝐸0). The prover must prove knowledge of a
secret 𝑠 ∈ ℤ𝑁 and that [𝑠]𝐸0 appears among the listed curve pairs. The verifier
samples challenges 𝑐 from {−𝑆 + 1, … , 𝑆 − 1}, and the prover responds with
𝑟 = 𝑏 − 𝑐𝑠 mod 𝑁 . CSI-FiSh achieves 1/(2𝑆 − 1) soundness error with public
key length 𝑆 − 1 curves.

Our scheme treats challenge 𝑐 as an isogeny, enabling combination of ephemeral
key 𝑏 and challenge 𝑐 into [𝑏 + 𝑐]𝐸0 without encountering the non-linear group
action issues present in ring-based constructions. This allows 𝑐 to be randomly
selected from ℤ𝑁 , expanding the challenge space to the class group order 𝑁
and achieving 1/𝑁 soundness error. The trade-off is requiring one additional
isogeny computation [𝑐]𝐸1, increasing computational overhead.

Our scheme’s public key length is one elliptic curve. Tables 1 and 2 compare
our scheme with CSI-FiSh.

Table 1. Comparison of Identification Protocols

Scheme
Public Key
Length

Challenge
Space

Soundness
Error

Isogeny
Operations

CSI-
FiSh
Basic

1 curve {0, 1} 1/2 1

CSI-
FiSh
Adapted

𝑆 − 1 curves {−𝑆+1, 𝑆−1} 1/(2𝑆 − 1) 1

Our
Scheme

1 curve ℤ𝑁 1/𝑁 2

Table 2. Comparison of Signature Schemes
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Scheme Public Key Length Signature Size Security Assumption
CSI-FiSh Signature 𝑆 − 1 curves 263 bytes GAIP
Our Signature Scheme 1 curve ≈ 300 bytes GAIP

3.1 Group Signature Scheme Based on Supersingular
Isogeny
In group signatures, group members must generate a non-interactive zero-
knowledge proof (NIZK) demonstrating possession of a valid key pair. The
signature comprises a ciphertext and proof (with the message embedded in
the proof). Verification simply checks proof validity. We present our group
signature scheme, which follows the stateful list approach of [19] but replaces
bilinear map-based authentication with our isogeny-based ZK protocol. The
isogeny-based approach offers short keys and quantum resistance at the cost of
increased computation.

Our scheme involves four entities: a public key list 𝑃𝐾𝐿, group manager 𝐺𝑀 ,
group members 𝑈𝑖, and a trusted timestamp authority. The public key list dis-
plays current member information (𝐼𝐷𝑖, 𝐸𝑖, startTime, endTime). 𝐺𝑀 handles
member enrollment, signature tracing, and real-time list updates, broadcasting
the latest 𝑃𝐾𝐿 to all members. The timestamp authority provides timestamp
services, while group members 𝑈𝑖 generate group signatures.

Group Signature Generation: To sign message 𝑚, member 𝑈𝑖 collaborates
with 𝐺𝑀 . 𝑈𝑖 randomly selects 𝑏𝑖 ∈𝑅 ℤ𝑁 , computes 𝐸𝑏𝑖

= [𝑏𝑖]𝐸0, obtains
current time 𝑇 𝑖𝑚𝑒, then computes 𝑠𝑖 = 𝐻2(𝐸𝑏𝑖

‖𝐸𝑖‖𝑚‖𝑇 𝑖𝑚𝑒) and 𝑡𝑖 = 𝑏𝑖 + 𝑠𝑖 ⋅
𝑥𝑖 mod 𝑁 . 𝑈𝑖 sends (𝐼𝐷𝑖, 𝐸𝑖, 𝐸𝑏𝑖

, 𝑠𝑖, 𝑡𝑖, 𝑇 𝑖𝑚𝑒) to 𝐺𝑀 .

Table 3. Public Key List 𝑃𝐾𝐿

Index Group Member Member Public Key
1 𝑈1 𝐸1
⋯ ⋯ ⋯

Note: 𝐺𝑀 maintains 𝑃𝐾𝐿 in real-time, broadcasting updates upon member
enrollment or revocation and sending 𝑃𝐾𝐿 to members as certificates.

Upon receiving (𝐼𝐷𝑖, 𝐸𝑖, 𝐸𝑏𝑖
, 𝑠𝑖, 𝑡𝑖, 𝑇 𝑖𝑚𝑒), 𝐺𝑀 first verifies 𝑇 𝑖𝑚𝑒’s validity,

then checks 𝑃 𝐾𝐿 for 𝐼𝐷𝑖 and validates [𝑡𝑖]𝐸0 = [𝑠𝑖]𝐸𝑖 + 𝐸𝑏𝑖
. If valid, 𝐺𝑀

computes 𝐸𝑣𝑖
= [𝑡𝑖]𝐸𝐺𝑀 and stores (𝐼𝐷𝑖, 𝐸𝑣𝑖

, 𝑠𝑖, 𝑡𝑖) in a tracking list (Table 4).

Table 4. Tracking List 𝐿Track
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Index Group Member Tracing Information
1 𝑈1 (𝐼𝐷1, 𝐸𝑣1

, 𝑠1, 𝑡1)
⋯ ⋯ ⋯

Verification: Upon receiving signature 𝜎′ = (𝐼𝐷𝑖, 𝐸𝑣𝑖
, 𝑠𝑖, 𝑡𝑖), the verifier

checks [𝑡𝑖]𝐸𝐺𝑀 = 𝐸𝑣𝑖
. If valid, 𝜎′ is accepted as a group signature for 𝑚;

otherwise, it is rejected.

Tracing: When disputes arise, 𝐺𝑀 queries 𝐿Track using 𝐸𝑣𝑖
to identify the

signer 𝑈𝑖 and provide evidence of signature generation.

3.2 Correctness Analysis
Our scheme comprises five phases: system setup, member enrollment, signing,
verification, and tracing.

1) System Setup: Select prime 𝑝 = 4 ∏𝑙
𝑖=1 ℓ𝑖 − 1 with small odd primes

ℓ𝑖, ideal class group cl(𝒪), and supersingular elliptic curve 𝐸0 over 𝔽𝑝 with
endomorphism ring 𝒪. For 𝐺𝑀 : select 𝑥 ∈𝑅 ℤ𝑁 as private key, compute
𝐸𝐺𝑀 = [𝑥]𝐸0. The group public key is 𝑔𝑝𝑘 = {𝐸0, 𝐸𝐺𝑀 , 𝑝, 𝑁, 𝐻1, 𝐻2}.

2) Member Enrollment: To join, member 𝑈𝑖 selects 𝑎𝑖 ∈𝑅 ℤ𝑁 , computes
𝐸𝑖 = [𝑎𝑖]𝐸0, and sends 𝐼𝐷𝑖 to 𝐺𝑀 . 𝐺𝑀 verifies [𝑎𝑖]𝐸0 = 𝐸𝑖, computes ℎ𝑖 =
𝐻1(𝐼𝐷𝑖) and 𝑥𝑖 = ℎ𝑖 + 𝑥 mod 𝑁 , then sends (𝑥𝑖, 𝐸𝑖) to 𝑈𝑖. 𝑈𝑖 verifies [𝑥𝑖]𝐸0 =
[ℎ𝑖]𝐸𝐺𝑀 + 𝐸𝑖, setting 𝑝𝑘𝑖 = 𝐸𝑖 and 𝑠𝑘𝑖 = 𝑎𝑖.

3) Group Signing: To sign message 𝑚, 𝑈𝑖 selects 𝑏𝑖 ∈𝑅 ℤ𝑁 , computes
𝐸𝑏𝑖

= [𝑏𝑖]𝐸0, 𝑠𝑖 = 𝐻2(𝐸𝑏𝑖
‖𝐸𝑖‖𝑚‖𝑇 𝑖𝑚𝑒), and 𝑡𝑖 = 𝑏𝑖 + 𝑠𝑖 ⋅ 𝑥𝑖 mod 𝑁 , then

sends (𝐼𝐷𝑖, 𝐸𝑖, 𝐸𝑏𝑖
, 𝑠𝑖, 𝑡𝑖, 𝑇 𝑖𝑚𝑒) to 𝐺𝑀 . 𝐺𝑀 verifies 𝑇 𝑖𝑚𝑒’s validity, checks

𝑃𝐾𝐿 for 𝐼𝐷𝑖, and validates [𝑡𝑖]𝐸0 = [𝑠𝑖]𝐸𝑖 + 𝐸𝑏𝑖
. If valid, 𝐺𝑀 computes

𝐸𝑣𝑖
= [𝑡𝑖]𝐸𝐺𝑀 and stores (𝐼𝐷𝑖, 𝐸𝑣𝑖

, 𝑠𝑖, 𝑡𝑖).
4) Verification Correctness: To verify 𝜎′ = (𝐼𝐷𝑖, 𝐸𝑣𝑖

, 𝑠𝑖, 𝑡𝑖), check:

[𝑡𝑖]𝐸𝐺𝑀 = [𝑡𝑖]([𝑥]𝐸0) = [𝑡𝑖 ⋅ 𝑥]𝐸0 = [𝑠𝑖 ⋅ 𝑥𝑖 ⋅ 𝑥 + 𝑏𝑖 ⋅ 𝑥]𝐸0 = [𝑠𝑖]𝐸𝑖 + 𝐸𝑏𝑖
= 𝐸𝑣𝑖

This demonstrates 𝐺𝑀’s participation in signature generation.

5) Tracing Correctness: 𝐺𝑀 searches 𝐿Track for (𝐼𝐷𝑖, 𝐸𝑣𝑖
, 𝑠𝑖, 𝑡𝑖) to identify

the signer.

3.3 Security Analysis
Theorem 5 (Anonymity). For any PPT adversary 𝐴, our scheme is anony-
mous in the random oracle model.

Proof. We define a game between challenger 𝐶 and adversary 𝐴:
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Game 𝐺0: 𝐶 generates system parameters, selects 𝑏 ∈ {0, 1}, and provides 𝐴
with oracle access. 𝐴 outputs a guess 𝑏′. The advantage is Advanon

𝐴 = | Pr[𝑏′ =
𝑏] − 1/2|.
Game 𝐺1: Identical to 𝐺0 except 𝐶 uses 𝑈0’s private key for signing when
𝑏 = 0 and 𝑈1’s private key when 𝑏 = 1. By the decisional CSIDH assumption,
signatures generated under either key are indistinguishable, making 𝐴’s advan-
tage negligible. Therefore, our group signature scheme satisfies anonymity in
the random oracle model.

Theorem 6 (Unforgeability). If GAIP is hard, our supersingular isogeny-
based group signature is unforgeable in the random oracle model.

Proof. Assume adversary 𝐴 forges a signature with non-negligible probability 𝜖.
We construct a challenger 𝐶 that solves GAIP. 𝐶 sets up the system, maintains
hash lists 𝐿1, 𝐿2, and responds to 𝐴’s queries. When 𝐴 produces a forged
signature 𝜎∗ = (𝐼𝐷∗

𝑖 , 𝐸∗
𝑣𝑖

, 𝑠∗
𝑖 , 𝑡∗

𝑖 ) for message 𝑚∗, 𝐶 extracts the underlying
isogeny relationship. If 𝐴 never queried 𝐼𝐷∗

𝑖’s private key nor requested a
signature on 𝑚∗, then with probability 𝜖, 𝐶 can compute an ideal 𝔢 satisfying
𝐸∗

𝑣𝑖
= 𝔢 ⋆ 𝐸0, solving GAIP. Thus, unforgeability reduces to GAIP hardness.

Theorem 7 (Collusion Resistance). For any PPT adversary 𝐴, our scheme
is collusion-resistant in the random oracle model.

Proof. Collusion resistance ensures that even cooperating members cannot pro-
duce untraceable signatures. In our enrollment algorithm, 𝐺𝑀 stores member
identities in 𝑃𝐾𝐿 and verifies legitimacy before assisting in signature genera-
tion. Based on GAIP hardness, 𝐺𝑀 cannot learn members’private keys, and
members cannot derive each other’s keys. All private keys remain confidential
and independent, preventing collusion.

Theorem 8 (Traceability). For any PPT adversary 𝐴, our scheme is traceable
in the random oracle model.

Proof. Traceability requires 𝐺𝑀 to identify signers by opening signatures. Our
signatures are jointly produced by 𝐺𝑀 and members. During signing, 𝐺𝑀 veri-
fies 𝑈𝑖’s identity against 𝑃𝐾𝐿 and stores (𝐼𝐷𝑖, 𝐸𝑣𝑖

, 𝑠𝑖, 𝑡𝑖) in 𝐿Track. Thus, 𝐺𝑀
can trace any signature by querying 𝐿Track. Even if 𝐴 compromises members
and obtains 𝐺𝑀’s public key, without 𝐺𝑀’s private key 𝑥, 𝐴 cannot forge
untraceable signatures since valid signatures require 𝐺𝑀’s participation and
𝐿Track records all signing events.

3.4 Performance Analysis
We compare our group signature scheme with [19], which uses bilinear maps for
member authentication while ours employs isogeny-based ZK authentication.
Both schemes share advantages: (1) constant signature length independent of
group size, suitable for large groups; (2) dynamic member management via
𝑃𝐾𝐿 enabling efficient enrollment/revocation by modifying end times.
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Key differences: (1) Our scheme relies on GAIP, preventing revoked members
from deriving others’keys; (2) Members generate their own private keys, re-
sisting framing attacks by 𝐺𝑀 ; (3) Our scheme leverages supersingular isogeny
properties—short keys and quantum resistance—but requires more computation
time.

4 Conclusion
Building upon Bullens et al.’s CSI-FiSh, we propose a novel zero-knowledge
proof scheme that, with a single public key, expands the challenge space to the
class group order 𝑁 , achieving stronger soundness. Through the Fiat-Shamir
transform, we obtain supersingular isogeny-based signature and group signature
schemes secure in the quantum random oracle model, with provable security for
our signature scheme.
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