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Abstract

Link prediction is an important problem in the field of data mining. Similar-
ity methods based on random walks generally assume that the probability of a
walking particle transferring to neighboring nodes is equal, ignoring the influ-
ence of node degree values on the transfer probability. To address this issue,
a link prediction method based on lowest-degree biased restart random walk is
proposed. First, a lowest-degree bias function is introduced to redefine the trans-
fer probability of walking particles, then the lowest-degree biased random walk
strategy is applied to restart random walk to investigate the influence of the
lowest-degree bias strategy on node similarity during the walking process. Link
prediction is conducted on nine real-world network datasets, and the results
demonstrate that the proposed method achieves favorable prediction accuracy
and uncovers more network topological structure information, proving that the
algorithm possesses certain advantages in evaluating node similarity.
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degree on transition probability. To address this issue, this paper proposes a
link prediction algorithm based on lowest-degree preference random walk with
restart. First, a lowest-degree preference function is introduced to redefine the
transition probability of walkers. Then, the lowest-degree preference random
walk strategy is applied to random walk with restart to investigate the effect of
the lowest-degree preference strategy on node similarity during the walk. Ex-
periments on nine real-world network datasets demonstrate that the proposed
method achieves good prediction accuracy and uncovers more network topologi-
cal structure information, proving that the algorithm has certain advantages in
evaluating node similarity.

Keywords: complex networks; link prediction; random walk with restart;
lowest-degree preference

0 Introduction

In recent years, research in network science has flourished, with an increasing
number of complex systems becoming subjects of study in complex network the-
ory. Individuals and their interactions in complex systems can be abstracted as
complex networks. Common examples include biological networks, social net-
works, and communication networks. As an important research tool for complex
networks, link prediction aims to discover unknown connection relationships in
networks using known information. Link prediction research holds significant
value across numerous domains. Theoretically, it can help us better understand
network evolution mechanisms and dynamical behaviors. Practically, typical
applications include user expansion in social networks, fraud source identifica-
tion in telecommunication networks, and precision marketing in e-commerce
platforms.

Many classical link prediction algorithms have been proposed, with similarity-
based methods being the most widely applied. Structure-based similarity meth-
ods can be broadly categorized into: (a) local information-based methods, (b)
path-based similarity methods, and (¢) random walk-based methods. Local
information-based methods primarily utilize node-local information (such as
node degree and number of common neighbors) for link prediction. These meth-
ods have low computational complexity but often sacrifice accuracy. Path-based
methods tend to leverage path information between nodes (such as the number
of paths and information about intermediate nodes) to calculate node similarity.
These methods have relatively high computational complexity when involving
multi-order and global path information. Random walk-based methods are de-
fined based on particle random walk processes, where a particle starts from an
initial node and randomly walks to its neighbors with certain probabilities until
the probability distribution reaches a stationary state. These metrics focus only
on local neighbor information and achieve a good trade-off between computa-
tional complexity and prediction performance, making them widely applied in
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recommendation systems, information propagation, and community detection.

This advantage has made random walk a primary approach for solving link pre-
diction problems, yielding many achievements. A typical example is the PageR-
ank algorithm, where random walk methods play a key role. Additionally, Li
et al. proposed a maximum entropy random walk algorithm for link prediction,
arguing that in real networks, nodes tend to connect not only to low-degree
nodes but also to central nodes. However, this algorithm involves calculating
node centrality, resulting in relatively high complexity. Another study used
the DeepWalk network representation learning algorithm to obtain node vector
representations and characterized structural similarity through Euclidean dis-
tance, proposing a link prediction algorithm combining network representation
learning and random walk. This algorithm considers both network structure
and node attribute information but struggles with large-scale networks. Jin
et al. proposed a supervised and extended restart random walk method where
each node has a corresponding restart probability. Experimental results showed
good performance for ranking and link prediction tasks, but the non-universal
setting of node restart probabilities limits the algorithm’ s applicability.

Most existing random walk-based methods define particle transition probabili-
ties using uniform distributions, ignoring the influence of subtle local structures
on transition probabilities. In fact, degree-degree correlations in networks show
that connections between nodes are not randomly generated, and particles are
affected by node degrees during walks. Recent research found that random
walkers frequently visit high-degree nodes, leading to lower search efficiency.
Inspired by the PageRank algorithm, they proposed a lowest-degree preference
random walk search strategy (LPRW), demonstrating significant reduction in
search time compared to unbiased random walks. Another study argued that
particles exhibit degree bias during walks and proposed the BRWR method, also
showing that greater bias toward high-degree nodes reduces prediction accuracy.

Inspired by these methods and the PageRank algorithm, this paper proposes
a lowest-degree preference random walk with restart link prediction algorithm.
This algorithm employs a mixed walk strategy combining pure random walk with
preference for visiting lowest-degree neighbors, applied to link prediction. The
method first redefines walker transition probabilities by introducing a lowest-
degree preference function, then applies this strategy to random walk with
restart to investigate the effect of lowest-degree preference on particle transi-
tions, and finally validates the method’ s effectiveness through multiple real-
world network datasets.

1.1 Problem Description

Given an unweighted, undirected network represented as a binary pair G =
(V,E), where V is the set of nodes and E C V x V is the set of edges. For
all nodes in the network, the set of all possible node pairs that could form
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connections is denoted by U = V x V \ E. The network can be represented
by an adjacency matrix A = (a,,) NN, Where a,, = 1 if nodes u and v are
connected, otherwise a,, = 0. A prediction algorithm assigns a similarity score
value S, to each pair of unconnected nodes (z,y) € U in the network. All S,
values are sorted in descending order, with edges ranked higher having greater

likelihood of existence.

In practical prediction, similarity score thresholds are typically set based on
different evaluation requirements, with edges above the threshold selected as
recommendations. Alternatively, the top L predicted edges are selected based
on similarity ranking. Predicted edges can be further applied to e-commerce
recommendation systems or serve as guidance in biological experiments.

1.2 Link Prediction Methods

For any two nodes w and v in a network, let T'(u) and T'(v) represent their
neighbor sets, and I'(u) N T'(v) represent their common neighbor set. Let k,
denote the degree of node u. Below are several commonly used similarity indices:

a) Common Neighbors (CN). This measures the similarity between nodes
u and v by the number of their common neighbors, expressed as:

Sis = IT(u) NT(v)]

where I'(u) is the neighbor set of node u, and | -| represents set cardinality.

b) PA Index. Based on preferential attachment characteristics, this index
assumes nodes tend to connect to high-degree nodes:

¢) RA Index. This is a similarity measure based on shared features, where
low-degree common neighbors contribute more than high-degree ones. It
weights similarity using the inverse of common neighbor degrees:

1
SRA _ E
uv L
wel(u)Nl'(v) "«

d) HDI Index. Called the High-Degree Node Disadvantage Index:

g _ [P NT(w)|
“ max{k,, k, }

e) Katz Index. This is essentially a shortest path method that considers all
paths between two nodes, applying hierarchical penalties based on path
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where f3 is a path weight adjustment parameter, and (A'),, represents the
number of paths of length [ between nodes u and wv.

f) SimRank Index (SimR). This assumes that two nodes are similar if
they are connected to similar nodes, describing the average time for two
particles starting from nodes u and v to meet:

SlmR
Zwef(u) Zw ’el(v) S
ku kv

SimR __
Sot =C -

where C € [0, 1] is a decay parameter for similarity propagation.

g) Average Commute Time (ACT). This similarity index is defined based
on random walk, representing the average number of steps for a particle
to travel from node u to node wv:

SACT 1
w Uh, + Uk, — 208,
where [} represents the element in the u-th row and v-th column of the
network’ s Laplacian matrix pseudoinverse.

h) Random Walk with Restart (RWR). This index extends the PageR-
ank algorithm. A particle performing random walk may return to its start-
ing position with a certain probability at each step. Let the return proba-
bility be «, and the network’s Markov transition matrix be P = (p,,,) nx s
where p,,,, and a,, represent elements in matrices P and adjacency matrix
A, respectively. If a particle starts at node u at time ¢ = 0, the probability
distribution vector of its location at time ¢ is:

m,t+1)=1—a) m,(t)-P+a-e,

where e, represents the initial state. The stable solution is 7, = (1 — «) -
m, - P+ «a-e,, where 7, is the stationary solution vector and m,(v) is its
v-th element. The RWR similarity is then defined as:

Syt =, (v) + m,(u)

uv

2 Similarity Method Based on Lowest-Degree Preference
Random Walk with Restart

Random walk plays a crucial role in complex network research and has achieved
significant results in various domains, including community detection, link pre-
diction, and important node mining. It is generally divided into pure random
walk and biased random walk.
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Pure random walk refers to a walker starting from any node or source node u
and jumping to a neighbor with equal probability. In contrast, biased random
walk forcibly seeks the nearest target node in an unknown network. In a bi-
ased random walk, the transition probability from the current node to potential
new nodes is unequal, and the walker tends to visit or ignore nodes with high
topological attribute values, including strength, clustering coefficient, or degree.
Therefore, this paper assumes that during random walk, particles adopt a mixed
strategy combining pure random walk with preference for visiting lowest-degree
neighbors. Based on this mixed strategy, we derive the particle’ s transition
probability matrix. On this foundation, particles walk using random walk with
restart to calculate similarity scores for unconnected node pairs in the network,
finding the optimal lowest-degree bias adjustment parameter for each network
to improve prediction accuracy.

2.1 Lowest-Degree Preference Random Walk with Restart

Definition 1: Lowest-Degree Preference Transition Probability. Con-
sider a particle jumping between adjacent nodes in a network. According to
Markov processes, the particle’ s next state depends only on its current state.
In the lowest-degree preference random walk process, at each time step, the
walker adopts a mixed strategy of pure random walk and preference for visiting
lowest-degree neighbor nodes, using a variable parameter 8 to adjust the fusion
ratio. The transition probability for a walker currently at node u to jump to
node v is defined as:

(1) _ OQuo
Wyw Tfu
1
w<2) _ ) card(U,) vE Uv
uv =
0 vé¢ U,

where wSLlU) represents the transition probability under pure random walk strat-

egy, wfv) represents the probability under lowest-degree walk strategy, U, de-
notes the set of node v* s lowest-degree neighbors, and card(U,,) is the number
of lowest-degree neighbors. Notably, when 8 = 0, the lowest-degree prefer-
ence random walk degenerates to standard random walk, where the stationary
probability of the walker staying at node u is proportional to node v’ s degree,
making high-degree nodes more likely to be visited. The lowest-degree pref-
erence random walk avoids this by simultaneously adopting the lowest-degree
search strategy when 8 > 0. Figure 1 illustrates the transition probabilities for
lowest-degree preference random walk when 8 = 1/3.

Definition 2: Lowest-Degree Preference Random Walk with Restart
(LPRWR). This algorithm applies the lowest-degree preference transition prob-
ability from Definition 1 to random walk with restart. Let =, (t) be the prob-
ability that a particle starting from node u at time 0 stays at node v at time t.
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This probability evolution is governed by:
N
ﬂ-uv(t + 1) = <1 - CY) Zﬂ-ul@) TWy, Truv(0>
=1

where « is the restart probability and m,, (0) represents the v-th element of the
initial state vector. Using matrix notation, the one-step transition probability
can be expressed as:

Tt 4+ 1) = (1—a) -7, (t) - W + a7, (0)

where W is the lowest-degree preference transition matrix. According to the
Chapman-Kolmogorov equation, the m-step transition probability is:

m,t+m)=1—a)" 7,1t) - W"+a« . (1—a)™-m,(0)-W"
n=0

As t — o0, by the stationary state property of Markov chains, the probability
distribution converges to a limiting distribution satisfying Il = (1 —«) -I1- W +
o - T1(0). This can be rewritten as:

O=a-m,(0) [ —(1—a)W]*!

where [ is the identity matrix. The element 7, represents the probability that a
particle starting from node u ultimately reaches node v. Therefore, the LPRWR,

similarity is defined as:

LPRWR _
Suv = Tyw + Tou

Algorithm 1: LPRWR Algorithm

Input: Network adjacency matrix A, lowest-degree bias adjustment parameter
B, restart probability a.

Output: Network node similarity score matrix S.

a) Initialize lowest-degree preference transition matrix W, node similarity
score matrix S < Oy, n-

b) Fori=1to N,j=1to N:

¢) Calculate lowest-degree preference transition probability between nodes
using the formula;

d) Update lowest-degree preference transition matrix W;
e) End for

f) Calculate similarity scores between node u and other nodes in the network
/* Compute node ' s similarity scores with other nodes */
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g) End for
h) Return S

2.2 Algorithm Convergence

The convergence of the particle random walk process in the LPRWR algorithm
is a necessary condition for its applicability. Below is a rigorous proof of con-
vergence.

Theorem 1: The LPRWR algorithm is convergent.

Proof: a) Since elements w,,, in the lowest-degree preference transition matrix
W satisfy w,, > 0 and > _, w,, = 1, matrix W is stochastic. From the
properties of stochastic matrices, W is irreducible.

b) The random walk process is a Markov chain. For any state, after the
random walk passes through it, the number of steps required to revisit it
is uncertain due to the restart probability, making the entire walk process
aperiodic.

Therefore, the random walk process adopted by the LPRWR algorithm is er-
godic, proving that the LPRWR algorithm is convergent.

2.3 Complexity Analysis
Theorem 2: The time complexity of the LPRWR algorithm is O(N?).

Proof: Since the probability distribution of the LPRWR algorithm converges
to a stationary distribution, the key to calculating the stationary solution II =
a-7m,(0)-[I —(1—a)W]! is computing the inverse of matrix [I — (1 — a)W].
The complexity of matrix inversion is O(N?3), hence the LPRWR algorithm’ s
time complexity is O(N3).

3 Experimental Setup

In experiments, network edges E are divided into training set E7 and test set
EP, with ET UEP = E and ET n EP = (. The ratio is typically set as
|ET| : |[EF| = 9 : 1. The training set is considered known information for
calculating scores of unconnected node pairs. An effective algorithm should
assign higher scores to edges in the test set and lower scores to non-existent
edges.

Ten-fold cross-validation is used to test the proposed algorithm’ s performance.
For convenient data processing, all data is stored in CSV format in a MySQL
database. The RapidMiner data mining tool is used to randomly select training
and test sets according to the specified ratio. In experiments, each AUC and
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Precision value is the average of no fewer than 100 independent experimental
runs.

3.1 Evaluation Metrics

Mainstream evaluation metrics for link prediction algorithms include AUC (Area
Under the Curve) and Precision. AUC focuses on overall discrimination of
unknown objects, while Precision focuses on accurate prediction, concerning
the hit ratio of top-ranked results.

AUC measures the probability that a randomly selected edge from the test
set has a higher score than a randomly selected non-existent edge. During
experiments, if a test set edge’ s prediction score is greater than a non-existent
edge’ s score, count 1 instance; if equal, count 0.5 instances. After n independent
comparisons, AUC is calculated as:

AUC - 0507

where n” and n” are the respective counts. Obviously, random prediction yields
AUC =~ 0.5. Additionally, the number of comparisons n must be considered.
Lyu et al. proved that regardless of the test set proportion, taking n = 672,400
ensures the absolute calculation error of AUC does not exceed 1%o with 90%
confidence. Therefore, n = 672,400 is used in this paper’ s experiments.

Precision focuses on the ratio of accurate predictions among the top L pre-
dicted edges:
Precision = —2
L
where L, represents the number of edges among the top L predicted edges that
actually appear in the test set.

Nine real-world network datasets of different scales are selected for experiments,
all from public network databases. These include Dolphins, Neural, Polbook,
Metabolic, Netscience (NS), Football, Circuit, Facebook, and Hamster. Table
1 lists the relevant statistical characteristics of these datasets, where N and M
are the numbers of nodes and edges, (k) is the average degree, (d) is the average
shortest path length, r is the assortativity coefficient, H is degree heterogeneity,
and C' is the clustering coeflicient.

Table 1. Topological parameters of nine real networks

Network N M (k) (d) r H C

Dolphins
Neural
Polbook
Metabolic
Football
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Network N M (k) (d) r H C

Circuit
Facebook
Hamster

4 Experimental Results and Analysis

To evaluate the LPRWR method’ s performance, we first calculate inter-node
similarity scores, then quantify prediction accuracy using AUC and Precision
metrics. Following typical practices in random walk-based methods, the restart
coefficient is set to @ = 0.15. Due to space limitations, only AUC results are
presented below.

4.1 Impact of Parameters on AUC Results

In Equation (10), 8 primarily adjusts the proportion of lowest-degree preference
walk, with 8 € [0,1). We investigated the effect of parameter 8 on prediction
results, shown in Figure 2. Results indicate that compared with § = 0 (unbiased
random walk), all 5 # 0 cases achieve improved prediction accuracy, with op-
timal precision attainable within certain parameter ranges. This demonstrates
that lowest-degree preference walk is indispensable for similarity improvement.
Observing each subfigure in Figure 2, AUC curves peak and then decline to
varying degrees across different networks, with most networks (Dolphins, Neu-
ral, Polbook, etc.) showing relatively rapid decline. This suggests that smaller
lowest-degree bias yields higher prediction accuracy. Specifically, 5 = 0.05
works best for Dolphins, Metabolic, and NS networks; 8 = 0.1 is better for
Neural and Hamster networks; g = 0.15 is optimal for Polbook and Facebook
networks; 8 = 0.25 is optimal for Football network; and for Circuit network,
the optimal 3 is mainly distributed near 0.45. Therefore, while optimal S val-
ues differ across networks, better prediction effects can be achieved when the
optimal parameter value is relatively small (e.g., between 0 and 0.2). Moreover,
when AUC is optimal, 5 corresponds to particles biased toward low-degree nodes
during walks, consistent with the RA index’ s philosophy that low-degree com-
mon neighbors contribute more than high-degree ones. In practical applications,
smaller § values can be selected for prediction.

4.2 Feasibility Analysis

To further validate the feasibility of lowest-degree preference random walk and
the effectiveness of the LPRWR algorithm, we compare its performance with
eight mainstream indices (four local and four global). Table 2 shows the AUC
values for each index. The LPRWR algorithm achieves the highest AUC val-
ues in eight networks, only slightly lower than RWR in the Facebook network.
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Although other methods may score close to our method on certain networks,
their performance varies significantly across other networks, indicating that the
proposed method yields more stable predictions and has advantages across a
wide range of networks, while baseline indices may only perform well on specific
networks.

Among local indices (CN, PA, RA, HDI), RA penalizes high-degree nodes and
performs relatively well. Among global indices (Katz, SimR, ACT, RWR), Katz
considers all paths between nodes, while SimR, ACT, and RWR are based on
random walk processes, with RWR showing relatively good overall performance.
Using RWR as a baseline, the LPRWR algorithm improves prediction accu-
racy by an average of 2.14%, with a 4.48% AUC improvement on the Football
network. From Theorem 2, LPRWR has the same time complexity as RWR
(O(N?)). With identical time complexity, LPRWR achieves better prediction
accuracy, further demonstrating the effectiveness and feasibility of lowest-degree
preference random walk with restart for link prediction.

Table 2. Comparison of AUC for different indices

Network CN PA RA HDI Katz SimR ACT RWR LPRWR

Dolphins
Neural
Polbook
Metabolic
Football
Circuit
Facebook
Hamster

5 Conclusion

Accurately predicting node similarity in complex networks has practical sig-
nificance for accelerating positive information propagation, preventing telecom
fraud, and promoting e-commerce development. Current link prediction meth-
ods based on random walk processes mostly assume equal transition probabilities
to different neighbors, ignoring detailed network structure information. This pa-
per considers the influence of lowest-degree preference walk on particle transition
probabilities, defines a lowest-degree preference function, proposes a mixed walk
strategy, and applies it to random walk with restart to quantify node similarity.
Extensive experiments on real networks and comparative analysis with various
indices confirm the proposed method’ s effectiveness and feasibility, demonstrat-
ing its advantages in node similarity measurement.

The proposed algorithm is limited to unweighted, undirected, single-layer net-
works. Future research will focus on designing link prediction algorithms for
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weighted, directed, multi-layer networks. Subsequent studies may explore more
structural information affecting random walk processes and apply them to multi-
layer networks to further improve link prediction accuracy.
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