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Abstract
In fifth-generation mobile communications, network slicing is employed to pro-
vide an optimal network for diverse services. In the context of RAN slicing
scenarios across multiple base stations, conventional resource allocation meth-
ods fail to meet slice requirements when the number of slices varies and are only
applicable to specific scenarios. To address this issue, we propose a method
that achieves optimal resource allocation independent of the number of slices.
The method first utilizes the Ape-X method (a Deep Reinforcement Learning
method) to allocate resources to slices, followed by slice-to-base station resource
mapping and user resource allocation to satisfy user demands. Simulation re-
sults demonstrate that the proposed method can allocate resources according
to slice status and requirements, distributing the necessary number of RBs to
meet slice demands while remaining unaffected by variations in slice quantity.
Furthermore, the method exhibits high generality and scalability.
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RAN Slice Resource Allocation in Multi-Base Stations Based on DRL

Ma Yinghong, Jiang Lingyun†

(College of Telecommunications & Information Engineering, Nanjing University
of Posts & Telecommunication, Nanjing 210003, China)

Abstract: In fifth-generation mobile communications, network slicing is used
to provide an optimal network for various services. For RAN slicing scenarios
under multiple base stations, previous resource allocation methods cannot meet
slice demands when the number of slices changes and are only suitable for specific
scenarios. To address this problem, this paper proposes a method to achieve
optimal resource allocation independent of the number of slices. This method
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first uses the Ape-X method (a DRL method) to allocate resources to slices,
then satisfies user demands through slice-to-base station resource mapping and
user resource allocation. Simulation results show that the proposed method can
allocate resources according to slice states and demands, assigning the necessary
number of RBs to meet slice requirements without being affected by changes in
the number of slices. The method also demonstrates high general performance
and scalability.

Keywords: multi base station; network slice; deep reinforcement learning; ra-
dio access network; resource allocation

0 Introduction
Fifth-generation (5G) mobile networks have attracted attention as a solution
to the growing demand for mobile data communications. 5G improves upon
several areas not adequately addressed in fourth-generation (4G) networks, such
as higher data rates, lower end-to-end (E2E) latency, higher reliability, and
massive device connectivity [1]. Moreover, service types in 5G are becoming
increasingly diverse, including virtual reality (VR) requiring high data rates and
low latency, and factory automation requiring massive device connectivity and
low latency [2]. Traditional communication networks primarily served single
mobile broadband services and cannot adapt to future diversified 5G service
scenarios. Therefore, to simultaneously support multiple service scenarios with
different performance requirements on the same physical network infrastructure
and meet diverse service demands, network slicing technology has emerged. 5G
employs network slicing technology to provide networks suitable for various
services in slice units [3].

Slices establish requirements for throughput, latency, and reliability. To meet
these demands, network resources are allocated to slices. Network slicing typ-
ically includes access network slicing (encompassing both wireless and fixed
access) and core network slicing [4]. Among these, the Radio Access Network
(RAN) must confront resource scarcity issues. Furthermore, when allocating
wireless resources in practice, slice states continuously change, such as the num-
ber of users in a slice, service arrival rates, and user distribution. Consequently,
a method capable of efficiently allocating wireless resources according to slice
states while meeting slice requirements is needed [5,6].

Literature [7-12] presents several wireless resource allocation methods in single
base station environments. The method in [7] meets slice demands by allocating
resources from slices without requirements, but does not evaluate resource allo-
cation utilization, creating the possibility of over-allocating resources to slices.
Literature [8] proposes a method considering both slice demands and resource
utilization, but cannot achieve resource isolation for each slice and is affected
by the load of other slices. Literature [9] adopts an Earliest Deadline First
(EDF) scheduling strategy for wireless resource allocation, which can meet slice
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latency requirements under high load but severely impacts the performance of
slices with throughput demands. Literature [10] proposes an online learning-
based network slicing virtual resource allocation algorithm in C-RAN scenarios,
aiming to maximize the average network slice sum rate while considering av-
erage network slice constraints and network average backhaul link bandwidth
consumption constraints, but does not consider slice resource utilization. The
method in [11] utilizes deep reinforcement learning, considers both slice satisfac-
tion and resource utilization, and achieves resource isolation among slices, but
only evaluates specific scenarios. Since 5G assumes various service scenarios, the
method in [11] may not be applicable. Literature [12] proposes a network slicing
resource scheduling mechanism based on online double auction, which can serve
high-priority slices while guaranteeing the QoS demands of low-priority slice
users, but does not consider resource isolation among slices.

The above literature studies wireless resource allocation methods in single base
station environments, where allocation differs in multi-base station environ-
ments. Literature [13-15] presents several resource allocation methods in multi-
base station environments. Literature [13] investigates dynamic network slicing
strategies for mixed services in RAN, considering user QoS demands for delay
and rate, but the slice quantity setting is not flexible enough. The algorithm in
[14] considers base station backhaul capacity and satisfies the delay and data
rate demands of different slice users well, but resource utilization is low under
low load. Literature [15] designs and implements a two-layer Network Virtual-
ization Substrate (NVS) algorithm that achieves slice resource scheduling based
on slice priority and achievable rate. In this method, slices are allocated re-
sources uniformly across base stations, which may lead to over-allocation at
some base stations and under-allocation at others, resulting in suboptimal user
satisfaction and resource utilization.

To address the problems in the above literature, this paper proposes a method
using DRL to allocate wireless resources that meet slice requirements in multi-
base station environments. Moreover, even when the number of slices changes,
the proposed method can allocate resources to each slice to meet user QoS
demands.

1 System Model
1.1 Network Model

This paper considers 5G base stations 𝑘, 𝑘 ∈ 𝐾, where 𝐾 is a set of base
stations. Base stations provide services for slices 𝑠, 𝑠 ∈ 𝑆, where 𝑆 is the slice
set. To meet user Quality of Service (QoS) demands, wireless resources must
be allocated among slices. In 5G systems, wireless resources are represented
by Resource Blocks (RBs). RBs are resource units divided based on time and
frequency domains. One RB consists of 12 subcarriers, each with a spacing of
15 kHz. The time domain uses Transmission Time Interval (TTI) as the unit,
with a TTI length of 1 ms. TTI is the minimum scheduling unit, and RBs are
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allocated to users in each TTI.

Base station 𝑘 allocates RBs to users to meet their demands. The achievable
rate of user 𝑢 on one RB is calculated as: ⟨𝑀𝐴𝑇 𝐻0⟩. Here, 𝐵 represents the
bandwidth of one RB, i.e., 15 kHz × 12 = 180 kHz. 𝑝𝑘 denotes the transmission
power of base station 𝑘, ⟨𝑀𝐴𝑇 𝐻1⟩ represents the channel gain of user 𝑢 on one
RB of base station 𝑘, and 𝑁0 denotes the noise power spectral density. The
achievable rate of user 𝑢 on RBs differs across different base stations. Therefore,
users establish a ranking based on the achievable rate on RBs from different
base stations, from highest to lowest. The rank of user 𝑢 for base station 𝑘 is
denoted as ⟨𝑀𝐴𝑇 𝐻2⟩, which can represent the importance of base station 𝑘 to
user 𝑢.

Users in different slices have different QoS demands. In this paper, demands
are divided into two types: throughput demand and delay demand. For users
requiring high throughput, RBs are allocated in each TTI; for users with delay
demands, RBs are allocated when data packets arrive. Assuming user 𝑢’s
throughput demand is 𝑅𝑢, i.e., the data rate demand. User 𝑢’s delay demand
is 𝑇𝑢, and user 𝑢’s data packet size is 𝑝𝑢. Therefore, user 𝑢’s data rate demand
is ⟨𝑀𝐴𝑇 𝐻3⟩. TTI is the minimum scheduling time unit, so user 𝑢’s data rate
demand 𝑅𝑢 needs to be converted to a rate demand over 1 ms. Additionally,
this paper sets slice demands as user QoS demands, where users within the same
slice have identical QoS demands.

This paper defines two metrics: Network Slice Demand Satisfaction (NSDS)
and RB Usage Ratio (RBUR). The first metric, NSDS, measures whether the
network meets the service demands. NSDS is expressed as: ⟨𝑀𝐴𝑇 𝐻4⟩. Here,
𝑘𝑠 represents the number of users in slice 𝑠, and 𝑢𝑘 indicates whether user 𝑘
meets the slice demand.

The closer NSDS is to 1, the better the QoS demands of users in the slice
are satisfied, enabling the provision of more suitable slices for services. RBUR
is a metric measuring resource utilization, expressed as ⟨𝑀𝐴𝑇 𝐻5⟩, where 𝑅𝑅𝐵
represents the number of consumed RBs and 𝐴𝑅𝐵 represents the number of RBs
allocated to the slice. The closer RBUR is to 1, the higher the RB utilization
and overall resource utilization.

When NSDS is low while RBUR is high, all RBs allocated to the slice are
consumed, yet some users in the slice do not meet slice demands. Therefore,
allocating more RBs to the slice can improve NSDS. By maximizing both NSDS
and RBUR, slice demands can be met with the minimum number of RBs.

1.2 Problem Model

The RB allocation problem can be divided into two steps: inter-slice resource
allocation and intra-slice resource allocation. The inter-slice resource allocation
problem includes allocating RBs to slices and mapping slice resources to base
stations. The inter-slice resource allocation problem is modeled as follows:
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The objective is to maximize the product of slice resource utilization RBUR
and slice satisfaction NSDS, meeting slice demands with minimal RB allocation.
The first constraint in Equation (2) indicates that the total number of RBs
allocated to all slices cannot exceed the total number of RBs owned by the base
station. The second constraint indicates that under each base station, the total
number of RBs obtained by all slices cannot exceed the number of RBs owned
by that base station.

After determining the resource distribution of slices on each base station, the
network slice controller executes intra-slice resource allocation. Users in a slice
prioritize accessing the base station with the highest RB rank to maximize satis-
faction of their QoS demands. Under base station 𝑘, let the set of RBs allocated
to slice 𝑠 be 𝑀𝑠,𝑘. The intra-slice resource allocation problem is modeled as fol-
lows:

In Equation (3), 𝐴 is the allocation matrix. If the 𝑛-th RB is allocated to the
𝑢-th user, then element 𝑎(𝑢, 𝑛) is 1; otherwise, it is 0. 𝑈𝑠,𝑘 represents the utility
of the 𝑠-th slice [16] on the 𝑘-th base station, as shown in Equation (4). This
paper considers proportional fairness and selects 𝛼 = 1. In Equation (3), the
first constraint indicates that under base station 𝑘, the total number of RBs
allocated to users within each slice cannot exceed the resources available to that
slice. The third constraint ensures that one RB can only be allocated to one
user.

2 Methodology
2.1 Method Overview

In RAN slicing, a method is needed that meets slice demands with minimal
RB allocation and is independent of the number of slices. Therefore, this paper
proposes a flexible RB allocation method using Ape-X [17]. Since Ape-X is
used, the model learned by the learner includes various experiences collected
by each actor. Thus, when the number of slices changes, RB allocation can be
performed without retraining the model. In existing methods, the number of
slices controlled by an agent is fixed, so if the number of slices differs between
training and evaluation, the model must be retrained. In the proposed method,
one agent allocates RBs to one slice, and when multiple slices exist, the agent
is called multiple times. This design enables RB allocation independent of the
number of slices. After each RB allocation, the network slice controller updates
the resource configuration of slices on each base station so that BSs can adapt
to system states in each scheduling period.

Furthermore, the agent learns to allocate the minimum required number of RBs
to meet demands, thereby maximizing the number of slices whose demands are
satisfied while improving RB utilization efficiency. In this paper, one slice is
defined for each service type. A slice is generated when the number of users
in the slice becomes one or more, and terminated when the number of users
becomes zero. The flowchart of the proposed algorithm is shown in Fig. 1.
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2.2 RB Allocation Using Ape-X

The proposed method adopts the Ape-X approach, applying distributed learning
to DRL. Here, one actor controls one slice. When the number of slices changes,
the number of actors changes accordingly, with no limit on the number of slices,
making RB allocation independent of slice quantity. The proposed method can
flexibly set the number of slices and allocate RBs. The learner learns a policy
that meets slice demands with the minimum number of RBs. The architecture
of the allocation method is shown in Fig. 2. Since there is no limit on the
number of slices, there are 1 to N slices, each containing multiple users. In ad-
dition to managing slices, the network slice controller bridges base stations and
actors. Actors are Ape-X agents, with the same number as slices. Since actors
use the policy trained by the learner, all actors have the same control strategy.
In each resource scheduling period, RB allocation operations are executed. Base
stations collect state information for each slice, including whether users in the
slice meet QoS demands and slice resource utilization. The base station then
notifies the network slice controller of the slice state. The network slice con-
troller generates states and rewards based on slice states and passes them to
the actor corresponding to the slice. The actor generates actions according to
the policy and outputs them to the network slice controller. When the network
slice controller receives actions from each slice, it calculates the number of RBs
allocated to them.

During learning, rewards, states, and actions are passed to replay memory as
experiences. After slice-level resource updates, resources need to be mapped
to all base stations. Section 2.3 introduces the base station resource update
algorithm flow. After base station-level resource updates, the network slice
controller notifies each base station of the resource distribution of each slice on
it. Each base station allocates RBs to users in each slice to meet user throughput
and delay demands.

State is a crucial factor for the agent to determine actions. Better learning
outcomes are achieved when states are designed to eliminate uncertain elements
as much as possible. Based on this, this paper divides the state for learning RB
allocation into three types given in Table 1. These three types are NSDS-related,
RBUR-related, and slice state. First, NSDS-related information is important for
the agent to identify slice demands. Second, RBUR-related information helps
the agent identify RB allocation status for slices. The third type addresses state
ambiguity.

Action is the control executed by the agent on the environment. The proposed
method allocates RBs to each slice. The action output by the actor is denoted
as 𝑎, which can be negative, zero, or positive. A negative 𝑎 indicates a decrease
in the number of RBs allocated to the slice, 𝑎 = 0 indicates no change, and
a positive 𝑎 indicates an increase. The action 𝑎 takes values from ⟨𝑀𝐴𝑇 𝐻6⟩,
making it nine-dimensional. At time 𝑡 + 1, the number of RBs allocated to the
slice can be ⟨𝑀𝐴𝑇 𝐻7⟩. The calculated 𝐴𝑅𝐵 does not consider RBs allocated
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to other slices. However, since base stations have a limited number of RBs, the
total number of RBs allocated to slices may exceed the base station’s total RBs.
Therefore, the network slice controller adjusts the number of RBs allocated
to each slice according to Algorithm 1. The product of the number of RBs
allocated to each slice and NSDS at time 𝑡 is calculated and sorted in ascending
order. Resources are allocated to slices following this order. This prioritizes
slices requiring fewer RBs or with smaller NSDS at time 𝑡 + 1, preventing slices
requiring more RBs from occupying excess resources and improving resource
utilization. On the other hand, this improves slice NSDS.

Reward indicates to the agent whether an action is good or bad for a state. In
the proposed algorithm, the objective is to meet slice demands with minimal RB
allocation, and maximizing NSDS and RBUR is the learning goal. The reward
𝑟 is designed as ⟨𝑀𝐴𝑇 𝐻8⟩, where 𝐴𝑅𝐵 is the number of RBs allocated to the
slice and 𝐵𝑢𝑓𝑓 is the number of data packets stored in the buffer. When the
buffer is empty, no RB allocation is needed, so if 𝐴𝑅𝐵 is 0, 𝑟 is 1; if 𝐴𝑅𝐵 is not
0, 𝑟 is 0. When data packets are stored in the buffer but 𝐴𝑅𝐵 is 0 (i.e., the slice
has demands but is not allocated RBs), 𝑟 is 0. When data packets are stored
in the buffer and 𝐴𝑅𝐵 is not 0, NSDS and RBUR change with the allocated
𝐴𝑅𝐵. Therefore, 𝑟 is calculated based on NSDS and RBUR.

The DQN framework is shown in Fig. 3, containing two neural networks:
⟨𝑀𝐴𝑇 𝐻9⟩ represents the predictive Q-network, where 𝜃 denotes the param-
eters of the predictive neural network used to evaluate the value of current
state-action pairs; ⟨𝑀𝐴𝑇 𝐻10⟩ represents the target Q-network used to calcu-
late target values, with 𝜃∗ denoting the target neural network parameters. The
loss function 𝐿(𝜃) is the Temporal Difference (TD) error ⟨𝑀𝐴𝑇 𝐻11⟩. The gradi-
ent is calculated using the loss function, with the computation expression being
⟨𝑀𝐴𝑇 𝐻12⟩. This paper uses deep reinforcement learning to solve the inter-slice
resource allocation problem and make optimal decisions. The components of
the reinforcement learning architecture are detailed below.

This paper uses the RMSProp optimization algorithm to update network pa-
rameters. Every 𝑀 steps, the predictive network parameters 𝜃 are copied to
the target network parameters 𝜃∗.

Algorithm 1: Slice RB Allocation

⟨𝑀𝐴𝑇 𝐻13⟩ is the number of RBs calculated for allocation to slice 𝑠 at time 𝑡+1,
⟨𝑀𝐴𝑇 𝐻14⟩ is the number of RBs allocated to slice 𝑠 at time 𝑡, ⟨𝑀𝐴𝑇 𝐻15⟩ is
the network slice demand satisfaction of slice 𝑠, 𝑆 is the slice set, and 𝐴𝑙𝑙𝑅𝐵
is the total resources owned by all base stations. ⟨𝑀𝐴𝑇 𝐻16⟩ is the number of
RBs allocated to slice 𝑠 at time 𝑡 + 1.

1) Begin

2) For 𝑠 ∈ 𝑆

chinarxiv.org/items/chinaxiv-202205.00055 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00055


3) 𝑊[𝑠] = ⟨𝑀𝐴𝑇 𝐻17⟩

4) End for

5) 𝑟𝑒𝑚𝑎𝑖𝑛𝑅𝐵 = 𝐴𝑙𝑙𝑅𝐵

6) For 𝑠 ∈ 𝑆 # Extract 𝑠 in ascending order of 𝑊

7) If 𝑟𝑒𝑚𝑎𝑖𝑛𝑅𝐵 > 0

8) $\langle MATH_{18} \rangle$

9) $remainRB = remainRB - \langle MATH_{19} \rangle$

10) End if

11) End for

12) End

Since dueling networks [20] are adopted, ⟨𝑀𝐴𝑇 𝐻20⟩ is divided into the state
value function ⟨𝑀𝐴𝑇 𝐻21⟩ and advantage function ⟨𝑀𝐴𝑇 𝐻22⟩. The state value
function depends only on state 𝑠𝑡 and is independent of action 𝑎𝑡. The advantage
function depends on both state 𝑠𝑡 and action 𝑎𝑡. The Q-value is expressed as:
⟨𝑀𝐴𝑇 𝐻23⟩.
The actor interacts with the environment ⟨𝑀𝐴𝑇 𝐻24⟩. This paper adopts the
𝜖-greedy policy, where the actor selects the action with the highest action value
with probability 𝜖 and a random action with probability 1 − 𝜖. The actor cal-
culates the TD error of experiences based on its network parameters, sets the
priority 𝑝𝑘 of experiences according to the TD error, and stores them in ex-
perience replay. The predictive and target networks use prioritized sampling
instead of random sampling to extract experiences from experience replay. The
sampling probability of experiences is ⟨𝑀𝐴𝑇 𝐻25⟩, with 𝑏𝑎𝑡𝑐ℎ samples extracted
each time, where 𝑘 is the experience index. After updating network parameters,
the TD errors and priorities of the 𝑏𝑎𝑡𝑐ℎ samples are calculated, and the prior-
ities of these samples in experience replay are updated. As learning progresses,
action values are updated, the accuracy of old experiences decreases, and the pri-
orities of old experiences stored in experience replay are updated to low values.
When experience replay is full, old experiences are deleted.

Every 𝑁 steps, the actor copies trained parameters from the predictive network
to update its parameters to the latest version. This improves learning efficiency
by prioritizing experiences with large TD errors while performing distributed
learning to accelerate the process.
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Fig. 3 DQN Framework

Fig. 4 shows the neural network structure of the proposed method. The net-
work has an input layer, several hidden layers, and an output layer. Since the
state dimension is designed as the input dimension, the input layer is eight-
dimensional. The output layer is nine-dimensional, matching the action dimen-
sion. Hidden layers have 128 neurons. The fourth hidden layer branches into
state value and advantage functions. Training was conducted for 2 × 106 steps
using these specifications, taking approximately 2 days.

2.3.1 Base Station Resource Update

After slice resource updates, resources must be mapped to all base stations.
Algorithm 2 describes the base station resource update process. Base station
resource update relies on the weight of specific slices at base stations. Users in a
slice have different RB ranks ⟨𝑀𝐴𝑇 𝐻26⟩ across different base stations, yielding
the rank of slice 𝑠 at base station 𝑘:

⟨𝑀𝐴𝑇 𝐻27⟩
Therefore, the weight of slice 𝑠 at base station 𝑘 can be expressed as: ⟨𝑀𝐴𝑇 𝐻28⟩,
representing the importance of base station 𝑘 to slice 𝑠. These weights are up-
dated in each scheduling period to update base station resources. The resources
occupied by slice 𝑠 at base station 𝑘 are calculated as: ⟨𝑀𝐴𝑇 𝐻29⟩. The calcu-
lated ⟨𝑀𝐴𝑇 𝐻30⟩ does not consider the capacity limit of each base station, and
the total number of RBs allocated to all slices at base station 𝑘 may exceed
base station 𝑘’s capacity. Therefore, resources allocated to slices at each base
station need adjustment. All base stations are traversed, and base stations with
allocated resources exceeding capacity are added to the reallocation queue 𝑄𝐵𝑆.

For base station 𝑘 belonging to queue 𝑄𝐵𝑆, users belonging to this base station
𝑘 are first identified. Based on users’RB ranks, the user set of slice 𝑠 at base
station 𝑘 is obtained ⟨𝑀𝐴𝑇 𝐻31⟩, where user 𝑢 prioritizes accessing the base
station with the highest RB rank. The rate demand of slice 𝑠 at base station 𝑘
is:

⟨𝑀𝐴𝑇 𝐻32⟩
where ⟨𝑀𝐴𝑇 𝐻33⟩ represents user 𝑢’s demanded rate. Therefore, the weight of
slice 𝑠 at base station 𝑘 can be calculated as: ⟨𝑀𝐴𝑇 𝐻34⟩, yielding the number
of RBs allocated to slice 𝑠 at base station 𝑘 as: ⟨𝑀𝐴𝑇 𝐻35⟩, where 𝐿𝑘 is the
total number of RBs owned by base station 𝑘.

After reallocation of base station resources, the total resources allocated to
some slices may fall below 𝐴𝑅𝐵, requiring allocation of remaining base station
resources to slices. First, the remaining resource amount of each base station
and slices with insufficient allocated resources are checked. The queue of base
stations with remaining resources is set as 𝑄𝑟𝑒𝐵𝑆, and the queue of slices with
insufficient allocated RBs is set as 𝑄𝑠𝑙𝑖𝑐𝑒. Traversing base station queue 𝑄𝑟𝑒𝐵𝑆,
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the weights ⟨𝑀𝐴𝑇 𝐻36⟩ of all slices in slice queue 𝑄𝑠𝑙𝑖𝑐𝑒 at this base station are
compared, and the base station’s remaining RB resources are allocated to slices
in descending order of weight until the slice’s RB demand is met or the base
station’s resources are fully allocated.

Algorithm 2: Base Station Resource Update

Input: Number of RBs allocated to slice 𝑠 ⟨𝑀𝐴𝑇 𝐻37⟩, rank of slice 𝑠 at base
station 𝑘 ⟨𝑀𝐴𝑇 𝐻38⟩, requested rate of user 𝑢 𝑅𝑢, slice set 𝑆, base station
set 𝐾, number of RBs lacking for slice 𝑟𝑒𝑅𝐵, RB capacity of base station 𝑘
𝐿𝑘, remaining RB resources of base station 𝑘 𝐿𝑘_𝑟𝑒𝑚𝑎𝑖𝑛, slice queue awaiting
reallocation 𝑄𝑠𝑙𝑖𝑐𝑒, base station queue with remaining resources 𝑄𝑟𝑒𝐵𝑆, number
of RBs allocated to slice 𝑠 at time 𝑡 + 1 ⟨𝑀𝐴𝑇 𝐻39⟩.
Output: ⟨𝑀𝐴𝑇 𝐻40⟩ is the number of RBs allocated by base station 𝑘 to slice
𝑠.

1) Begin: Initialize 𝑄𝑠𝑙𝑖𝑐𝑒, 𝑄𝑟𝑒𝐵𝑆 queues

2) Step 1: Initial resource mapping

3) For 𝑠 ∈ 𝑆

4) For 𝑘 ∈ 𝐾

5) $\langle MATH_{41} \rangle$

6) End for

7) End for

8) For 𝑘 ∈ 𝐾

9) ⟨𝑀𝐴𝑇 𝐻42⟩

10) If ⟨𝑀𝐴𝑇 𝐻43⟩

11) Add $k$ to $Q_{BS}$

12) Obtain a user set $U_{s,k}$, $\langle MATH_{44} \rangle$

13) For $s \in S$

14) $\langle MATH_{45} \rangle$

15) $\langle MATH_{46} \rangle$
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16) End for

17) End if

18) If ⟨𝑀𝐴𝑇 𝐻47⟩

19) $\langle MATH_{48} \rangle$

20) Add $k$ to $Q_{reBS}$

21) End if

22) End for

23) Step 2: Base station remaining resource allocation

24) For 𝑠 ∈ 𝑆

25) ⟨𝑀𝐴𝑇 𝐻49⟩

26) If ⟨𝑀𝐴𝑇 𝐻50⟩

27) Add $s$ to $Q_{slice}$

28) End if

29) End for

30) End for

31) For 𝑘 ∈ 𝑄𝑟𝑒𝐵𝑆

32) Sort slices 𝑠 in descending order of weight ⟨𝑀𝐴𝑇 𝐻51⟩ at base station 𝑘
to obtain 𝑅𝑎𝑛𝑘

33) If len(𝑄𝑠𝑙𝑖𝑐𝑒) == 0

34) Break

35) End if
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36) For 𝑠 ∈ 𝑅𝑎𝑛𝑘

37) If $\langle MATH_{52} \rangle$

38) $\langle MATH_{53} \rangle$

39) $\langle MATH_{54} \rangle$

40) $\langle MATH_{55} \rangle$

41) End if

42) If $\langle MATH_{56} \rangle$

43) Break

44) End if

45) End for

46) If ⟨𝑀𝐴𝑇 𝐻57⟩

47) Break

48) End if

49) End for

50) End

2.3.2 User Resource Allocation and Connection Control

To solve the intra-slice resource allocation problem, this paper proposes an it-
erative solution. The allocation matrix 𝐴 starts empty, and RBs are allocated
to users through iteration. A gain factor is defined here: ⟨𝑀𝐴𝑇 𝐻58⟩, where
⟨𝑀𝐴𝑇 𝐻59⟩ represents the rate already allocated to user 𝑢, ⟨𝑀𝐴𝑇 𝐻60⟩ rep-
resents the achievable rate of user 𝑢 on ⟨𝑀𝐴𝑇 𝐻61⟩, and ⟨𝑀𝐴𝑇 𝐻62⟩ is the
unallocated RBs. If user 𝑢 has the largest gain factor and this user’s data
rate demand is not yet satisfied, then ⟨𝑀𝐴𝑇 𝐻63⟩ is allocated to this user. The
process then enters the next iteration, stopping when all RBs are allocated or
all user demands are satisfied.

After the iterative allocation process is completed for all slices under all base
stations, it is checked whether all users have met their demands and whether
slice resources have been fully utilized. Because too many users may access
one base station while allocated resources are insufficient, while few users access
other base stations with abundant allocated resources. Therefore, to fully utilize
resources and meet user demands, resources of slices at other base stations are
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allocated to users whose demands are not met. For users with unmet demands,
following the RB rank order, other base stations are checked for remaining RB
resources. If available, users are connected to the next base station, and the
base station’s remaining RB resources are iteratively allocated to the newly
connected users according to proportional fairness until all users in the slice
meet their demands or all allocated resources to the slice are utilized.

3 Simulation and Evaluation
3.1 Simulation Overview

The proposed method is evaluated based on whether it achieves minimal RB
allocation to meet slice demands and is unaffected by changes in the number of
slices. In the proposed method, the RB allocation model must first be trained.
The trained model is then used to evaluate the proposed method. The evalua-
tion consists of three types. The first demonstrates that the proposed method
appropriately implements RB allocation in the created specific scenario. The
second shows the general performance of the model evaluated based on multi-
ple randomly generated scenarios. In the third type, this paper evaluates the
relationship between the number of slices and performance and describes the
scalability of the proposed method.

3.2 Training

The model in the proposed method learns RB allocation that maximizes NSDS
and RBUR from slice states. In 5G, various service types are assumed. There-
fore, simulation scenarios are randomly generated, and the model is trained
using various service types. Table 2 provides the scenarios used for training.
Table 3 provides common parameters for training and evaluation. A new sce-
nario is generated after each simulation. The number of slices is fixed at three,
but during simulation, the number of slices varies from 0 to 3 because slice start
and end times differ. Additionally, the number of users in each slice, packet gen-
eration intervals, and packet sizes differ. Slice demands are throughput demand,
delay demand, or both. According to Long Term Evolution (LTE) specifications,
subcarrier spacing and TTI are set to 15 kHz and 1 ms, respectively. System
bandwidth is set to 20 MHz, with a total of 100 RBs per TTI. Since RBs are
grouped according to specifications, the number of RBs controlled by each base
station is 25. The RB allocation control interval is 1 ms, the same as TTI.

Table 4 provides Ape-X parameter values, identical to those in [17]. The number
of actors is a parameter set based on computer performance. The training
computer configuration is AMD 3700x CPU, 32GB RAM, and RTX 2070 Super
GPU. The simulation computer is 3700x CPU with 16GB RAM. This paper uses
one computer for learning and six computers for simulation. Five simulations
run on one computer, and one simulation has 4 actors, totaling 120 actors (6
computers × 5 simulations × 4 actors). The discount factor determines the
weighting of future rewards. In RB allocation, slice states also change rapidly,
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so allocating RBs quickly according to state changes is important. Therefore,
this paper sets the discount factor to 0.5 to maximize short-term rewards. For
the same reason, 𝑛 is set to 1.

3.3.1 RB Allocation Evaluation

This section evaluates whether the proposed method can allocate RBs to slices
in scenarios with different numbers of slices. The considered mobile network
scenario is based on 5G network standards, with parameters summarized in
Tables 3 and 5. In a given 500m × 500m area, four base stations are uniformly
distributed. The distance between every two adjacent BSs is fixed at 120m. The
Path Loss (PL) model is defined as: 𝑃𝐿(𝑑𝐵) = 20 log10(𝑑)+20 log10(𝑓)−27.55,
where 𝑑 (in meters) and 𝑓 (in MHz) represent the user-base station distance
and channel frequency, respectively. Based on 5G slice categories, this paper
defines four slices: messaging service, application, audio, and video, with each
slice matching one service type. Each slice has different numbers of users, packet
lengths, and slice demands. Changes in the number of slices are simulated by
setting slice start and end times. In the simulation, the number of slices varies
from a minimum of two to a maximum of four. Specific parameters are shown
in Table 5. The number of users in slices changes over time, as shown in Fig. 5.

Two methods are compared in this paper, described as follows:

a) Hard-slicing: The hard method divides all RBs equally among slices.
The 𝐴𝑅𝐵 for slice 𝑠 can be calculated as: ⟨𝑀𝐴𝑇 𝐻64⟩.

b) NVS (Network Virtualization Substrate) method [18]. Resources
are allocated based on the weight of slices in the system. The weight
of slice 𝑠 is calculated as: ⟨𝑀𝐴𝑇 𝐻65⟩, defined as the aggregated data
rate request of all users in slice 𝑠. Therefore, the RBs allocated to slice
𝑠 are calculated as: ⟨𝑀𝐴𝑇 𝐻66⟩. In the NVS method, the amount of
resources provided for each slice is equally distributed among base stations.
The proposed method and the hard method adopt the resource mapping
approach described in Section 2.3.

Figs. 6(a) to 6(c) show the relationship between NSDS, RBUR, ARB, and sim-
ulation time. Here, RBs are allocated to slices at one-millisecond intervals, but
NSDS and RBUR are measured as one-second averages at one-millisecond inter-
vals, and ARB is the total ARB per second (100 × 1000 RBs). The NSDS results
show that the proposed method almost completely meets slice demands. In the
proposed method, when the number of slices changes at 110s, 205s, and 400s,
NSDS does not decrease. Based on these results, slice performance demands
can be satisfied even when the number of slices changes.

In the hard method, RB allocation is related to the number of slices. Therefore,
slices 1 and 3 with low data rate demands always meet slice demands. Slice
2 has many users, and between 320s and 400s, the number of users in slice
2 continuously increases, but the number of allocated RBs does not increase,
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resulting in insufficient resource allocation and decreased NSDS. Slice 4 requires
high throughput, and between 350s and 400s, the number of users increases,
increasing data rate demands, but ARB does not change, causing NSDS to
decrease.

In Fig. 6(c), according to the NVS method, resources allocated to slices are
related to slice data rate demands. The higher the data rate demand, the more
resources obtained. Therefore, Fig. 6(c) shows that slice 1’s demands are met
between approximately 90s and 160s. Between 160s and 200s, as the number of
users in slice 2 continuously increases, slice 2’s data rate demand grows higher,
and slice 2 obtains more resources, causing slice 1’s NSDS to decrease. Between
200s and 500s, slice 4 occupies excessive resources due to its high throughput
demand. Around 400s, slice 4 has the maximum number of users and obtains
the most RBs, while other slices’NSDS reaches the minimum. Slice 3 has low
data rate demand and few users, thus obtains few RBs, resulting in very low
NSDS and inability to meet slice delay demands.

Based on RBUR results, the proposed method’s RBUR is about 0.75 or higher,
indicating RB over-allocation is less than 25%. In the hard method, since RBs
are uniformly allocated to slices regardless of slice states and demands, RBUR
performance is poor, with over-allocation in every slice, as shown in Fig. 6(b).
For the NVS method, slices 2 and 4 have high data rate demands, resulting in
severe over-allocation and poor RBUR performance. Slices 1 and 3 have low
data rate demands, leading to insufficient RB allocation, but all allocated RBs
are utilized, thus achieving relatively high resource utilization.

In summary, based on NSDS and RBUR results, the proposed method performs
better than other methods in both metrics, can allocate resources according to
slice states and demands, assigns the necessary number of RBs to meet slice
demands, and is unaffected by changes in the number of slices.

3.3.2 General Performance Evaluation

This section evaluates the general performance of the proposed method using
scenarios that simulate various services. As with general machine learning in-
cluding DRL, the optimal solution for target data can be estimated by training
only on specific data, but correct estimation cannot be made for other untrained
data. This is called overfitting to the environment. When only targeting spe-
cific time zones, locations, or services, such a model is effective. However, if the
model is only used for specific cases, the advantages of using network slicing are
lost. This is because there are many service types in RAN, and network slicing
is a technology that adapts networks to various services.

The general performance of the proposed method is evaluated using randomly
generated scenarios from Section 3.2. Since this scenario randomly determines
the number of users, packet generation intervals, and slice demands, it can
simulate various service types. Note that not all generated scenarios can be
explained by existing services. This paper evaluates untrained scenarios using
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different seed values from training to show the model’s generalization capability.
A total of 3000 scenarios were tested. Evaluation metrics are NSDS and RBUR,
measured as one-second averages. Results are presented as cumulative distri-
bution functions (CDF) and mean values of measured data. High NSDS and
RBUR indicate high performance across various randomly generated scenarios.

Figs. 7(a) and 7(b) show NSDS evaluation results. The proposed method’
s average NSDS is about 0.92, almost meeting slice demands. The average
NSDS of comparison methods is below 0.7. Fig. 7(b) shows that the hard
slicing method’s NSDS is distributed at about 28% at 0.0 (where no users meet
demands) and at about 50% at 1.0 (where all users meet demands). The results
indicate a 28% probability that one user in a slice cannot meet demands. For
the NVS method, there is a 31% probability that one user in a slice cannot
meet demands, and a 50% probability that all users’demands in a slice are fully
satisfied.

The proposed method’s NSDS is distributed at less than 10% at 0.0 and about
82% at 1.0. The results indicate that the probability of one user in a slice being
unable to meet demands is less than 10%, while the probability that all users’
demands in a slice are fully satisfied reaches 82%. Based on these results, the
proposed method achieves high-level general performance, almost meeting slice
demands in various scenarios.

Figs. 8(a) and 8(b) show RBUR evaluation results. The proposed method’s
average RBUR is about 0.77. The average RBUR of comparison methods is
below 0.7, with resource over-allocation exceeding 30%. The hard method has
the lowest average RBUR because it equally distributes all RBs to each slice,
causing over-allocation in some slices. The NVS method allocates resources
based on different slices’data rate requests, but some slices may request much
higher rates than others, causing some slices to be allocated excessive resources
and resulting in low RBUR.

In summary, for randomly generated scenarios, the proposed method can effec-
tively allocate RBs to slices, almost meeting various slice demands, achieving
high-level general performance while maintaining high resource utilization.

3.3.3 Scalability Evaluation

This paper evaluates the scalability of the proposed method regarding the num-
ber of slices by assessing the relationship between slice quantity and performance.
This evaluation uses the randomly generated scenarios from Section 3.2, with
the number of slices selected from 1 to 8 according to a uniform distribution
for each scenario. The number of slices during evaluation is calculated not by
the number of slices set during scenario creation but by the number of slices
running simultaneously. For example, if the number of slices is set to 7 but
only 3 slices run simultaneously, it is counted as 3 slices. Evaluation metrics
are NSDS and RBUR, measured as one-second averages.
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Fig. 9 shows the relationship between the number of slices and NSDS. For all
tested methods, NSDS decreases as the number of slices increases. When the
number of slices increases, more RBs are needed. NSDS decreases because the
required number of RBs for slices cannot be guaranteed. When the number
of slices reaches 4 or more, the proposed method’s NSDS is more than 0.2
higher than other methods, achieving better performance. When the number
of slices is less than 8, NSDS is above 0.8, meaning more than 80% of users in
slices fully meet QoS demands. When the number of slices is 8, NSDS is about
0.78. Among comparison methods, the NVS method performs worst because,
on one hand, some slices may have high data rate demands while others have
low demands, causing slices with low data rate demands to obtain too few
RBs and resulting in low NSDS; on the other hand, the NVS method equally
distributes resources among base stations, potentially causing over-allocation at
some base stations and under-allocation at others, leading to users accessing
base stations with insufficient resources and reducing demand satisfaction. The
hard method equally distributes resources to each slice, and when the number
of slices increases, each slice receives fewer resources, causing some slices to have
insufficient allocated resources and decreasing demand satisfaction.

Fig. 10 shows the relationship between the number of slices and RBUR. In the
proposed method, when the number of slices exceeds 4, RBUR decreases as the
number of slices increases, with RBUR at 0.7 when the number of slices is 8.
RB over-allocation is intended to reliably meet slice demands when allocating
RBs. The proposed method learns allocation that prioritizes NSDS over RBUR,
related to reward design. When designing rewards, both resource utilization
and slice demand satisfaction are considered. If all users cannot meet demands,
NSDS is 0, but if some users use RBs, RBUR is greater than 0. The reward
is NSDS multiplied by RBUR, so if either becomes 0, the reward also becomes
0. During learning, NSDS close to 0 is prioritized to improve slice demand
satisfaction, leading to RB over-allocation.

In the NVS and hard methods, when the number of slices is 1, the RBUR of
both hard and NVS methods is less than 0.3 because these methods allocate all
resources to this slice, causing low resource utilization. When the number of
slices increases, more slices require resources, improving slice resource utilization.
However, due to limitations of these two methods, RBUR performance is worse
than the proposed method, with severe over-allocation.

Based on NSDS and RBUR results, even when the number of slices changes, the
proposed method can allocate RBs to meet slice demands for throughput and
delay. Moreover, the proposed method handles changes in the number of slices
by simply creating or terminating actors that perform RB allocation using the
trained model. In summary, the proposed method has high scalability in terms
of the number of slices.
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4 Conclusion
To efficiently allocate wireless resources while meeting slice demands, this paper
proposes an RB allocation method using Ape-X that is unaffected by the num-
ber of slices. Simulation results show that the proposed method can allocate
resources according to slice states and demands, assigning the necessary number
of RBs to meet slice demands without being affected by changes in the number
of slices, while achieving high-level general performance for randomly generated
scenarios.

The proposed method is designed based on TTI in LTE. In 5G, TTI is variable,
and future research will continue in this direction.
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