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Abstract

To improve the accuracy of overlapping community detection, we propose
CLPANNTI (Cycle Label Propagation Algorithm with Neighbor Node Influence),
an optimized algorithm based on cycle structures derived from LPANNI. The
algorithm extracts minimal cycle information of nodes, measures node impor-
tance using the cycle ratio metric, and performs label updates in ascending
order, thereby enhancing the stability of the label propagation process. It
receives labels from neighboring nodes weighted by their influence. Compared
with four baseline algorithms using the NMI_ {LFK}, NMI_{MGH}, and MOV
metrics, CLPANNI exhibits superior performance in community detection
accuracy. Experimental results demonstrate that the algorithm can effectively
detect overlapping community structures in networks, identify dense subgraphs,
and produce community distributions that more closely approximate the true
network structure.
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Node Influence), an optimization of the LPANNI algorithm based on cycle struc-
ture. The algorithm mines minimal cycle information of nodes, measures node
importance using the cycle ratio index, and performs label updates in ascending
order of importance, thereby increasing the stability of the label propagation
process. Labels from neighbor nodes are weighted and received according to
their influence magnitude. Compared with four benchmark algorithms across
NMI_ {LFK}, NMI {MGH}, and Mov metrics, CLPANNI demonstrates supe-
rior performance in community detection accuracy. Experimental results show
that the algorithm can effectively detect overlapping community structures in
networks, identify tightly-knit subgroups, and produce community distributions
that more closely approximate real network structures.

Keywords: complex network; cycle structure; label propagation algorithm;
overlapping community detection

0 Introduction

Complex networks serve as abstract models for understanding real-world com-
plex systems, where entities are represented as nodes and their relationships
as edges. Community structure represents one of the most universal and im-
portant topological characteristics of complex networks, characterized by dense
internal connections within communities and sparse connections between them.
Community detection is crucial for exploring the operational mechanisms and
functional properties of complex systems. Based on whether multiple commu-
nity memberships for nodes are considered, community detection algorithms can
be divided into two categories: non-overlapping community detection and over-
lapping community detection. In real networks, community structures typically
exhibit overlapping regions, often containing overlapping nodes that simultane-
ously belong to two or more communities. These overlapping nodes play a vital
role in network structure evolution, and their function in network dynamics
warrants in-depth investigation in the era of big data characterized by universal
connectivity.

Since 2005, scholars have attempted to design overlapping community detection
algorithms from various perspectives to improve identification accuracy and com-
putational efficiency. Among these, the label propagation algorithm has been
widely applied to real-world network studies due to its linear time complexity
advantage. COPRA (Community Overlap PRopagation Algorithm) was the
first label propagation algorithm applied to overlapping community detection,
identifying communities based on changes in nodes’ affiliation coefficients across
different communities. Subsequent algorithms such as SLPA (Speaker-Listener
Label Propagation Algorithm), DEMON (Democratic Estimate of the Modular
Organization of a Network), and ACSLPA (Active Semi-supervised SLPA) were
proposed. Vinicius da Fonseca Vieira et al. conducted comparative studies of
five classical algorithms—CPM (Clique Percolation Method), COPRA, DEMON,
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SLPA, and BigCLAM (CLuster Affiliation Model for Big networks)—and found
that algorithmically identified communities merely represent computational re-
sults rather than ground-truth communities. They noted that evaluating algo-
rithm performance based solely on common metrics is problematic, suggesting
that algorithm design should pay more attention to the number of overlapping
nodes and their membership degrees.

Notably, most previous research has primarily focused on node adjacency re-
lationships to study network functions and characteristics. However, real in-
teraction scenarios often involve complex multi-node interactions. Whether in
natural systems or virtual social networks, individual behavior is often associ-
ated with group dynamics. To achieve better coordination, individuals must
consider not only pairwise interactions but also group-level interactions. Given
the impact of feedback mechanisms on real network dynamics, particularly the
positive and negative feedback effects of important overlapping nodes across
different communities, a new perspective is needed to analyze node influence.

1.1 Overlapping Community Detection

Overlapping nodes are key elements affecting network topology evolution, mak-
ing the exploration of their relationship with network dynamics and structure
crucial. Overlapping community detection algorithms thus serve as effective
methods for studying network dynamics. This paper focuses on algorithms
based on clique percolation and label propagation ideas, where nodes aggregate
into groups following bottom-up propagation rules. Unlike top-down algorithms
such as modularity optimization, these approaches impose no special constraints
on community structure quality, making them more consistent with sponta-
neously formed organizations or clusters in the real world. As network science
enters a new research phase, higher-order interaction dynamics has attracted
great interest, presenting challenges for overlapping community detection that
must consider multi-node interaction features and mesoscale neighborhood in-
formation.

1.2 Related Work

Drawing on Poincaré’s “subdivision” concept, references [15, 16] decomposed net-
works into homogeneous subnetworks, establishing a new framework for network
science research: cycle structure. Since cycle structure bridges individual and
group relationships, considering multi-node interactions to some extent, it can
reflect nodes’ local influence and further guide community detection. Reference
[17] designed a new node importance index based on first-order cycle struc-
ture: the cycle ratio. Nodes identified by this metric are relatively dispersed,
enabling efficient, non-redundant propagation with strong synchronization capa-
bility. Reference [18] proposed the LPANNI overlapping community detection
algorithm, which combines advantages of COPRA and DLPA (Dominant Label
Propagation Algorithm), cleverly solving COPRA’ s parameter determination
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problem across different networks. LPANNTI fully utilizes local node information
by integrating node importance, neighborhood similarity, and neighbor node in-
fluence to reduce label propagation randomness. It also introduces a historical
label preference strategy to determine each node’ s dominant label per iteration,
improving overlapping community identification accuracy.

1.3 Evaluation Metrics

When ground-truth community structures are unknown, quality functions are
generally used to measure community tightness, commonly including EQ and
Qov. This paper adopts the Mov metric, which calculates each node’ s contribu-
tion to communities based on its affiliation strength across different communities
—a precise overlapping measurement approach that aligns well with reference
[13]" s recommendations. Mov measures node contribution based on the dif-
ference between intra-community and inter-community edge counts, effectively
avoiding the resolution limit problem of other overlapping modularity metrics
for highly overlapping community structures. The specific formula is:

K in out
M = E{ Ne —MNe |
ov nin 4 pout

c=1 c c i€c

S

where n‘™ and n%* represent the number of nodes and edges in the 7-th com-

munity ¢, respectively. Since the first factor ranges between -1 and 1 and the
second factor between 0 and 1, Mov values vary between -1 and 1.

When ground-truth community structures are known, NMI metrics are com-
monly used to evaluate partitioning results. This paper employs two NMI met-
rics from the CDlib library (Community Discovery Library).

2.1 Symbol Description
Key symbols and their meanings are shown in Table 1.

Table 1. Symbol Description

Symbol  Meaning

NNI Neighbor Node Influence
LNg Node’ s dominant label set
Ng(i) Number of overlapping nodes
L’
b(c,i) Node i’ s membership coefficient in community C

1(Cv,bv) Node i’ s dominant label

T Maximum iteration count
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Symbol  Meaning

These symbols are primarily based on the proposed CLPANNI algorithm, with
some parameters appearing in subsequent experiments.

2.2 Parameter Initialization

o Maximum iteration count T'

e Node count V

o Iteration time ¢

e Node 7’ s membership strength across different communities represented
by ordered pairs: b, (c, 1)

e Node 7 s neighbor nodes NG(i)

e Node 7’ s dominant label D, (the label with maximum membership coef-
ficient in its label set)

o Node 7' s label set size |L’|

e Node 7 s label set L,

Initially, each node in network G(V, E) forms an independent community with
membership coefficient 1, i.e., community 7 s membership coefficient b, is 1,
denoted as b, (i, 1).

2.3 Update Strategy

Input: G = (V, E,w), maximum iteration count T
Output: Community identification results

Phase 1: Fixed Label Update Order
The algorithm first calculates neighbor node importance according to the neigh-
bor node influence formula for all nodes in V.

Phase 2: Label Propagation Process
At iteration ¢t = 0, each node is initialized with {[i] = {i,1}. The algorithm then
iterates while t < T

1. For each node, determine its dominant label D, after the current iteration

2. If all nodes’ label set sizes and dominant labels remain unchanged, the
algorithm terminates

3. Otherwise, continue iterating until 7" is reached

Output: Label set L, for each node i (i € V)

The LPANNI algorithm consists of two phases: fixed label update order and
label propagation. Phase 1 updates labels according to neighbor node influ-
ence magnitude, while Phase 2 determines dominant labels by propagating the
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community label with maximum membership coefficient. When multiple labels
share the same maximum membership coefficient, the algorithm prioritizes the
dominant label from the previous iteration; otherwise, it selects one randomly.

LPANNI considers local node information and cleverly designs label update
rules through neighbor node influence calculation, offering valuable insights for
propagation strategies. However, it only focuses on pairwise node interactions,
primarily utilizing node degree information, which provides limited discrimina-
tion between nodes with identical local structures and relies heavily on node ID
ordering. This paper improves upon these strengths and weaknesses.

3 CLPANNI Algorithm Design

Complex interactions enable organizational growth and evolution, with inter-
organizational interactions driving connectivity and development. From a net-
work science perspective, specific structures emerge such as star structures, chain
structures, and cycle structures. Cycle structure is a fundamental network com-
ponent and one of the most important mechanisms for network functionality:
the structural basis of feedback effects, which are critical to system evolution.

In network dynamics synchronization research, Shi Dinghua et al. discovered
that networks with optimal synchronizability are nearly homogeneous networks
with identical degrees, minimal path sums, and maximal girth. Cycles provide
redundant connectivity paths structurally and represent feedback mechanisms
functionally, creating reinforcement effects in network dynamics that enhance so-
cial coordination. Consequently, cycle structures are important for maintaining
network connectivity and dynamic interactions. Building on this, Fan Tianlong
et al. argued that nodes participating in many cycles are crucial, exerting sig-
nificant influence on network connectivity, synchronization, and control. They
designed a cycle structure-based node importance metric: the cycle ratio. Fig-
ure 1 illustrates the calculation of node 1’ s cycle ratio in subgraph (a), while
subgraph (c) shows degree, H-index, core number, cycle ratio, betweenness cen-
trality, and other information for all nodes. They defined a new matrix for
minimal cycles in first-order cycle structures called the cycle number matrix.
This n x n matrix (where n is the number of nodes) describes co-cycle relation-
ships between nodes, with matrix elements representing the number of cycles
shared by any two nodes. Node ¢ s cycle ratio is then calculated as the sum
of ratios between non-diagonal elements and diagonal elements in row i of the
cycle number matrix.

The redundant connectivity and feedback mechanisms provided by cycles in-
crease the probability of contact and synchronization for nodes on cycles during
both synchronization and propagation processes, better simulating social rein-
forcement effects. Given the cycle ratio’s outstanding performance in identifying
high-propagation nodes, this paper applies it to label propagation algorithms,
first using cycle ratio to locate nodes with strong propagation capabilities, then
employing LPANNTI s label propagation strategy to improve community parti-
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3.1 Related Definitions

Simple Undirected Network G(V, E): Where V and F represent node sets
and edge sets respectively, with n nodes and m edges.

Cycle: A closed path with identical start and end points in a two-dimensional
plane. Cycle size equals its number of edges; a minimal cycle is the smallest
loop containing a given node.

Girth: The number of edges in the shortest loop starting and ending at a node,
i.e., the length of the minimal cycle passing through the node.

Cycle Number: The quantity of minimal cycles containing a node.

Cycle Ratio (CR): A node importance metric calculated as the sum of ratios
between elements in row ¢ of the cycle number matrix and the diagonal element.
The specific formula is:

op [0 if e, =0
R DY Giif e >0

JFi,ci;>0 ¢

where c;; is the number of shared cycles between nodes i and j (i # j) in matrix
S. If i = j, ¢;; represents the number of cycles containing node ¢. To precisely

measure neighbor node influence magnitude, the first case is set to 0.1.

Node Similarity (Sim): This paper measures similarity based on network
structure. Reference [25] surveyed local similarity metrics and analyzed their
design principles, categorizing structural similarity indices into three types: local
information-based, path-based, and random walk-based. The similarity metric
from reference [18] combines local node information and path length, effectively
integrating their advantages, and is therefore adopted here:

|AUP‘

Sim(i,j) = Y

veF, Ip|

where p represents a path directly or indirectly connecting nodes i and j, |p|
denotes path length (varying from 1 to a), and |A|Pl measures path p. The
path length threshold a controls computational complexity and distinguishes
similarity differences arising from degree variations between nodes.

Neighbor Node Influence (NNI): Considering that neighbor nodes exert
different influences due to their varying local structures, this paper adopts the
NNI metric from reference [18], which objectively integrates neighbor node im-
portance and similarity:
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NNI(z) = X [CR(y) - Sim(z,y)]

3.2 Improvements to LPANNI

LPANNI measures node importance and neighbor node influence using only
node degree and triangle information, without considering additional cycle struc-
tures. This limited perspective provides insufficient discrimination between
nodes with identical local structures. The cycle ratio metric identifies important
nodes by measuring their participation in neighbor cycles, which benefits label
propagation dynamics. This paper proposes CLPANNI, an overlapping commu-
nity detection algorithm for undirected, unweighted networks that incorporates
cycle structure information to fix label update order in ascending cycle ratio,
thereby improving community identification accuracy.

3.3 CLPANNI Algorithm Framework

CLPANNTI consists of two phases: (1) calculating node cycle ratios and neighbor
node influences, and (2) performing label propagation to determine all nodes’
community memberships and output their label sets. Figure 2 illustrates the
specific steps, with the left portion showing Phase 1 and the right portion show-
ing Phase 2.

Algorithm Flow: 1. Input graph G(V,E) and maximum iteration count T'
2. Calculate node cycle ratios 3. Calculate node similarities 4. Calculate node
influences 5. Sort nodes in ascending importance order to obtain V' @Q 6. Update
labels according to rules and normalize label membership coefficients 7. Repeat
until node label sets stabilize or maximum iterations reached 8. Output node
label sets, grouping nodes with identical labels into the same community

Previous algorithms [18, 26, 27] considered network triangle information. Vi-
sualizing cycle structure distribution in LFR data helps understand network
cycle information. While detecting community structures using CLPANNI, the
distribution of minimal cycles becomes clearly visible, as shown in Figure 3.

Table 2. Specific Parameters of Synthetic Network

Parameter Value

On
Om

The six LFR networks in our experiments contain abundant cycle structures.
Different scales exhibit distinct cycle distributions, with minimal cycle girth
ranging from 3 to 8, and triangles comprising over half of all minimal cycles.
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When the mixing parameter p = 0.1, triangles account for at least 90% of mini-
mal cycles. When p = 0.3, as network structure clarity decreases, the total num-
ber of minimal cycles declines significantly, with triangle proportion decreasing
while quadrilaterals and pentagons increase, partially explaining why commu-
nity identification degrades when network structures become unclear. For fixed
network scales, increasing topological complexity diversifies minimal cycle types
and distributions, raising community detection difficulty.

3.4 Label Propagation Rules

The COPRA algorithm considers nodes’ membership strength across communi-
ties, analogous to how individuals distribute attention or energy across different
aspects (summing to 1). LPANNTI increased algorithm stability by fixing label
propagation order through ascending node importance and solved COPRA’ s pa-
rameter tuning problem through neighbor influence-based update strategies and
historical label preferences. This paper adopts a cycle perspective for measuring
node importance:

Phase 1: Sort nodes by cycle ratio in ascending order. For nodes with identical
cycle ratios, sort by ID ascending to obtain fixed update sequence V@Q.

Phase 2: Update labels according to V@ order. Initially, each node fully be-
longs to its own community: L, = (i,1). Then, following V@ order, nodes
receive dominant labels from neighbors to form label set LNg, where domi-
nant labels refer to the maximum membership coefficient and community label
transmitted by neighbor nodes.

Membership coefficients are weighted by neighbor node influence NN to pro-
duce new label set L’ (size equals neighbor count). Each node’ s total mem-
bership coefficient becomes 1. After adaptive removal of useless labels and
normalization, the iteration’ s final label set L” is obtained. After T iterations,
each node’ s label set is output.

The label with maximum membership coefficient is identified as node 7° s domi-
nant label. If multiple dominant labels exist, the previous iteration’ s dominant
label is selected; otherwise, one is chosen randomly. Iteration stops when all
nodes’ label sets and dominant labels stabilize, outputting the final label sets.

4.1 Experimental Data

1) Artificial LFR Benchmark Networks

LFR benchmark networks generate synthetic data approximating real networks
where both node degrees and community sizes follow power-law distributions.
We generated two groups with mixing parameters p = 0.1 and p = 0.3. Each
group contains three scales (1,000, 3,000, and 5,000 nodes), with five different
overlapping degrees per scale (details in Table 2).

2) Minimal Cycles in Synthetic Networks
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Previous overlapping community detection algorithms rarely examined network
cycle structure distributions. Visualizing LFR data cycle distributions aids un-
derstanding. While CLPANNI detects community structures, minimal cycle
distributions become apparent (Figure 3).

3) Real-world Datasets

Reference [12] provides three real networks with known community structures:
a co-purchasing network (Amazon), a scientific collaboration network (DBLP),
and a friendship network (YouTube), including overlapping node information.
Minimal cycle mining revealed that Amazon and DBLP contain few cycle types,
while YouTube exhibits diverse cycle distributions with girth ranging from 3 to
10, indicating relatively complex structure (Table 3).

Table 3. Specific Information about Real Networks

Max Com- Min Com- Minimal

munity munity Overlapping Cycle Minimal Cycle
NetworlSize Size Nodes (%) Count Distribution
Amazon 1,394 (18%) {(3,26061),(4,110)}
DBLP 214 (3.3%) {(3,108880),(6,2)}
YouTube 865 (13%) {3,4,5,6,7,8,9,10}

4.2 Experimental Results

Using SLPA, DEMON, CPM, and LPANNI as baseline algorithms, parameters
were tuned through multiple experiments (Table 4). Due to SLPA’ s instability,
results were averaged over 10 repetitions. For CPM, parameter k was tested
from 3 to 6, with k = 3 yielding optimal results. Other parameters used CDlib
library defaults.

Table 4. Specific Parameters of Benchmark Algorithms

Algorithm  Amazon YouTube Parameters
DEMON  min_ {com} {size}=3, epsilon=0.25

LPANNI  T=21, r=0.1 T=21, r=0.2

CLPANNI  T=20, a=3, b=0 T=20, a=3, b=0

LFR benchmark tests used NMI_{LFK} and NMI_{MGH} metrics.
NMI_{LFK} extends normalized mutual information for overlapping commu-
nities but may overestimate similarity. NMI_{MGH} (also called NMI-max)
optimizes NMI_{LFK} and was adopted for our tests.

Figure 5 shows CLPANNI and LPANNTI outperform other baselines, accurately
identifying community structures even as network scale increases and commu-
nity clarity decreases. With more overlapping nodes, CLPANNTI slightly outper-
forms LPANNI, demonstrating that cycle ratio better captures node importance.
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Real network tests (Figure 6) confirm CLPANNT s superiority over LPANNI
across most metrics except YouTube, where performance is slightly lower. On
the Mov metric, CLPANNI shows clear advantages, particularly on Amazon
data. SLPA performs relatively well on DBLP, indicating effectiveness on net-
works with clear community structures, but suffers from extreme instability and
randomness, requiring multiple repetitions for reliable results. DEMON’ s low
NMI_{MGH} scores on YouTube suggest democratic voting mechanisms are
unsuitable for such networks. Overall, CLPANNI demonstrates robust perfor-
mance across multiple metrics.

5.1 Algorithm Detection Results

Experimental results (Figure 5) show CLPANNI performs increasingly better
relative to other algorithms as community structures become fuzzier and over-
lap increases. On DBLP and Amazon networks, CLPANNI improves upon
the original algorithm (Figure 6). Multiple algorithms show suboptimal perfor-
mance on YouTube data, necessitating deeper analysis. As social network data,
YouTube exhibits social network reinforcement effects. (Note: Due to SLPA’
s randomness, 15 repetitions were performed, showing median results of 477
detected communities.)

In reality, YouTube s 6,426 nodes contain 865 overlapping nodes across 1,078
communities, with the dominant community size being 5 (307 communities).
Table 5 presents each algorithm’ s performance on YouTube, including overlap-
ping modularity, dominant community sizes, detection counts, and total node
frequencies. SLPA detected 455 communities. CPM (K = 3) identified 230
triangle-based cliques. DEMON found the fewest communities with highest
Mov score but exhibited overfitting in overlapping node detection. CPM and
SLPA identified similar community counts (455). LPANNTI discovered the most
communities but they were smaller. While CLPANNT s overlapping node de-
tection is less effective than LPANNT s, it shows higher accuracy in identifying
dominant community sizes, indicating better fit for community scale detection.
YouTube’ s diverse minimal cycle distribution suggests CLPANNI performs bet-
ter on networks with redundant edge structures and complex cycles, better
simulating social reinforcement effects.

Table 5. Algorithmic Detection Results

Mov Dominant Community = Communities Total Node
AlgorithmScore Size & Count Detected Frequency
DEMON {5,307}

LPANNI {3,230}, {5,120},
{4,46}
CLPANNI {2,167}, {5,129}
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5.2 Community Size Distribution

LPANNI, CLPANNI, DEMON, and SLPA all incorporate label propagation con-
cepts and thus share common drawbacks: label over-propagation and large com-
munities absorbing small ones. After removing outliers, community detection
results are shown in Figure 7. CPM identifies community structures through
clique percolation, so community sizes strongly correlate with local structural
density. In real YouTube data, the largest community contains 31 nodes, yet
all five algorithms identified larger maximum communities, indicating tightly
connected components exist. These results were obtained under CLPANNT s
most relaxed conditions without targeted parameter tuning; careful selection
of node membership thresholds could further improve detection but would con-
sume more time.

5.3 Visualization Analysis

Figure 8 shows Louvain algorithm results from Gephi, where same-colored nodes
belong to the same community and labeled nodes are overlapping nodes span-
ning at least 8 communities. Visualization reveals YouTube’s unclear community
structure with massive connected components and concentrated high-overlap
node distributions, partially explaining suboptimal algorithm performance. Due
to concentrated overlapping nodes, YouTube facilitates large-scale opinion for-
mation during information propagation, suggesting that monitoring overlapping
node opinions should be prioritized for network public opinion early warning and
guidance.

6 Conclusion

This paper optimizes LPANNI by proposing CLPANNI, a cycle structure-based
label propagation algorithm for overlapping community detection that improves
identification accuracy for tightly-knit network structures. CLPANNI offers
good stability and simultaneously obtains each node’s minimal cycle information
and the distribution of minimal cycles with different girths across the network.
This helps understand network structural characteristics and provides mesoscale
information to guide overlapping community detection.

Future work will combine cycle structures for deeper analysis of networks with
dense structures. Real networks often evolve dynamically with environmen-
tal changes, while topology affects information transmission. Utilizing detected
overlapping nodes and community structures to analyze network dynamic evolu-
tion characteristics warrants further research. Given that network connections
often represent limited choices under incomplete information, future studies
should integrate prior knowledge, incorporate high-order network information
to quantify networks more reasonably, and nest node attribute information to
mine overlapping community structures and identify key overlapping nodes to
help predict network dynamic evolution directions.
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