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Abstract
To address the deficiencies of the School-Based Optimization (SBO) algorithm,
including poor search performance and susceptibility to local optima, this pa-
per proposes an SBO algorithm integrated with educational psychology (SBO
based on Educational Psychology, SBO-EP). During the teaching phase, the
Zone of Proximal Development theory is introduced to implement grouped dy-
namic teaching for students, thereby enhancing the algorithm’s exploration ca-
pability. The achievement motivation theory is incorporated into the self-study
phase, where dynamic self-study approaches are designed according to each stu-
dent group’s achievement motivation to improve the algorithm’s exploitation
capability. Following each learning cycle, a class reorganization operation is
performed based on the peer effect to increase solution diversity. Numerical
experiments are conducted using 40 CEC2021 test functions and 20 additional
test functions of other types, and the SBO-EP algorithm is compared against
Ant Colony Optimization, Spherical Vector-based Particle Swarm Optimization,
Archimedes Optimization Algorithm, Grey Wolf Optimizer, Teaching-Learning-
Based Optimization, TLBO incorporating cognitive psychology, and Student
Psychology-Based Optimization. The results indicate that the SBO-EP algo-
rithm demonstrates significant advantages in convergence speed, optimization
accuracy, and stability. Finally, comparative experiments on combinations of
the three strategies verify the effectiveness of the proposed improvements.
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Abstract: To address the shortcomings of the School Based Optimization
(SBO) algorithm, such as poor search performance and tendency to fall into
local optima, this paper proposes an SBO algorithm based on Educational Psy-
chology (SBO-EP). In the teaching phase, the“Zone of Proximal Development”
theory is introduced to implement dynamic group teaching for students, en-
hancing the algorithm’s exploration capability. The “Achievement Motiva-
tion”theory is incorporated into the self-study phase, where dynamic self-study
methods are designed based on each student group’s achievement motivation
to improve the algorithm’s exploitation capability. After each learning round,
a class reorganization operation is performed based on the“Peer Effect”theory
to increase solution diversity. Numerical experiments are conducted using 40
CEC2021 test functions and 20 other types of test functions. The SBO-EP algo-
rithm is compared with Ant Colony Optimization, spherical vector-based Parti-
cle Swarm Optimization, Archimedes Optimization Algorithm, Gray Wolf Op-
timization Algorithm, Teaching-Learning-Based Optimization, Cognitive Psy-
chology Teaching-Learning-Based Optimization, and Student Psychology-Based
Optimization. Results demonstrate that SBO-EP offers significant advantages
in convergence speed, optimization accuracy, and stability. Finally, compara-
tive experiments on combinations of the three strategies verify the effectiveness
of the proposed improvements.

Keywords: SBO algorithm; Zone of Proximal Development theory; Achieve-
ment Motivation theory; Peer Effect

0 Introduction
The School Based Optimization (SBO) algorithm, proposed by Farshchin et
al. in 2018, represents a novel metaheuristic optimization approach. Existing
metaheuristic algorithms are primarily inspired by biological swarm sociality
or natural phenomena, such as Genetic Algorithms (GA) and Simulated An-
nealing (SA). However, human groups possess the conscious ability to modify
their behavior, making them more intelligent than ordinary biological systems.
Consequently, metaheuristic algorithms simulating human group intelligence
have become a research focus, including Teaching-Learning-Based Optimization
(TLBO) and Brain Storm Optimization (BSO).

The SBO algorithm is a metaheuristic developed based on human group in-
telligence, inspired by multi-class teaching modes in schools. It extends the
single-classroom model of TLBO by proposing a collaborative multi-class teach-
ing optimization framework. In this collaborative mode, teachers from various
classes can be assigned to teach in other classes, enabling knowledge sharing
and dissemination throughout the entire school.

As a relatively recent development, research on the SBO algorithm remains lim-
ited, primarily focusing on solving practical optimization problems. Farshchin et
al. applied SBO to steel frame design optimization, demonstrating its robustness
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and efficiency through several benchmark problems. Degertekin et al. utilized
SBO for seismic optimization design of steel frames, while Abdelghany et al. em-
ployed it for solar cell parameter estimation. Current domestic and international
research on SBO mainly concentrates on application problems, with further in-
vestigation needed to address algorithmic deficiencies and improve optimization
performance.

This paper targets the SBO algorithm’s weaknesses in search capability and sus-
ceptibility to local optima by integrating theories from educational psychology.
We design teaching strategies, self-study strategies, and class reorganization
strategies to propose the SBO-EP algorithm, which significantly enhances ex-
ploration and exploitation capabilities while improving solution accuracy and
convergence speed.

1 SBO Algorithm
Common metaheuristic algorithms generate an initial population of potential
solutions and gradually improve overall fitness through a systematic optimiza-
tion process, allowing only intra-population collaboration. More sophisticated
approaches employ multiple independent parallel populations to enhance ex-
ploration capability and overall efficiency. This multi-population collaborative
method comprises two phases: first, independent metaheuristics explore differ-
ent population regions of the search space; second, the most promising sub-
regions are exploited. The SBO algorithm is precisely such a two-phase opti-
mization algorithm based on multi-population collaboration. The first phase ex-
plores each independent class through teacher guidance, while the second phase
focuses on identifying the most promising students. Conventional two-phase
multi-population algorithms typically face challenges in selecting termination
criteria for the first phase, requiring parameter tuning that introduces depen-
dency and increases complexity. The SBO algorithm addresses this issue by
introducing a multi-class collaborative framework, offering advantages of fewer
parameters and stronger search capability.

The interaction mechanism in SBO involves: selecting teachers for each class
to form an excellent teacher group, allocating teachers to classes using roulette
wheel selection, conducting interactive learning between teachers and students
within each class, and finally enabling peer learning among students within each
class. In SBO, each candidate solution represents a student individual in a class,
solution components represent subjects, and one iteration represents a complete
teaching-learning process. The search process comprises three stages: teacher
allocation, teaching phase, and learning phase, which work jointly to gradually
improve class performance.

chinarxiv.org/items/chinaxiv-202205.00051 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00051


1.1 Teacher Allocation

Teacher allocation serves as the crucial link connecting different classes through-
out the SBO teaching process. First, student fitness values within each class
are compared to select the top performer, forming an excellent teacher team.
Then, roulette wheel selection is employed to randomly choose one teacher from
this team for each class to perform teaching tasks. This allocation method en-
sures that excellent teachers have a higher probability of entering classes for
instruction while maintaining randomness. Through knowledge dissemination
by excellent teachers across multiple classes, student learning efficiency improves
and solution diversity increases.

1.2 Teaching Phase

After each class is assigned a teacher, the teacher independently conducts knowl-
edge delivery within their assigned classes. Student groups learn from the
teacher to improve their performance. In each independent class containing
N students, individual student Xi updates their knowledge by combining their
existing knowledge with the teacher’s instruction, attempting to approach the
teacher’s level. The update equation is given by (1):

where and represent student i’s level in subject D before and after teaching,
respectively, and represents the knowledge absorbed by student i through class-
room instruction, expressed as the difference between the teacher and the class
mean M, as shown in (2):

The Teaching Factor (TF) describes the degree of knowledge acquisition from
classroom instruction, taking values of 1 or 2: TF = round[1 + rand(0, 1)], where
r is a random number in (0,1). Student fitness values Fi are used to represent the
class average level M, which demonstrates superior search efficiency compared
to traditional weighted average calculations, as shown in (3):

1.3 Learning Phase

Following the teaching phase, students enter the learning phase, which involves
knowledge exchange and sharing among individuals to improve performance
through peer learning. In this phase, student i randomly selects another student
j from the same class for learning and communication, integrating this with their
own knowledge for updating. The update equation is given by (4):

2 SBO-EP Algorithm
The SBO algorithm exhibits deficiencies in exploitation and exploration capa-
bilities for complex function optimization problems and tends to fall into local
optima. Its adaptive exploration and global search capabilities require improve-
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ment. Addressing these defects becomes crucial for enhancing algorithmic per-
formance.

In educational psychology, Ausubel’s theory of meaningful reception learning
distinguishes between“reception learning”and“discovery learning.”To address
SBO’s weak exploration, we introduce the “Zone of Proximal Development”
theory into the teaching phase corresponding to reception learning, proposing
a group teaching method. For weak exploitation, corresponding to discovery
learning, we incorporate the “Achievement Motivation”theory to propose a
group self-study phase. Dynamic learning factors based on habituation are
introduced in both phases to adaptively enhance search capability. Finally, to
address local optima susceptibility, we adopt class reorganization based on the
“Peer Effect”theory to increase solution diversity and improve global search
capability.

2.1 Teaching Phase Based on“Zone of Proximal Development”Theory

Vygotsky’s“Zone of Proximal Development”(ZPD) theory posits that student
development comprises current and potential levels, with the difference between
them constituting the ZPD. Teaching should target this zone, gradually elimi-
nating the gap through teacher guidance to elevate student performance. Chi-
nese scholar Wang Wenjing proposed establishing a new“teaching according to
aptitude”perspective based on ZPD, where educators should thoroughly under-
stand students’actual and potential developmental levels, guiding them toward
their highest potential by identifying their ZPD. This theory aims to unlock
student potential by creating improvement intervals that gradually stimulate
performance through teaching-learning interactions.

Inspired by this theory, we define the difference between teacher level and stu-
dent current level as the ZPD—the potential interval for improvement through
receiving teacher knowledge. We implement “teaching according to aptitude”
to facilitate different students approaching teacher level through their respec-
tive learning styles. Drawing from the Group Teaching Optimization Algorithm
(GTOA), we transform the single teaching mode into a group teaching mode.
Using class average performance as the standard and following the principle of
“heterogeneous between groups, homogeneous within groups,”students are di-
vided into excellent and ordinary groups. Dynamic differential teaching schemes
are designed for each group’s ZPD to unlock their potential and improve overall
class performance. Excellent students have higher overall levels, faster knowl-
edge absorption, and relatively smaller ZPD, allowing teachers to balance guid-
ance for both individual improvement and class average elevation. For mini-
mization problems, the excellent group dynamic teaching update equation is
given by (5):

Ordinary students have higher potential development levels and relatively larger
ZPD spaces, so teachers focus primarily on guiding this group toward potential
achievement. The ordinary group dynamic teaching update equation is given
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by (6):

During the gradual elimination of ZPD through teacher guidance, the “habitu-
ation principle”must be considered. Accepting new knowledge is a progressive
process. In early teaching stages, students require an adaptation period where
learning state depends mainly on original level. As teaching progresses and
students adapt to new learning rhythms, dependence on original level decreases
while new knowledge acceptance increases. Therefore, a dynamic learning factor
w is introduced to simulate habituation, defined by (7):

where t represents current iteration number and Iter_{max} represents max-
imum iteration number. The improved group teaching phase based on ZPD
theory simulates how students of different levels in real classrooms approach
teacher level by eliminating ZPD differences, reaching their potential maximum
level. Algorithmically, this means excellent and poor solutions within each pop-
ulation undergo group optimization, gradually approaching the population’s
optimal solution. Compared to SBO’s single overall update strategy, the ZPD-
based teaching phase effectively expands solution search range and improves
exploration capability.

2.2 Self-Study Phase Based on “Achievement Motivation”Theory

Ausubel’s“discovery learning”emphasizes that learners should actively establish
connections between old and new knowledge for assimilation. Based on this, a
self-study phase is added after teaching and learning phases to consolidate and
strengthen knowledge absorption.

Atkinson’s “Achievement Motivation”theory distinguishes between success-
oriented motivation and failure-avoidance motivation. Success-oriented individ-
uals seek achievement, typically choosing higher goals for satisfaction. For these
students, assigning difficult tasks can stimulate learning enthusiasm. Failure-
avoidance individuals prefer stable progress, choosing easily achievable goals to
maintain steady development. For these students, low-competition goals help
maintain learning state. Drawing from achievement motivation theory and us-
ing the same grouping method and habituation-based dynamic learning factor
w from the teaching phase, we propose a student self-study phase. The Student
Psychology-Based Optimization Algorithm and Cognitive Psychology Teaching-
Learning-Based Optimization Algorithm similarly group students based on psy-
chological expectations or locus of control, designing appropriate learning goals
and methods for each group.

Excellent students, analogous to success-oriented individuals, aim for achieve-
ment by targeting the best performer, measuring their gap and continuously
learning to reach top performance. The update equation is given by (8):

Ordinary students, analogous to failure-avoidance individuals, prefer steady,
progressive learning, targeting class average level to build foundation and iden-
tify gaps before seeking higher goals. The update equation is given by (9):
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2.3 Class Reorganization Strategy Based on “Peer Effect”

Coleman’s “Peer Effect”concept suggests that individuals within a group are
influenced by peers’characteristics and performance. Research shows that mixed-
class grouping strategies can effectively improve overall class performance under
positive peer effects.

In SBO’s learning phase, students primarily reference classmates within the
same class, limiting reference samples and risking local optima. To diversify
learning and expand positive peer influence, a mixed-class grouping strategy is
applied to all classes. After each iteration, class reorganization is performed
before entering the next learning round.

To verify the impact of class reorganization on solution diversity, Griewangk and
Salomon functions are used as examples, comparing distribution diagrams of 50
two-dimensional students in one class before and after iteration. As shown in
Figure 1, before the first iteration’s class reorganization, solutions are densely
distributed with limited range. After reorganization, solutions become more
dispersed with wider distribution and significantly improved diversity, while still
finding optimal solutions without reducing search efficiency. This demonstrates
that class reorganization substantially increases solution diversity and improves
global exploration capability.

2.4 SBO-EP Algorithm Steps

In summary, the framework of the proposed SBO-EP algorithm is shown in
Figure 2. The specific steps are:

Step 1: In NC classes, randomly generate initial student populations of dimen-
sion NP×D within search space [LB, UB].

Step 2: Calculate and compare fitness values of students in each class, selecting
top performers to form the teacher team.

Step 3: Use roulette wheel selection to choose NC teachers from the teacher
team, assigning one to each class for teaching activities.

Step 4: Teaching phase: Update student population using equations (5) and
(6).

Step 5: Learning phase: Update student population using equation (4).

Step 6: Self-study phase: Update student population using equations (8) and
(9).

Step 7: Class reorganization: Mix all students from NC classes and reorganize
into NC new classes.

Step 8: Update iteration count t = t + 1. If termination condition t =
Iter_{max} is satisfied, the algorithm terminates and outputs the global op-
timal solution; otherwise, return to Step 3.
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3 Experiments and Results
3.1 Experimental Environment and Parameter Settings

To verify SBO-EP’s optimization performance, comparative experiments are
conducted against Ant Colony Optimization (ACO), spherical vector-based
Particle Swarm Optimization (SPSO), Archimedes Optimization Algorithm
(AOA), Gray Wolf Optimization (GWO), Student Psychology-Based Opti-
mization (SPBO), Teaching-Learning-Based Optimization (TLBO), Cognitive
Psychology Teaching-Learning-Based Optimization (CPTLBO), and the
original SBO algorithm. The CEC2021 suite of 40 functions and 20 other test
functions are used to validate the improved algorithm’s superiority. Parameter
settings for all compared algorithms are listed in Table 1.

The experimental environment is 64-bit Windows 10, Intel(R) Core(TM) i5-
7200U CPU at 2.7GHz, 8GB RAM. Algorithms are implemented in MATLAB
R2020b.

3.2 CEC2021 Function Tests

The 2021 IEEE Congress on Evolutionary Computation (CEC) single-objective
parameter optimization competition proposed 10 scalable complex test functions
in 10 and 20 dimensions. This paper extends these 10 benchmark functions with
bias and rotation operations. If both operations are applied, it is denoted as type
“11”; if neither is applied, type“00”; resulting in four extension combinations and
40 total test functions. Detailed information for the 10 CEC2021 benchmark
functions is provided in Table 2.

Since theoretical optima vary across CEC2021 functions, differences between
algorithm results and theoretical optima are calculated, with difference value 0
serving as the optimum for comparison. Maximum evaluation counts are set to
30,000 for fairness. SBO and SBO-EP use 10 classes × 30 students, while other
algorithms use 30 individuals. Each algorithm runs independently 30 times in
10 dimensions. Mean values measure optimization capability, while standard
deviations reflect stability. Results are shown in Table 3.

Table 3 results indicate that AOA achieves mean and standard deviation of 0
for functions f1 and f9 of types 10 and 11, showing relatively good accuracy and
stability. GWO stably converges to optima for f8 of type 00 and f1 of types 10
and 11. CPTLBO achieves zero mean and standard deviation for f1 and f9 of
types 10 and 11, and for f4 and f8 across all four types, demonstrating excellent
accuracy and stability. SBO consistently finds optimal solutions for f1 of type 10
and f8 across all types. SPSO, SPBO, and TLBO fail to optimize any functions
to optimality, showing poor performance.

The proposed SBO-EP algorithm achieves optimization mean values reaching
the order of -300 for f9 and f10 of types 00 and 01 among the complex CEC2021
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functions, significantly outperforming the other eight algorithms. Except for
these six functions, all other unimodal, basic, hybrid, and composite functions
achieve zero mean and standard deviation across 30 independent runs, consis-
tently converging to optimal solutions. This verifies SBO-EP’s superior opti-
mization capability and stability.

To comprehensively validate SBO-EP’s reliability and superiority, statistical
testing is performed using Wilcoxon rank-sum tests at a 5% significance level
against other algorithms on all 40 CEC2021 functions. Using SBO-EP versus
SBO as an example, calculated p-values are shown in Table 4 (NaN indicates
both algorithms converge to optima). All other p-values are below 0.05, statisti-
cally confirming SBO-EP’s superiority. Similar significant results are obtained
for other algorithms (detailed results omitted due to space constraints).

For intuitive performance comparison, convergence curves for functions f3, f4, f6,
and f7 of type 00 are plotted in Figure 3. The curves show SBO-EP converges
rapidly, achieving high precision within 100 iterations, clearly outperforming
other algorithms in both convergence speed and accuracy.

3.3 High-Dimensional Function Tests

Beyond the 40 CEC2021 functions, 20 additional test functions are selected to
verify performance on high-dimensional problems. Function details are provided
in Table 5.

SBO-EP and six other algorithms solve these 20 functions in 1000 dimensions,
running independently 30 times with maximum evaluation counts of 30,000.
Performance metrics of best, mean, worst, and standard deviation are reported
in Table 6.

Results show that ACO performs well on F15 and F20, stably converging to
optima on F15. SPSO converges to optima on F13 and F15 with relatively
stable results on F13. AOA finds optima on F1, F2, F5, F11, F14, and F17,
with stable convergence on F1, F2, and F17. GWO shows poor optimization
capability, failing to find optima on any function with large magnitude results.
SPBO converges to optima on F1, F12, F13, F15, and F20, but with large
standard deviations on F1 and F20, indicating instability. TLBO shows poor
capability, only occasionally converging to optima on F12. CPTLBO stably
converges to optima on F1, F2, F15, and F17, with occasional convergence on
F11 but large standard deviation, showing overall good performance. SBO only
stably finds optima on F2, placing it at a disadvantage.

SBO-EP demonstrates significantly superior performance across all metrics com-
pared to the other eight algorithms. For F7, where AOA, SPBO, TLBO, and
SBO all fail to escape local optima with large initial values, SBO-EP rapidly
converges to optima, demonstrating fast convergence and strong exploration
capability independent of initial solutions. Except for F12 and F18, all other
functions achieve zero across all four evaluation metrics, showing remarkable
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solution accuracy and stability. Wilcoxon rank-sum tests at 5% significance
level on all 20 functions yield p-values below 0.05 (N/A when both algorithms
reach optima), statistically confirming SBO-EP’s superiority.

Representative convergence curves for functions F1, F4, F8, and F17 in 1000
dimensions are plotted in Figure 4. For F1 and F17, both AOA and SBO-EP
converge to optima, but SBO-EP converges significantly faster with exponential
convergence trends. For F4 and F8, only SBO-EP converges to optima with
stable trends without local optima entrapment. This confirms SBO-EP’s clear
advantages in convergence speed and stability.

3.4 Comparison of Improved Strategy Combinations

SBO-EP’s optimization performance results from the combined effects of three
strategies: ZPD-based teaching phase, achievement motivation-based self-study
phase, and peer effect-based class reorganization. To validate each strategy’
s effectiveness, combination experiments are conducted. Algorithms using only
strategy 1, 2, or 3 are denoted SBO-EP1, SBO-EP2, and SBO-EP3, respectively.
Algorithms using strategy pairs (1+2, 1+3, 2+3) are denoted SBO-EP4, SBO-
EP5, and SBO-EP6.

Four test functions are selected: f1 and f7 from CEC2021 type 00, and F10 and
F18 from the 1000-dimensional suite. With 30,000 evaluation counts, each algo-
rithm runs independently 30 times. Best, worst, mean, and standard deviation
results are reported in Table 7, with iteration curves from the 15th run shown
in Figure 5.

Results show that from a single-strategy perspective, SBO-EP1 and SBO-EP2
outperform SBO, indicating strategies 1 and 2 substantially improve exploita-
tion and exploration, with strategy 1 contributing more significantly to solution
accuracy. Strategy 3 alone shows no optimization for any function. When
combining two strategies, solution accuracy further improves, with SBO-EP4
(strategies 1+2) showing the best performance. The combination of strategies 1
and 3 also demonstrates significant contribution, validating strategy 3’s effec-
tiveness in assisting other strategies and helping escape local optima. When all
three strategies are combined, optimization capability is effectively enhanced,
achieving highest solution accuracy and fastest convergence. Optimal solutions
are found for f1, f7, and F10, while high precision is achieved for F18, showing
clear improvement over other combinations.

The eight-strategy combination experiments confirm that strategies 1 and 2
contribute significantly to exploration capability, while strategy 3 substantially
enhances global optimization capability when combined with the others. These
experiments validate the effectiveness of the three-strategy combination and
SBO-EP’s superiority, with all p-values from Wilcoxon rank-sum tests against
other combinations being below 0.05, further confirming statistical significance.
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4 Conclusion
The SBO algorithm is a metaheuristic based on multi-class collaborative teach-
ing. To address its low optimization accuracy and weak global search capability,
this paper proposes SBO-EP, an SBO algorithm integrating educational psychol-
ogy features with dynamic grouping. First, the ZPD theory with habituation
principle is applied to group teaching updates, improving exploration capabil-
ity. Second, the achievement motivation theory with habituation principle is
used to propose a group self-study phase, enhancing exploitation capability. Fi-
nally, peer effect-based class reorganization after each learning round increases
solution diversity and global search capability.

Comprehensive testing on 40 CEC2021 functions and 20 other test functions,
with comparisons against ACO, SPSO, AOA, GWO, SPBO, TLBO, CPTLBO,
and SBO, demonstrates that SBO-EP achieves stronger search performance,
faster convergence, and higher stability, validating its superiority. Strategy
combination experiments further confirm the effectiveness of all three improve-
ment strategies. SBO-EP shows strong competitiveness in optimization, with
future work applying it to new energy vehicle power battery recycling network
planning.
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Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202205.00051 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00051

	Postprint of the SBO Algorithm Incorporating Educational Psychology
	Abstract
	Full Text
	Preamble
	0 Introduction
	1 SBO Algorithm
	1.1 Teacher Allocation
	1.2 Teaching Phase
	1.3 Learning Phase

	2 SBO-EP Algorithm
	2.1 Teaching Phase Based on “Zone of Proximal Development” Theory
	2.2 Self-Study Phase Based on “Achievement Motivation” Theory
	2.3 Class Reorganization Strategy Based on “Peer Effect”
	2.4 SBO-EP Algorithm Steps

	3 Experiments and Results
	3.1 Experimental Environment and Parameter Settings
	3.2 CEC2021 Function Tests
	3.3 High-Dimensional Function Tests
	3.4 Comparison of Improved Strategy Combinations

	4 Conclusion
	References


