
AI translation ・View original & related papers at
chinarxiv.org/items/chinaxiv-202205.00050

Postprint: A Multi-Population Stochastic Per-
turbation Ant Colony Algorithm for Distributed
Constrained Optimization Problems
Authors: Shi Meifeng, Xiao Shichuan, Feng Xin

Date: 2022-05-11T10:48:42+00:00

Abstract
To address the issues of slow convergence and susceptibility to local optima
in existing ant colony optimization-based algorithms for solving distributed con-
straint optimization problems, this paper proposes a Random disturbance based
multi-population ant colony algorithm to solve distributed constraint optimiza-
tion problems (RDMAD) to solve distributed constraint optimization problems.
First, RDMAD proposes a division-of-labor cooperation mechanism that divides
the population proportionally into subpopulations employing greedy search and
subpopulations employing heuristic search, while constructing a hierarchical up-
date strategy to improve algorithm convergence speed and solution quality; then,
designs adaptive mutation operators and reward-penalty mechanisms for the
subpopulations employing greedy search to prevent the algorithm from falling
into local optima; finally, triggers a random disturbance strategy when the algo-
rithm falls into stagnation to increase population diversity. Experimental com-
parisons of the optimization results between RDMAD and seven state-of-the-art
incomplete algorithms on three classes of benchmark problems demonstrate that
RDMAD exhibits significant advantages in solution quality and convergence
speed, along with high stability.

Full Text
Preamble
Random Disturbance Based Multi-Population Ant Colony Algorithm
for Distributed Constraint Optimization Problems

Shi Meifeng†, Xiao Shichuan, Feng Xin
(College of Computer Science & Engineering, Chongqing University of Technol-
ogy, Chongqing 400054, China)

chinarxiv.org/items/chinaxiv-202205.00050 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00050
https://chinarxiv.org/items/chinaxiv-202205.00050

Abstract: The ant-based algorithm for solving distributed constraint optimiza-
tion problems (ACO_{DCOP}) represents an excellent population-based ap-
proach for DCOPs. However, ACO_{DCOP} suffers from slow convergence
speed and a tendency to fall into local optima. To address these limitations,
this paper proposes a random disturbance based multi-population ant colony al-
gorithm (RDMAD) for DCOPs. First, RDMAD introduces a division-of-labor
mechanism that splits the population into subpopulations performing greedy
search and heuristic search respectively, complemented by a hierarchical update
strategy to accelerate convergence and improve solution quality. Second, an
adaptive mutation operator and reward-penishment mechanism are designed for
the greedy search subpopulation to prevent premature convergence. Finally, a
random disturbance strategy is triggered when the algorithm stagnates, increas-
ing population diversity. Experimental comparisons with seven state-of-the-art
incomplete algorithms on three benchmark problem classes demonstrate that
RDMAD achieves superior performance in solution quality and convergence
speed while maintaining high stability.

Key words: distributed constraint optimization problems; ant colony algo-
rithm; adaptive mutation operator; incomplete algorithm

0 Introduction
Multi-agent systems (MAS) constitute a fundamental area of distributed ar-
tificial intelligence [?]. Distributed constraint optimization problems (DCOP)
serve as a core MAS framework, widely applied to model practical problems
such as sensor networks [?] and task scheduling [?].

Over the past two decades, numerous algorithms have been proposed for DCOPs.
Complete algorithms guarantee optimal solutions, with representative search-
based methods including SyncBB [?], AFB [?], ADOPT [?], and BnB-ADOPT
[?]. DPOP [?] exemplifies inference-based complete algorithms that employ
dynamic programming, though it suffers from exponential memory consump-
tion. MB-DPOP [?] was introduced to mitigate this memory issue. To further
enhance MB-DPOP, Chen et al. [?] proposed RMB-DPOP, which reduces re-
dundant inference and improves scalability. Rashik et al. [?] utilized cross-edge
consistency to shorten DPOP’s runtime. Since DCOPs are NP-Hard, incomplete
algorithms—while not guaranteeing optimality—offer better communication and
computational performance. Local search-based incomplete algorithms repre-
sent a current research focus, including DSA [?] and GDBA [?]. Frameworks
such as ALS [?], PDS [?], and LSGA [?] have been developed to improve local
search solution quality. Max-Sum [?] and Max-Sum_{ADVP} [?] are inference-
based incomplete algorithms where agents propagate and accumulate utilities
through factor graphs. Sampling-based incomplete algorithms like DUCT [?]
solve DCOPs by sampling the search space.

Recently, a new class of incomplete algorithms utilizing populations has

chinarxiv.org/items/chinaxiv-202205.00050 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00050

emerged. Mahmud et al. [?] proposed an evolutionary optimization approach
for DCOPs. Chen et al. [?] introduced ACO_{DCOP}, the first algorithm
applying ant colony optimization to DCOPs, evolved from traditional ACO.
However, ACO_{DCOP} employs a single population, resulting in slow
convergence and susceptibility to local optima due to pheromone influence.
Multi-population strategies have proven effective in other domains: Xue et
al. [?] solved job-shop scheduling through cooperation between core and search
ant colonies; Zhu et al. [?] applied multi-population ACO to manipulator path
planning; Chen et al. [?] effectively solved TSP using a master-slave ant colony
mechanism. To address ACO_{DCOP}’s limitations, this paper proposes
RDMAD, a random disturbance based multi-population ant colony algorithm
for DCOPs. The main contributions are fourfold:

a) A division-of-labor mechanism where subpopulations perform greedy
search and heuristic search respectively, enabling coordinated local and
global exploration.

b) A random perturbation strategy triggered during stagnation that repar-
titions the population into three subpopulations, adding a random-value
subpopulation to increase diversity and escape local optima.

c) A hierarchical update strategy with different update methods for subpop-
ulations based on their guiding roles, improving convergence speed and
solution quality.

d) Theoretical complexity analysis of RDMAD.

1.1 Distributed Constraint Optimization Problem
In this work, each agent controls one variable, making “agent”and “variable”
interchangeable. Figure 1(a) shows a DCOP constraint graph where nodes rep-
resent agents and edges represent constraints. Figure 1(b) depicts the constraint
matrix, where 0 and 1 are variable values and other entries indicate constraint
costs for corresponding variable assignments. For example, when 𝑥1 = 0 and
𝑥4 = 0, the cost is 5.

A DCOP is defined as a tuple ⟨𝑋, 𝐷, 𝐹 , 𝐴, 𝛼⟩ where 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} is a set
of discrete variables, 𝐷 = {𝐷1, 𝐷2, ..., 𝐷𝑛} is the set of domains with 𝐷𝑖 being
the domain of variable 𝑥𝑖, 𝐹 = {𝑓1, 𝑓2, ..., 𝑓𝑞} is a set of constraint functions
defining relationships between variables in 𝑋, and 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑚} is the set
of agents where each agent controls one or more variables. The goal of DCOP
algorithms is to find an assignment combination 𝑋∗ that minimizes the global
constraint cost shown in Equation (1):

𝑋∗ = arg min
𝑋𝑖⊆𝑋

𝑞
∑
𝑖=1

𝑓𝑖(𝑋𝑖)

chinarxiv.org/items/chinaxiv-202205.00050 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00050

The constraint graph is first converted to a breadth-first search pseudo-tree [?]
as shown in Figure 2(a). Agent message-passing order (ant traversal direction)
is then constructed, where upper-layer agents have higher priority than lower-
layer agents. Among same-layer neighbors, agents with more neighbors and
larger domains receive higher priority; if these are equal, smaller agent IDs
receive higher priority. Consequently, each agent’s neighbors are divided into
high-priority neighbors 𝐻𝑖 and low-priority neighbors 𝐿𝑖, with messages flowing
from high-priority to low-priority agents.

Based on different agent values, multiple pheromone paths exist between each
pair of agents. As shown in Figure 2(c), when agent 𝑎𝑖 takes value 𝑑𝑖 and agent
𝑎𝑗 takes value 𝑑𝑗, the pheromone concentration on that path is 𝜏𝑑𝑖𝑑𝑗

𝑖𝑗 . In each
iteration, ants depart from the highest-priority agent. After each ant obtains
values, the agent sends the ant’s assignment to its low-priority neighbors. Upon
receiving assignments from high-priority neighbors, agent 𝑎𝑖 first merges the
received solution sets. When 𝑎𝑖 has received assignments from all high-priority
neighbors, it selects values from each ant’s domain using transition probabilities;
otherwise, it waits. After assigning values to all ants, 𝑎𝑖 sends the assignments
to its low- or lowest-priority neighbors. When the lowest-priority agent receives
all ant assignments, each ant has completed solution construction. The cost of
each solution is calculated, with lower costs indicating better quality. The global
best solution is updated accordingly, and pheromone increments for each ant are
computed and sent to all agents. Upon receiving pheromone increments, agents
update and evaporate pheromone concentrations on paths to their high-priority
neighbors, concluding one iteration.

1.2 ACO_{DCOP}
Ant Colony Optimization (ACO) is a population-based metaheuristic for combi-
natorial optimization problems, successfully applied to traveling salesman prob-
lems and constraint satisfaction problems. Since DCOPs lack physical paths,
traditional ACO cannot be directly applied. ACO_{DCOP} [?] is the only
algorithm that successfully adapts ACO principles to DCOPs by using agent
message-passing to simulate ant movement, pioneering swarm intelligence for
DCOPs.

Using Figure 1 as an example, the pheromone path construction graph is shown
in Figure 2(c), where nodes represent agents. The process involves: (1) convert-
ing the constraint graph to a BFS pseudo-tree (Figure 2(a)), (2) constructing
message-passing order (Figure 2(b)), and (3) establishing pheromone paths (Fig-
ure 2(c)). Pheromone information is stored by low-priority agents.

chinarxiv.org/items/chinaxiv-202205.00050 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00050

2 RDMAD Algorithm
RDMAD employs ant movement between agents to construct solutions, utilizing
a division-of-labor mechanism, hierarchical updates, and random perturbation
strategies. By leveraging different guiding roles of subpopulations during opti-
mization, RDMAD effectively improves convergence and solution performance.

2.1 Initialization Phase

RDMAD first converts the agent constraint graph into a BFS pseudo-tree struc-
ture, then constructs agent message-passing order to generate the final con-
struction graph (as shown in Section 1.2, Figure 2). Pheromone information
is stored by low-priority agents. After construction graph completion, parame-
ters are initialized and each agent initializes its ant solution set as empty. The
highest-priority agent then randomly assigns values to all ants and sends these
assignments to its low-priority neighbors. Using the example from Section 1.2
Figure 2, where 𝑎1 is the highest-priority node with population size 2, 𝑎1 as-
signs value 1 to ant 1 and value 0 to ant 2, then sends its own value and ant
assignments {1, 0} to low-priority neighbors 𝑎2, 𝑎3, and 𝑎4.

2.2 Division of Labor Mechanism

Population-based DCOP solvers have emerged only recently, evolving directly
from traditional swarm intelligence algorithms that utilize single-population op-
timization. RDMAD enhances the existing ant transition probability approach
by adding a greedy search subpopulation, employing multi-population coopera-
tion to better balance exploitation and exploration.

When agent 𝑎𝑖 receives assignments from high-priority neighbors, it merges all
received values. Upon receiving assignments from all high-priority neighbors, 𝑎𝑖
begins value selection for ants using different strategies per subpopulation:

1) Subpopulation 1 performs greedy search, enhancing local exploration
and convergence speed. Equation (2) selects for ant 𝑘 the value that
minimizes the sum of constraint costs between 𝑎𝑖 and its neighbors:

𝑑𝑖 = arg min
𝑑∈𝐷𝑖

∑
𝑎𝑗∈𝐻𝑖

cost(𝑑, 𝑉 𝑘
𝑗)

where 𝑉 𝑘
𝑗 is the value assigned to ant 𝑘 by high-priority neighbor 𝑎𝑗, and

cost(𝑑, 𝑉 𝑘
𝑗) is the constraint cost when 𝑎𝑖 takes value 𝑑 and 𝑎𝑗 takes value

𝑉 𝑘
𝑗 for ant 𝑘.

To prevent rapid entrapment in local optima due to greedy search, subpopula-
tion 1 employs an adaptive mutation operator defined in Equation (4):

𝑝𝑚 = 𝑚 × total_cycle − cur_cycle
total_cycle

chinarxiv.org/items/chinaxiv-202205.00050 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00050

where 𝑚 is a weight controlling mutation magnitude, total_cycle is the total
iteration count, and cur_cycle is the current iteration. When a random number
𝑞 ∈ [0, 1] is less than 𝑝𝑚, ants 𝑘 and 𝑘′ are randomly selected and their values
are swapped to generate new individuals.

2) Subpopulation 2 retains the original transition probability approach,
employing heuristic search from ACO principles for global exploration.
This probability depends on pheromone and heuristic factors, combined
with roulette wheel selection. Equation (5) gives the probability of assign-
ing value 𝑑 to ant 𝑘:

𝑝𝑘
𝑖 (𝑑) = [𝜃𝑘

𝑖 (𝑑)]𝛼 ⋅ [𝜂𝑘
𝑖 (𝑑)]𝛽

∑𝑑′∈𝐷𝑖
[𝜃𝑘

𝑖 (𝑑′)]𝛼 ⋅ [𝜂𝑘
𝑖 (𝑑′)]𝛽

where 𝛼 and 𝛽 are weights for pheromone and heuristic factors respectively.
The pheromone factor 𝜃𝑘

𝑖 (𝑑), defined in Equation (6), represents the sum of
pheromone concentrations between 𝑎𝑖 and all high-priority neighbors when 𝑎𝑖
takes value 𝑑 for ant 𝑘:

𝜃𝑘
𝑖 (𝑑) = ∑

𝑎𝑗∈𝐻𝑖

𝜏𝑑𝑉 𝑘
𝑗

𝑖𝑗

The heuristic factor 𝜂𝑘
𝑖 (𝑑), defined in Equation (7), influences solution exploita-

tion: larger constraint costs between 𝑎𝑖 and its neighbors yield smaller heuristic
values, reducing exploitation probability:

𝜂𝑘
𝑖 (𝑑) = 1

LC𝑘
𝑖 (𝑑)

where LC𝑘
𝑖 (𝑑) is the estimated minimum sum of constraint costs between 𝑎𝑖 and

its low-priority neighbors 𝐿𝑖, defined in Equation (8):

LC𝑘
𝑖 (𝑑) = min

𝑑′∈𝐷𝑗,𝑎𝑗∈𝐿𝑖
∑

𝑎𝑗∈𝐿𝑖

cost(𝑑, 𝑑′)

This pre-estimation helps evaluate the exploitability of value 𝑑.

2.3 Random Perturbation Strategy

Population diversity affects the search space coverage. Since ACO_{DCOP}
relies on pheromone concentrations, diversity decreases over iterations, causing
stagnation in local optima. RDMAD introduces a random perturbation strat-
egy to increase diversity. When stagnation count reaches threshold count, the

chinarxiv.org/items/chinaxiv-202205.00050 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00050

strategy triggers, repartitioning the population into three subpopulations. Sub-
populations 1 and 2 maintain their original tasks, while subpopulation 3 disrupts
pheromone accumulation by using completely random value selection according
to Equation (9), breaking existing pheromone patterns:

𝑑𝑖 = random(𝐷𝑖)

2.4 Hierarchical Update Strategy

A hierarchical update strategy is constructed based on each subpopulation’s
distinct guiding role. When the lowest-priority agent receives assignments from
all high-priority neighbors, it calculates each ant’s pheromone increment Δ𝜏𝑘

using Equation (10):

Δ𝜏𝑘 = 1
cost𝑘 − best_cost + 1

where cost𝑘 is the cost of the complete assignment constructed by ant 𝑘, and
best_cost is the global best cost value. The lowest-priority agent sends Δ𝜏𝑘,
the population solution set, and the best solution to all other agents. Agents
then update pheromone concentrations on paths to high-priority neighbors using
Equation (11):

𝜏𝑑𝑖𝑑𝑗
𝑖𝑗 ← 𝜏𝑑𝑖𝑑𝑗

𝑖𝑗 + Δ𝜏𝑘 ∀𝑗 ∈ 𝐻𝑖

Equation (12) defines pheromone increments for each subpopulation. Since
subpopulation 1 guides the population’s exploration direction, its update follows
the reward-punishment mechanism in Equation (13):

Δ𝜏𝑑𝑖𝑑𝑗
𝑖𝑗 = {Δ𝜏𝑘/𝑛1 if Δ𝜏𝑘 ≥ 0

Δ𝜏𝑘 ⋅ 𝑛1 if Δ𝜏𝑘 < 0

where 𝑛1 is subpopulation 1’s size. Positive Δ𝜏𝑘 rewards corresponding paths
while negative values punish them, reducing pheromone concentration differ-
ences and preventing premature convergence. This hierarchical update strategy
reflects different guidance roles, improving convergence speed and solution qual-
ity.

2.5 Pheromone Evaporation

Pheromone evaporation allows ants to forget poor paths. After updating
pheromones, agents evaporate according to Equation (14):

𝜏𝑑𝑖𝑑𝑗
𝑖𝑗 ← (1 − 𝜌) ⋅ 𝜏𝑑𝑖𝑑𝑗

𝑖𝑗 + 𝜌 ⋅ 𝜏0

chinarxiv.org/items/chinaxiv-202205.00050 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00050

where 𝜌 is the evaporation rate and 𝜏0 is the initial concentration, with
pheromone range [𝜏min, 𝜏max]. Parameters 𝑟1 and 𝑟2 control evaporation
magnitude (default 𝑟1 = 1, 𝑟2 = 1). When random perturbation triggers,
𝑟1 = 2 and 𝑟2 = 0.5 enhance evaporation, helping escape local optima.

2.6 RDMAD Algorithm Steps

Algorithm 1 details the RDMAD implementation for each agent.

Algorithm 1: RDMAD Algorithm (for agent 𝑎𝑖)
Input: Initialized parameters 𝛼, 𝛽, 𝜌, 𝜏0, 𝐾, count
Output: Assignment combination 𝑋∗ minimizing global constraint cost

1. For each 𝑑𝑖 ∈ 𝐷𝑖, initialize est𝑖(𝑑𝑖)

2. If 𝑎𝑖 is the highest-priority node, randomly assign values to all ants and
send to low-priority neighbors

3. Upon receiving value messages, merge into solution set 𝑉recv

4. If 𝑎𝑖 has received all high-priority neighbor assignments:
• For subpopulation 3 (if active), assign random values using Equation

(9)

• For subpopulations 1-2, assign values using Equations (2), (4), and
(5)

• Send updated assignments to low- or lowest-priority neighbors

5. If 𝑎𝑖 is lowest-priority and has received all assignments:
• Update best_cost and corresponding best assignment 𝑋∗

• Update stagnation count

• Calculate each ant’s pheromone increment Δ𝜏𝑘 using Equation (10)

• Send Δ𝜏𝑘, solution set, and best solution to all agents

6. Upon receiving pheromone information:
• Update and evaporate pheromones using Equations (11) and (14)

• Update pre-estimations est𝑖(𝑑𝑖) using Algorithm 2

7. If termination condition not met, begin next iteration

Algorithm 2: Update Pre-estimations (for agent 𝑎𝑖)
Input: Population solution set 𝑉

chinarxiv.org/items/chinaxiv-202205.00050 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00050

Output: Updated pre-estimations est𝑖(𝑑𝑖)
1. For each 𝑑𝑖 ∈ 𝐷𝑖, count occurrences num(𝑑𝑖) in 𝑉

2. Update est𝑖(𝑑𝑖) ← (est𝑖(𝑑𝑖) + sum_cost(𝑑𝑖))/2
In distributed scenarios, agents only know neighbor information and high-
priority neighbor assignments based on message-passing order. These
pre-estimations help 𝑎𝑖 approximate the optimal cost sum with all neighbors,
enabling heuristic factor evaluation of current values.

2.7 Complexity Analysis

RDMAD’s complexity analysis covers message count, space complexity, and
time complexity, compared against ACO_{DCOP}. In each iteration, every
agent except the lowest-priority sends value messages to low-priority neighbors,
while the lowest-priority agent sends pheromone messages to all agents. Value
messages contain ant solution sets with size 𝑂(𝑛𝐾) where 𝑛 is the number of
agents, matching ACO_{DCOP}. Pheromone messages containing solution sets,
increments, and best solution have size 𝑂((𝐾 + 1)𝑛 + 𝐾), also consistent with
ACO_{DCOP}.

Each agent stores pheromone paths to high-priority neighbors requiring 𝑂(|𝐻𝑖| ⋅
|𝐷𝑖| ⋅ |𝐷𝑗|) space, identical to ACO_{DCOP}. Time complexity primarily in-
volves value computation: in the worst case, when 𝑎𝑖 assigns values to ant
𝑘, it traverses all high-priority neighbor assignments for each domain value
𝑑𝑖 ∈ 𝐷𝑖, requiring 𝑂(𝐾 ⋅ |𝐻𝑖| ⋅ |𝐷𝑖|) operations per value message, matching
ACO_{DCOP}’s time complexity.

3 Experimental Evaluation
Experiments employ three benchmark problem classes: random DCOPs [?]
(EXP-1, EXP-2), scale-free network problems [?] (EXP-3, EXP-4), and weighted
graph coloring problems (EXP-5). Table 1 summarizes the configurations.

Table 1: Problem Configuration

Problem Agent Count Domain Size Cost Range Density
EXP-1 70 [1,10] [1,100] 0.3
EXP-2 70 [1,10] [1,100] 0.7
EXP-3 70 [1,10] [1,100] Scale-free
EXP-4 120 [1,10] [1,100] Scale-free
EXP-5 70 [1,3] [1,100] 0.5

chinarxiv.org/items/chinaxiv-202205.00050 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00050

3.2 Parameter Analysis

Using random DCOPs (EXP-1), we analyze key parameters: pheromone factor
𝛼, heuristic factor 𝛽, evaporation rate 𝜌, and stagnation threshold count. The
control variable method ensures fairness, with each parameter value tested over
30 independent runs. Results are shown in Figure 3.

Figure 3(a) shows 𝛼’s impact: solution quality improves as 𝛼 increases, but
performance degrades when 𝛼 > 1, making 𝛼 = 1 optimal. Figure 3(b) demon-
strates 𝛽’s significant influence: larger 𝛽 values improve solution quality and
convergence until 𝛽 > 3, after which quality declines. Figure 3(c) reveals that
evaporation rate 𝜌 affects performance modestly compared to 𝛼 and 𝛽, with
𝜌 = 0.0025 yielding the best results. Figure 3(d) shows that appropriate stag-
nation intervals effectively improve solution quality when triggering random
perturbation.

Based on these results, RDMAD parameters are set as: 𝛼 = 1, 𝛽 = 3, 𝜌 = 0.0025,
𝜏0 = 3, count = 80. Subpopulation sizes are 0.5K each before perturbation; after
perturbation, they become 0.5K, 0.3K, and 0.2K for subpopulations 1, 2, and 3
respectively.

3.3 Experimental Results and Analysis

RDMAD’s robustness and optimization performance are evaluated against
six state-of-the-art incomplete DCOP algorithms: PDS-DSA [?], GDBA [?],
ACO_{DCOP} [?], DSAN [?], DSA [?], LSGA_{DSA} [?], and AED [?]. Each
instance is run independently 30 times, with results averaged over 20 randomly
generated instances per problem.

Table 2 presents mean costs and standard deviations across 20 instances, with
Wilcoxon signed-rank test results. The “+”column indicates how many of the
20 instances RDMAD outperformed each competitor, while“-”shows the oppo-
site. RDMAD achieves lower mean costs than all competitors on all problems
except EXP-2, where it is only slightly worse than AED. Statistically, RDMAD
consistently outperforms ACO_{DCOP}, DSA, DSAN, and GDBA across all
instances, demonstrating clear advantages and high stability on other problems.
P-values from the Wilcoxon test confirm RDMAD’s significant superiority in
solution quality.

Table 2: Statistical Results on 20 Instances per Problem

Algorithm
EXP-1
Mean±Std

EXP-2
Mean±Std

EXP-3
Mean±Std

EXP-4
Mean±Std

EXP-5
Mean±Std

RDMAD 5340$±79.7|55439±210.6|3648±81.9|12334±92.0|279±29.3||𝐴𝐶𝑂𝐷𝐶𝑂𝑃 |5575±82.0|56212±205.8|3816±69.3|12684±126.5|342±36.4||𝐺𝐷𝐵𝐴|5463±72.6|55400±225.0|3853±61.8|12424±101.9|343±31.9||𝐴𝐸𝐷|5991±98.4|56524±188.3|4360±76.9|13160±139.2|747±45.7||𝐿𝑆𝐺𝐴−
𝐷𝑆𝐴|5431±71.0|55456±211.5|3845±77.1|12413±90.3|396±31.5||𝑃𝐷𝑆−
𝐷𝑆𝐴|5411±82.2|56057±199.7|3804±80.4|12589±106.3|372±31.7||𝐷𝑆𝐴|5797±86.4|56129±149.9|4137±75.6|12935±101.1|476±41.1||𝐷𝑆𝐴𝑁|6127±81.7|57002±187.6|4408±61.9|13449±73.2|693±$44.7

chinarxiv.org/items/chinaxiv-202205.00050 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00050

Figure 4 shows convergence curves across all test problems. RDMAD demon-
strates excellent convergence and optimization performance on all five bench-
marks. On EXP-1, RDMAD improves upon ACO_{DCOP} by approximately
4.2% and outperforms other algorithms by 1.3%–12.9%. DSA and DSAN show
poor optimization capability due to lack of global information. While LSGA-
DSA enhances DSA’s local search, its improvement is limited compared to RD-
MAD’s superior convergence. Both ACO_{DCOP} and AED use population-
based optimization, but RDMAD exhibits better convergence and quality.

On EXP-2, high problem density increases inter-agent constraints, affecting all
algorithms’performance, yet RDMAD maintains strong optimization, improving
upon ACO_{DCOP} by 1.4% and achieving comparable quality to LSGA-DSA
and AED with faster convergence (1.1%–2.7% improvement over others). On
EXP-3 and EXP-4, RDMAD outperforms ACO_{DCOP} by 4.4% and 2.8%
respectively, and surpasses others by 4.1%–17.2% and 0.6%–8.3%. RDMAD
shows particularly strong performance on scale-free networks (EXP-3, EXP-4),
indicating significant advantages for structured problems. On EXP-5, RDMAD
improves upon ACO_{DCOP} by 18.4% and other algorithms by 18.7%–62.7%.

4 Conclusion
Effectively utilizing swarm intelligence for DCOPs represents a novel approach
to enhancing algorithm performance. This paper proposes RDMAD, a random
disturbance based multi-population ant colony algorithm that leverages pop-
ulation characteristics through division-of-labor cooperation and hierarchical
updates to balance exploration and exploitation, improving convergence speed
and solution quality. The random perturbation strategy increases population
diversity to avoid local optima. Comparisons with ACO_{DCOP} and six other
state-of-the-art incomplete algorithms on three benchmark classes demonstrate
RDMAD’s significant advantages in solution quality, convergence speed, and
stability. Future work will incorporate agent local convergence state evaluation,
such as information entropy metrics, to complement the random perturbation
mechanism.

References
[14] Zivan R. Anytime local search for distributed constraint optimization [C].
International Joint Conference on Autonomous Agents and Multiagent Systems.
DBLP, 2008: 1449-1452.

[15] Chen Z, Yu Z, He J, et al. A partial decision scheme for local search algo-
rithms for distributed constraint optimization problems [C]. In Proceedings of
the 16th international conference on autonomous agents and multiagent systems,
2017: 187-194.

chinarxiv.org/items/chinaxiv-202205.00050 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00050

[16] Chen Z, Liu L, He J. et al. A genetic algorithm based framework for local
search algorithms for distributed constraint optimization problems [J]. Auton
Agent Multi-Agent Syst, 2020, 34: 41.

[17] Farinelli A, Rogers A, Petcu A, et al. Decentralised coordination of low-
power embedded devices using the max-sum algorithm [C]. In Proceedings of the
7th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), Estoril, Portugal, 2008: 639-646.

[18] Zivan R, Peled H. Max/min-sum distributed constraint optimization
through value propagation on an alternating DAG [C]. International Confer-
ence on Autonomous Agents and Multiagent Systems. 2012: 265-272.

[19] Ottens B, Dimitrakakis C, Faltings B. Duct: An upper confidence bound
approach to distributed constraint optimization problems [C]. In Proceedings of
the 26th conference on Artificial Intelligence (AAAI), Toronto, Canada, 2012:
528-533.

[20] Mahmud S, Choudhury M, Khan M M, et al. AED: An anytime evolutionary
DCOP algorithm [C]. In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, 2020.

[21] Chen Z, Wu T, Deng Y, et al. An ant-based algorithm to solve distributed
constraint optimization problems [C]. In Proc. of the 32th AAAI conference on
Artificial Intelligence, 2018: 4654-4661.

[22] Xue Hongquan, Wei Shengmin, Zhang Peng, et al. Flexible job-shop schedul-
ing based on multiple ant colony algorithm [J]. Computer Engineering and Ap-
plications, 2013, 49 (24): 243-248.

[23] Zhu Youtao, He Zhiqin, Shi Wenye. Design and Application of Multi-colony
Ant Algorithm in Path Planning of Manipulator [J]. Journal of Mechanical
Transmission, 2021, 4: 160-165.

[24] Chen Jia, You Xiaoming, Liu Sheng, et al. Entropy-game based multi-
population ant colony optimization [J]. Computer Engineering and Applications,
2019, 55 (16): 170-178.

[25] Zivan R, Okamoto S, Peled H. Explorative anytime local search for dis-
tributed constraint optimization [J]. Artificial Intelligence, 2014, 212: 1-26.

[26] Ziyu Chen, Zhen He, Chen He. An improved DPOP algorithm based on
breadth first search pseudo-tree for distributed constraint optimization [J]. Ap-
plied Intelligence, 2017, 47: 607-623.

[27] Zivan R, Okamoto S, Peled H. Explorative anytime local search for dis-
tributed constraint optimization [J]. Artificial Intelligence, 2014, 212: 1-26.

[28] Barabási, A-L, Albert R. Emergence of scaling in random networks [J].
Science, 1999, 286: 509-512.

chinarxiv.org/items/chinaxiv-202205.00050 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00050

[29] Arshad M, Silaghi M C. Distributed simulated annealing [J]. Distributed
Constraint Problem Solving and Reasoning in Multi-Agent Systems, 2004, 112.

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202205.00050 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00050

	Postprint: A Multi-Population Stochastic Perturbation Ant Colony Algorithm for Distributed Constrained Optimization Problems
	Abstract
	Full Text
	Preamble
	0 Introduction
	1.1 Distributed Constraint Optimization Problem
	1.2 ACO_{DCOP}
	2 RDMAD Algorithm
	2.1 Initialization Phase
	2.2 Division of Labor Mechanism
	2.3 Random Perturbation Strategy
	2.4 Hierarchical Update Strategy
	2.5 Pheromone Evaporation
	2.6 RDMAD Algorithm Steps
	2.7 Complexity Analysis

	3 Experimental Evaluation
	3.2 Parameter Analysis
	3.3 Experimental Results and Analysis

	4 Conclusion
	References

