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Abstract
Complex event processing is a technique for analyzing event streams in dynamic
environments. Typically implemented based on finite state automata, com-
plex event processing techniques generate a large number of overlapping partial
matches on the event stream during the matching process, requiring the finite
state automata to maintain numerous duplicate matching states. This leads
to redundant computation issues in methods based on this technique. To im-
prove matching efficiency in complex event processing, a method utilizing com-
plex event instance coverage technology is proposed. By designing a temporary
matching chain-based partitioned storage structure and a matching algorithm
built upon this structure, the approach leverages complex event instance cov-
erage to reduce redundant computation, thereby achieving improved matching
efficiency. Experimental testing and analysis were performed on both synthetic
and real datasets, with comparisons made against two commonly used com-
plex event processing techniques. The experimental results demonstrate that
the proposed method can effectively reduce redundant computation during the
matching process while ensuring matching correctness, thus enhancing overall
matching efficiency.
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Abstract: Complex event processing is a technology for analyzing event
streams in dynamic environments. Complex event processing technology is
usually implemented based on finite state automata. During the matching
process, a large number of overlapping partial matches are generated on the
event stream, and the finite state automaton needs to maintain numerous
repeated matching states, leading to redundant computation in methods
based on this technology. To improve the matching efficiency of complex
event processing, this paper proposes a method using complex event instance
coverage technology. By designing a temporary matching chain partition
storage structure and matching algorithms based on this structure, redundant
computation can be reduced through complex event instance coverage, thereby
achieving improved matching efficiency. Experiments were conducted on
simulated and real datasets, comparing with two commonly used complex event
processing technologies. The experimental results show that the proposed
method can effectively reduce redundant computation during the matching
process while ensuring matching correctness, and improve overall matching
efficiency.

Key words: complex event processing; query optimization; nondeterministic
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0 Introduction
With the further development of the information society, an increasing number
of industries are adopting Complex Event Processing (CEP) technology to per-
form real-time analysis on massive event streams. CEP analyzes relationships
among events through techniques such as correlation, aggregation, and filtering,
and formulates query rules based on temporal and aggregation relationships be-
tween events to continuously extract event sequences that meet requirements
from the event stream. This technology has found widespread applications in
financial transaction analysis [1, 2], sensor networks [3], Internet of Things [4–
6], and transportation [7].

Currently, the processing model based on Nondeterministic Finite Automaton
(NFA) is the most popular implementation approach for CEP technology, exem-
plified by systems such as SASE [8, 9], Cayuga [10, 11], and Siddhi [12]. NFA-
based CEP implementations generate temporary matches during the matching
process on event streams. These temporary matches can be used by subsequent
events to generate new temporary matches and final matching results. Conse-
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quently, the matching process produces a large number of overlapping partial
matches on the event stream, and the NFA must maintain numerous repeated
matching states, resulting in redundant computation. This problem becomes
particularly severe when the time window span of complex event queries is
large, imposing significant additional overhead on hardware resources such as
processors and memory.

To reduce redundant computation in NFA-based CEP and improve matching
efficiency, this paper utilizes a chain partition storage structure to manage tem-
porary matches and employs complex event instance coverage to reduce redun-
dant generation and copying of temporary matches, thereby enhancing CEP
matching efficiency. In summary, the main contributions of this paper are:

1) We propose the concept of complex event instance coverage, which es-
tablishes correlation relationships between temporary matches to reduce
redundant generation and copying of temporary matches.

2) We design a temporary matching chain partition storage structure that
avoids centralized storage and usage of temporary matches while serving
as a carrier for complex event instance coverage to build relationships
between temporary matches.

3) We propose the CoverMatch and CombineMatch algorithms for complex
event matching based on the temporary matching chain partition storage
structure. These algorithms ensure correctness and completeness of CEP
matching results while reducing the number and copying of temporary
matches.

4) Through comparative experiments and analysis on simulated and real
datasets, we validate the effectiveness and performance of the proposed
methods and algorithms.

1 Related Work
Complex event processing originates from event-driven business, where each
data record generated by a system is regarded as an event. Real-time input
data streams constitute real-time event streams, and the CEP engine performs
judgment, filtering, and correlation operations on the event stream according to
predefined complex event description rules, then outputs a series of higher-level
composite events to users. Complex event description rules generally contain
event semantics of interest to users or established standards and specifications
in specific domains. In other words, CEP can identify user-defined compos-
ite events in real-time event streams and provide feedback on the recognition
results.

Currently, CEP technology has yielded numerous research achievements, gen-
erally employing variants of the nondeterministic finite automaton model for
complex event recognition.
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Diao et al. proposed SASE, a complex event processing engine, along with an
event description language CEL [13, 14] capable of defining composite events.
This language features a high-level structure similar to SQL and can define event
sequences, matching strategies, event constraints, and time window constraints.
The SASE engine transforms composite events defined in the event description
language into NFAs, thereby enabling event acquisition and computation on
event streams. Diao et al. also extended SASE in SASE+ [15] by introducing
support for Kleene closure, negation, and aggregation operations. The main
limitation of SASE/SASE+ is that during NFA matching, temporary matches
for matching results must be generated. To ensure result accuracy, these tem-
porary matches cannot be discarded within the time window constraint, leading
to accumulation of temporary matches and affecting automaton processing effi-
ciency.

Cayuga, developed by Cornell University, also uses NFA as its computational
model for event recognition but has relatively weak event description capabilities.
Cayuga supports publish-subscribe technology, provides good scalability, and
employs query optimization techniques to process multiple events with equiv-
alent states and identical timestamps simultaneously. However, since its core
is single-threaded, it does not effectively benefit from these optimization tech-
niques.

FlinkCEP [16] is conceptually similar to SASE and also uses event constraints as
conditions for NFA state transitions. From the perspective of event description
languages, the main difference between FlinkCEP and SASE is that FlinkCEP
does not support a language for defining composite events. Instead of an event
description language, FlinkCEP requires users to write event descriptions in
Java or Scala, which is less readable and error-prone.

In addition to NFA-based CEP implementations, another approach using trees
as the computational model has been extensively studied and applied.

Mei et al. proposed ZStream [17], a typical tree-based CEP implementation.
ZStream’s event description language is very similar to SASE, following most of
the same syntax. ZStream stores events in leaf nodes, with internal nodes corre-
sponding to operators. During event stream processing, it does not immediately
evaluate constraint conditions for arriving events but instead collects events in
batches for processing. The combination of tree structure and batch processing
allows ZStream to perform various CEP tasks based on expected cost and con-
ditional constraints. For example, for a given complex event sequence <A, B>,
SASE would create a new temporary match for every occurrence of event A,
even if event B has a low probability of occurrence. In contrast, ZStream can
follow an alternative matching rule, waiting for event B to arrive before batch-
checking previously arrived A events. However, ZStream still cannot avoid the
accumulation of a large number of unprocessed events, which is essentially the
same as the temporary match accumulation problem in NFA-based approaches.

Based on the above research, whether using NFA-based or tree-based ap-
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proaches, ensuring correctness and completeness of complex event matching
results requires storing temporary matches within at least one time window
range. When the time window span is large, complex event processing imposes
significant load on processor computing power and memory resources.

2 Preliminary Work
Complex event processing is a query analysis technology oriented toward event
streams, aiming to identify higher-level complex events that satisfy complex
event description semantics from event streams composed of numerous basic
events. This section details the preliminary knowledge involved in complex
event processing.

Definition 1 (Event Stream). An event stream 𝑆(𝑠1, 𝑠2, … , 𝑠𝑛) consists
of a series of basic event instances, where 𝑠𝑖 is an event instance containing
information such as event type, event attributes, and timestamp when the event
occurred.

Event streams are often composed of data from multiple data sources. In many
research and application domains using massive data, such as weather forecast-
ing [18], maritime navigation [19], and transportation data research [20], data
sources can be collection devices or sensors. Therefore, data fusion techniques
[21, 22] must first be applied to obtain event streams containing multiple event
types.

Figure 1 shows an example of an event stream generated by a vessel during
navigation. The event stream contains three event types: A, B, and C, where
A represents low-speed startup, B represents a 90° left turn of the bow, and C
represents low-speed docking. Each event instance includes a timestamp and
attribute values, represented here by corresponding lowercase English letters.
For example, 𝑏1 is the first event instance of type B with timestamp 2, and also
includes attributes such as travel speed, direction, and tilt angle.

By observing the event stream shown in Figure 1, we can see that within the
time window 1–12, the vessel first starts up at low speed, then makes a turn
during navigation, and finally docks at low speed.

A complex event is a composite event composed of several event instances on an
event stream 𝑆(𝑠1, 𝑠2, … , 𝑠𝑛), represented as 𝑅(𝑟1, 𝑟2, … , 𝑟𝑛). A complex event
represents an objectively existing specific event occurring on the event stream,
and its semantics are typically expressed through queries defined by complex
event description languages.

Definition 2 (Complex Event Query). A complex event query 𝑄 consists of
a set of constraints defined on basic events to define and represent the attribute
characteristics of higher-level complex events.

Current research has proposed various forms of complex event description lan-
guages to define complex event queries, among which SASE proposed the most
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representative one. It features concise syntax rules and flexible expressive power,
so this paper uses the SASE complex event description language to define com-
plex event queries. The SASE event description language is a declarative lan-
guage.

By default, queries read events arriving in real-time from the event stream,
perform complex event processing, and finally feed back successfully matched
complex events to users.

To explain the meaning of the SASE event description language structure, we
use an example constructed based on a road traffic scenario. In this example,
the event type TrafficInfo represents traffic data reports collected at road
locations, with each report corresponding to one event instance. Assume the
report content includes the location position, as well as traffic flow and average
vehicle speed at a certain moment. The constructed query is shown as 𝑄1.

The PATTERN section defines the event sequence of a complex event, using the
SEQ structure to specify event sequences composed of two event types. Both
event types are TrafficInfo, with Kleene closure applied to the second one,
indicated by “+”to represent one or more events of the specified type, which
must be declared with “[]”.

In addition to defining sequential and closure sequences, the PATTERN section can
also define negation operations by adding“!”before the event type. For example,
SEQ(A a, !B b, C c) indicates that between event instances of type A and
type C, no event instance of type B is allowed under the condition a.timestamp
< c.timestamp.

The WHERE section specifies the matching strategy used in the current query.
skip-till-any-match indicates that all results in the event stream will be
matched. This paper only discusses complex event matching under this strategy,
as results matched by other strategies are subsets of those matched by the skip-
till-any-match strategy.

The AND section defines event constraints as an extension of WHERE constraints.
WITHIN defines the time window constraint, limiting the time span of matched
results to a certain range.

A complex event query 𝑄 written according to these rules will be analyzed by
the CEP engine on the event stream to obtain query results.

3 Query Optimization Techniques
This chapter provides a detailed introduction to the complex event query op-
timization techniques proposed in this paper. We first analyze NFA-based
complex event matching technology, then design and implement a temporary
matching chain partition storage structure and query optimization algorithms
to optimize NFA-based CEP methods and improve query matching efficiency.

chinarxiv.org/items/chinaxiv-202205.00048 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00048


3.1 NFA-Based Matching Method

The NFA-based matching approach is currently the most widely used and ef-
fective complex event matching technology. Taking SASE as an example, pro-
cessing a complex event query involves: (1) parsing the query into an NFA; (2)
reading the event stream; (3) performing complex event matching to generate
temporary matching results or successful matching results.

This section constructs a query 𝑄2 and its matching process to detail the NFA-
based matching method.

𝑄2 contains a Kleene closure of event type B, indicating matching one or more
event instances of type B. Under the constraints for B events, 𝑄2 only matches
sequences of B events with decreasing val attribute values. Therefore, complex
events matched by 𝑄2 start with an event instance of type A, followed by a
sequence of B event instances with decreasing val values, and end with an
event instance of type C.

To clearly illustrate the NFA-based matching process, assume 𝑄2 performs
queries on a specific event stream 𝑆(𝑎1, 𝑏1, 𝑏2, 𝑏3, 𝑐1), with timestamps and at-
tribute values shown in Figure 3.

The matching process of 𝑄2 on 𝑆 can be demonstrated as shown in Figure 4.

As shown in Figure 4, SASE processes event streams through NFA. When event
𝑎1 arrives and verification succeeds, a temporary match containing 𝑎1 is initial-
ized: (𝑎1, −). The existence of this temporary match indicates that the“a”node
state in the NFA of Figure 2 has a match. When event instance 𝑏1 arrives and
verification succeeds, the system backs up (𝑎1, −) and updates the original tem-
porary match to (𝑎1, 𝑏1, −). Thus, two temporary matches exist in the system.
When the next arriving event is verified successfully, both temporary matches
need to be copied and updated, resulting in four temporary matches.

This method can obviously find all correct matching results in the event stream,
but its drawbacks are also apparent: many temporary matches are generated
during the matching process to represent temporary matching sequences and to
preserve NFA matching states. As matching progresses, the number of tempo-
rary matches in the system grows exponentially in the worst case, leading to
increasing computational and storage overhead.

3.2 Reducing Redundant Computation

To address the redundant computation caused by a large number of temporary
matches and copies in NFA-based CEP, this paper proposes the concepts of
“event instance coverage”and “complex event instance coverage.”We design
a temporary matching chain partition storage structure and the CoverMatch
matching algorithm based on this structure to reduce redundant computation
and improve NFA-based CEP performance. Additionally, we design the Com-
bineMatch algorithm to complete the generation of matching results.
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Definition 3 (Event Instance Coverage). When an event instance 𝑠𝑖 and
the adjacent previous event instance 𝑠𝑖−1 in the event stream belong to the same
event type, and both can be successfully verified by the current NFA and act
on the same state node of the NFA, then 𝑠𝑖 is called an event instance coverage
of 𝑠𝑖−1.

Definition 4 (Complex Event Instance Coverage). For two matching
results 𝑀1 and 𝑀2, if every event instance in 𝑀1 is equal to the corresponding
event instance in 𝑀2 or is an event instance coverage of the corresponding event
instance in 𝑀2, then 𝑀1 is called a complex event instance coverage of 𝑀2.

Event instance coverage is transitive. For example, for three event instances 𝑏1,
𝑏2, 𝑏3 in event stream 𝑆 of Figure 3, all having the same event type and being
successfully verified by the NFA corresponding to 𝑄2 while acting on the same
state node, 𝑏2 is an event instance coverage of 𝑏1, and 𝑏3 is an event instance cov-
erage of 𝑏2, making 𝑏3 also an event instance coverage of 𝑏1. Similarly, complex
event instance coverage is also transitive.

For instance, performing matching of SEQ(A a, B b, C c) on the event
stream in Figure 3 yields matching results 𝑚1(𝑎1, 𝑏1, 𝑐4), 𝑚2(𝑎1, 𝑏2, 𝑐4), and
𝑚3(𝑎1, 𝑏3, 𝑐4). According to Definition 4, 𝑚2 is a complex event instance
coverage of 𝑚1, and 𝑚3 is a complex event instance coverage of 𝑚2. By
transitivity, 𝑚3 is also a complex event instance coverage of 𝑚1.

Complex event instance coverage can be applied in many scenarios because
it operates on complex events closest to the current event. Examples include
finding the most recent price rebound event for a specific stock in a stock event
stream, or finding the latest congestion event at a location in a traffic data event
stream.

During complex event matching, focusing only on complex event instance cover-
age can complete matching tasks more efficiently when consecutive instances of
the same event type appear. Compared with SASE’s skip-till-any-match strat-
egy that uses numerous temporary matches to compute all results, our method
can match complex event instance coverage while using the result joining algo-
rithm to obtain all matching results efficiently without generating additional
temporary matches, thereby reducing redundant computation.

3.2.1 Temporary Matching Chain Partition Storage Structure To en-
able NFA to support our proposed optimization method for reducing redun-
dant computation, we enhance NFA by designing a temporary matching chain
partition storage structure to replace the original centralized temporary match-
ing storage approach. The drawbacks of centralized temporary matching stor-
age have been mentioned above: each time a new event arrives, all temporary
matches must be traversed and verified, which severely consumes computational
resources. In contrast, the temporary matching chain partition storage structure
leverages the concepts of event instance coverage and complex event instance
coverage to avoid the disadvantages of centralized storage.
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Assume we have query 𝑄4: SEQ(A a, B b, C c) and event stream
𝑆𝑡(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑎3, 𝑏3, 𝑐1, 𝑐2). For simplicity, the event constraints for 𝑄4
are empty, and its time window is set to be larger than the time range of event
stream 𝑆𝑡. When performing complex event instance coverage matching for 𝑄4
on 𝑆𝑡, the temporary matching chain partition storage structure is as shown in
Figure 5.

After 𝑄4 is compiled into an NFA, there are three main states (state F is the
final state), which generate three partitions: A partition, B partition, and C
partition. When event instances 𝑎1 and 𝑎2 from 𝑆𝑡 arrive and are processed,
they generate temporary matches stored in the A partition and packaged into
linked list nodes <a_1> and <a_2>. Since 𝑎2 is an event instance coverage of
𝑎1, <a_2> becomes the successor node of <a_1> and is exposed to the next B
partition. In each partition, only the tail node of each linked list is exposed to
the next partition.

When event instance 𝑏1 arrives, it first finds the exposed node in the previous A
partition (node <a_2>), copies it, updates it to become node <a_2, b_1>, and
stores it as the list head in the B partition while exposing it to the C partition.
Subsequently, when event instance 𝑏2 arrives, it also finds the exposed node
<a_2> in the A partition, generating node <a_2, b_2>. Since <a_2, b_2> is a
complex event instance coverage of <a_2, b_1>, it becomes the successor node
of <a_2, b_1> and replaces <a_2, b_1> as the exposed node to the C partition.
Similarly, after all events in 𝑆𝑡 arrive and are processed, we finally obtain three
complex event instance coverages: <a_2, b_2, c_2>, <a_2, b_3, c_2>, and
<a_3, b_3, c_2>. This matching process is shown in Algorithm 1.

Algorithm 1: CoverMatch Algorithm Based on Chain Partition Stor-
age Structure
Input: Event stream 𝑆𝑒, query 𝑄
Output: Complex event instance coverage set 𝑅𝑠

1. 𝑒 ← null

2. 𝑅𝑠 ← ∅
3. 𝑛𝑓𝑎 ← parse(𝑄)
4. while (𝑒 ← 𝑆𝑒.nextEvent() and 𝑒 ≠ null) do

5. if ¬𝑛𝑓𝑎.verify(𝑒) do

6. **continue**

7. 𝑡𝑒𝑚𝑝𝑀𝑎𝑡𝑐ℎ𝐿𝑖𝑠𝑡 ← buildTempMatch(𝑒)
8. checkTimeWindow(𝑡𝑒𝑚𝑝𝑀𝑎𝑡𝑐ℎ𝐿𝑖𝑠𝑡)
9. if 𝑡𝑒𝑚𝑝𝑀𝑎𝑡𝑐ℎ𝐿𝑖𝑠𝑡.isEmpty() do

10. continue

11. 𝑟𝑒𝑔𝑖𝑜𝑛 ← 𝑛𝑓𝑎.getRegion(𝑒.eventType)
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12. for each 𝑡𝑒𝑚𝑝𝑀𝑎𝑡𝑐ℎ in 𝑡𝑒𝑚𝑝𝑀𝑎𝑡𝑐ℎ𝐿𝑖𝑠𝑡 do

13. 𝑛𝑜𝑑𝑒 ← getDominateMatch(𝑡𝑒𝑚𝑝𝑀𝑎𝑡𝑐ℎ, 𝑟𝑒𝑔𝑖𝑜𝑛.getCandidates())
14. if 𝑛𝑜𝑑𝑒 ≠ null do

15. $node.\text{next} = tempMatch$

16. else

17. $region.\text{setCandidate}(tempMatch)$

18. for each 𝑟 in 𝑛𝑓𝑎.getLastRegion().getCandidates do

19. 𝑅𝑠.add(𝑟.prev)
20. return 𝑅𝑠

In Algorithm 1, the buildTempMatch method on line 7 traverses exposed match-
ing nodes in the previous partition using event 𝑒, copies nodes that can be
updated, performs updates, and then enters the current partition for complex
event instance coverage checking. If it is not a complex event instance coverage
of any node, it forms a separate chain (line 17); otherwise, it becomes the tail
node of a chain (line 15). Finally, it returns the most recent complex event
instance coverage. Since the data structure is a doubly-circular linked chain,
line 19 uses prev to directly locate the tail node and obtain the most recent
complex event instance coverage.

We now analyze the time and space complexity of Algorithm 1. When the
system is processing event 𝑒, assume that in the event stream 𝑆 within twice
the time window, the maximum number of instances of a single event type is
𝐾. Then the maximum number of chain structure instances in the partition
to which 𝑒 belongs is 𝐾. Let the number of temporary matches generated by
event 𝑒 in its partition be 𝑚. Since temporary matches are generated only
based on the tail node of each chain structure in the previous partition, the
maximum value of 𝑚 is also 𝐾. Therefore, the time complexity for processing
event 𝑒 matching is 𝑂(𝐾2), and the time complexity of Algorithm 1 is 𝑂(|𝑆|𝐾2),
where |𝑆| is the number of events in event stream 𝑆. Since only tail nodes in
the temporary matching chain structure of event 𝑒’s partition participate in
building new temporary matching nodes, the space complexity for obtaining
new temporary matching nodes through event 𝑒 is 𝑂(𝐾2).
In CEP, temporary match copying requires deep copying. Completing one deep
copy of a temporary match requires creating a new temporary match instance
in memory and copying all attribute values and references from the original tem-
porary match instance to the new one. Traditional methods perform temporary
match copying while traversing all temporary matches, which is detrimental to
providing good system throughput and increases computational overhead. Ad-
ditionally, having all temporary matches explicitly exist in memory as instances
increases memory overhead. Taking the matching process of query 𝑄4 on event
stream 𝑆𝑡 as an example, traditional NFA-based matching methods need to
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generate 24 temporary matches and 21 temporary match copies, whereas the
temporary matching chain partition storage structure and the proposed match-
ing algorithm generate only 13 temporary matches and 10 copies. The reduction
in the number of temporary matches, copies, and traversal operations improves
system throughput and reduces memory overhead.

The temporary matching chain partition storage structure is proposed based
on the concept of complex event instance coverage. Leveraging the characteris-
tics of partition storage, processing complex events does not require traversing
all temporary matches in the system, achieving reduction in temporary match
quantity and copying without affecting the correctness of final matching results.

When users only need the complex event instance closest to the current time, the
system can simply store <a_3, b_3, c_2>. If users require all results like the
skip-till-any-match strategy, all most recent complex event instance coverages
are needed, and other node information on their linked lists is used for result
joining to obtain all matching results.

3.2.2 Matching Result Joining We further improve the generation of
matching results. When users specify the need to obtain all matching results,
Algorithm 2 is used to perform reverse matching result joining based on the
results from Algorithm 1. Using query 𝑄4: SEQ(A a, B b, C c) and event
stream 𝑆𝑡(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑎3, 𝑏3, 𝑐1, 𝑐2) as an example, the query results of 𝑄4
in the matching process and results shown in Figure 5 are <a_2, b_2, c_2>,
<a_2, b_3, c_2>, and <a_3, b_3, c_2>. All matching results are obtained
through these results and the chain partition structure.

Since a doubly-circular linked chain structure is used, we can start from the
bottommost complex event instance coverage and traverse the linked list in
reverse. By collecting the last event instance of each partition’s linked list
node and using recursion to combine event instances from each partition, this
process is shown in Algorithm 2. For 𝑄4, simply passing the three nodes <a_2,
b_2, c_2>, <a_2, b_3, c_2>, and <a_3, b_3, c_2> into Algorithm 2 yields
all matching results of 𝑄4.

Algorithm 2: CombineMatch Algorithm for Matching Result Joining
Input: Complex event instance coverage 𝑅
Output: All matching results 𝑀

1. 𝑀 ← ∅
2. 𝑙𝑖𝑠𝑡 ← ∅
3. while true do

4. 𝑙𝑖𝑠𝑡.add(𝑅.getLastEvent())
5. 𝑅 ← 𝑅.prev

6. if 𝑅.isHead() do
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7. $R \leftarrow \text{getPrevBlockNode}(R)$

8. **break**

9. return 𝑀 ← doCombine(𝑙𝑖𝑠𝑡, CombineMatch(𝑅))
In Algorithm 2, the getPrevBlockNode method on line 7 obtains the transfer
node of 𝑅 in the previous partition by passing the linked list vertex 𝑅. Line 9
uses recursion to obtain the final joining results, where the doCombine method
performs the joining operation.

We now analyze the time and space complexity of Algorithm 2. Assume the
current number of partitions is 𝑛, and the longest complex event sequence length
defined in multi-complex-event queries is 𝑁 , making the maximum value of 𝑛
equal to 𝑁 . The number of recursive function calls is at most 𝑁 . If the average
length of temporary matching chains related to complex event instance coverage
𝑆 in each partition is 𝑚, then the space complexity of Algorithm 2 is 𝑂(𝑁𝑚).
Since the execution operations in each recursive function body have complexity
𝑂(𝑚), the time complexity of Algorithm 2 is 𝑂(𝑁𝑚).
Using node information on temporary matching chains for result joining can
obtain all matching results based on Algorithm 1. The joining process does not
require building or copying temporary matches and does not increase the scale
of temporary matches in the system, thus saving memory overhead.

Using the leftmost linked list in Figure 5 as an example, we first obtain node
<a_2, b_2, c_1> from the C partition. In the C partition, we get [𝑐1, 𝑐2] by ob-
taining the last event instance of each node. Then we obtain [𝑏1, 𝑏2] from the cor-
responding linked list in the B partition, and subsequently obtain [𝑎1, 𝑎2] from
the A partition. Through recursive doCombine method, we combine the three
to get eight matching results: (𝑎1, 𝑏1, 𝑐1), (𝑎1, 𝑏1, 𝑐2), (𝑎1, 𝑏2, 𝑐1), (𝑎1, 𝑏2, 𝑐2),
(𝑎2, 𝑏1, 𝑐1), (𝑎2, 𝑏1, 𝑐2), (𝑎2, 𝑏2, 𝑐1), and (𝑎2, 𝑏2, 𝑐2). Similarly, using the other
two complex event instance coverages from the C partition also yields all their
corresponding matches. This approach ultimately obtains all matching results
to achieve the skip-till-any-match strategy while avoiding massive temporary
match generation and copying.

4 Experiments
This chapter analyzes and validates the effectiveness of the proposed matching
optimization method based on the temporary matching chain partition storage
structure through experimental comparisons. The optimization method was im-
plemented in Java for the experiments. This chapter analyzes the experimental
results from multiple perspectives and demonstrates its effectiveness through
performance comparisons.
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4.1 Experimental Setup

Experiments were conducted on two datasets. The first is a simulated data
stream generated by an event stream generator, and the second is a real dataset.

The first dataset is an ABC-type event stream, where event types are defined
using uppercase English letters. Each event carries a timestamp and various
attribute values. Before generating the event stream, the event stream generator
allows customization of the number of event types, attribute count, and attribute
value ranges. Each event in the stream is randomly generated. This dataset
contains 100,000 raw events.

The second dataset contains vehicle traffic data collected by sensors from Aarhus,
Denmark [23]. The dataset was obtained from four months of data collected at
449 observation points, comprising 13,577,132 raw events. Each event represents
traffic conditions at an observation point, with attributes including ID, average
vehicle speed at that point, and total vehicle count observed in the past five
minutes.

The proposed optimization method is compared with the popular NFA-based
SASE and Siddhi methods. The optimization method based on the temporary
matching chain partition storage structure is denoted as LinkedCEP. Experi-
ments were conducted on a Linux system with an Intel Core i7 2.60 GHz CPU
and 16 GB memory.

4.2 Experimental Analysis

First, we compare the matching performance and number of temporary matches
generated by LinkedCEP, SASE, and Siddhi on different datasets. Since the
proposed CoverMatch algorithm only matches complex event instance coverages
in the event stream and does not generate all matching results, to ensure fair
performance comparison, LinkedCEP includes the CombineMatch result joining
algorithm to support generating all matching results.

Since the raw events and attributes differ between the two datasets, different
queries were synthesized for each dataset. LinkedCEP, SASE, and Siddhi were
used to execute corresponding queries on both datasets. Two groups of experi-
ments were designed for comparative analysis.

Experiment 1: Five groups of queries were synthesized for each dataset, with
each group containing 10 basic complex event queries. These queries have a
sequence length of 3. Since time window significantly impacts matching time,
the time window was unified to 50 seconds, with results showing the average
matching time for each query group.

Figures 6 and 7 show performance comparisons on the ABC event stream and
traffic event stream, respectively. With consistent query sequence length and
time window, LinkedCEP’s matching efficiency outperforms the other two meth-
ods for every query group. For example, for the matching results of query group
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𝑄3 in Figure 6, LinkedCEP takes 220 ms, while SASE and Siddhi take 385 ms
and 290 ms, respectively. Similarly, in Figure 7 for traffic event stream process-
ing, LinkedCEP’s matching efficiency is superior to SASE and Siddhi. For the
matching results of query group 𝑄2, LinkedCEP takes 130 ms, while SASE and
Siddhi take 240 ms and 160 ms, respectively.

Experiment 2: We test matching performance under different time windows.
Using the query groups from Experiment 1, the time window is varied to 50s,
100s, 150s, 200s, and 300s, with results showing the average matching time for
each query group.

As shown in Figures 8 and 9, LinkedCEP’s processing performance is superior
to the other two methods under different time windows. For example, in Figure
8, when the time window is 200s, LinkedCEP’s processing performance is 34%
higher than SASE and 19% higher than Siddhi. Figures 8 and 9 also show that
as the time window increases, LinkedCEP’s performance improvement over the
other two methods becomes more significant. This is because the time window
size affects the number of temporary matches—larger time windows accumulate
more temporary matches, impacting performance more severely.

Experiment 3: We test event throughput under different query scales.
Throughput refers to the number of events processed per second; higher
throughput indicates higher computational efficiency. Five groups of queries
were generated for both the ABC dataset and traffic dataset, with query
quantities of 50, 100, 150, 200, and 250. Each query has a fixed time window
of 50 seconds. SASE, Siddhi, CoverMatch, and LinkedCEP were tested.

As shown in Figures 10 and 11, LinkedCEP has higher throughput than SASE
and Siddhi on both datasets. Since CoverMatch only matches complex event
instance coverages, and LinkedCEP obtains all matching results through result
joining on top of CoverMatch, CoverMatch has higher throughput than Linked-
CEP. In Figure 11, due to fewer complex event instance matches in the traffic
dataset, the throughput of CoverMatch and LinkedCEP are similar. In the ABC
dataset, the throughput of CoverMatch and LinkedCEP exceeds SASE and Sid-
dhi under all five query scales, with more significant improvements than on the
traffic dataset. This demonstrates that when the data stream contains adjacent
events of the same type, the proposed method achieves greater performance
improvements.

These experiments demonstrate that the proposed method can effectively im-
prove the matching efficiency of NFA-based CEP technology, achieving efficiency
gains through reduced redundant computation in scenarios with longer query
sequences or larger time windows.

5 Conclusion
This paper studies the optimization of complex event matching based on NFA.
To address the inefficient matching problem caused by numerous temporary
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matches during the matching process, we propose the concept of complex event
instance coverage. We design a chain partition storage structure for temporary
matches and efficient matching methods on this structure to utilize complex
event instance coverage for reducing redundant computation during matching.
Experimental results demonstrate that the matching technology using complex
event instance coverage can effectively improve CEP performance.

Complex event processing technology has broad application prospects. Future
research will focus on query optimization across multiple complex events. We
will first design an algorithm to share complex event instance coverage chains
among multiple queries using the proposed temporary matching chain partition
storage structure, and explore and design a monitoring model suitable for result
sharing in multi-query scenarios. Finally, we will analyze the sharing capability
of the model and evaluate its processing performance through experiments.
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