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Abstract
To achieve accurate classification of breast pathology WSI images, we propose a
gated convolutional neural network classification method based on hybrid con-
nections. A hybrid module incorporating local residual connections and global
dense connections is constructed, with squeeze-and-excitation gated units em-
bedded within it, establishing a backbone network where hybrid modules and
transition layers are connected alternately. The model is trained using an im-
age data augmentation method based on quadtree segmentation. Experimental
results on the BreastSet clinical dataset demonstrate that the proposed method
achieves image-level, patient-level, and pathology-level accuracies of 92.24%,
92.83%, and 92.18%, respectively. Compared with other methods, this ap-
proach exhibits improved accuracy while reducing the number of parameters
and computational cost, thereby offering greater clinical application value.

Full Text
Preamble
Research of Breast Pathological Subtype Classification on WSI

Chen Jinling†, Li Jie, Zhao Chengming, Liu Xin
(School of Electrical Information, Southwest Petroleum University, Chengdu
610599, China)

Abstract: To achieve precise classification of pathological breast Whole Slide
Image (WSI) images, this study proposes a gated convolutional neural network
classification method based on hybrid connections. The approach constructs
a hybrid module that combines local residual connections with global dense
connections, embeds a squeeze-excitation-gated unit into the hybrid module,
and establishes a backbone network with alternating hybrid modules and tran-
sition layers. Combined with an image data augmentation method based on
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quad-tree segmentation for model training, experimental results on the Breast-
Set clinical dataset demonstrate that the proposed method achieves image-level,
patient-level, and pathology-level accuracies of 92.24%, 92.83%, and 92.18%,
respectively. Compared with alternative methods, this approach improves accu-
racy while reducing parameter count and computational requirements, offering
greater clinical application value.

Keywords: WSI; breast pathological subtype classification; computer-aided
diagnosis; gated convolutional network; hybrid connection

0 Introduction
Breast cancer ranks as the most prevalent malignant tumor among Chinese
women, with incidence rates rising annually and posing a severe threat to women’
s health and lives. Early-stage breast cancer is a curable disease, and accurate
diagnosis can maximize patient survival probability and quality of life. With
the development of intelligent algorithms, accumulation of medical data, and ad-
vancement of healthcare capabilities, various intelligent algorithms have gradu-
ally been applied in the medical field. Traditional image classification algorithms
consist of three steps: feature extraction, feature encoding, and classifier design.
The manual extraction of pathological features typically consumes substantial
computational resources and is difficult to implement practically. Convolutional
Neural Networks (CNN) possess excellent automatic feature modeling capabili-
ties. Currently, CNNs are widely used to construct deep learning (DL) models
for breast pathological image classification.

Histopathological images of breast tissue play a significant role in clinical di-
agnosis. The Breast Cancer Histopathological Database (BreakHis) is a large
public dataset that has already been partitioned, and numerous researchers have
conducted pathological classification studies based on it. For instance, Han et
al. constructed a CSDCNN model using deep learning model foundation lay-
ers, achieving an average classification accuracy of 93.3% in multi-classification
tasks. Bardou et al. employed manual feature extraction methods based on Bag
of Words, Locality Constrained Linear Coding, and Support Vector Machine
(SVM) classifiers, obtaining accuracies of 96.15% and 93.31% for binary and
multi-classification tasks, respectively. Their second approach, a deep learn-
ing classification method based on data augmentation and convolutional neu-
ral networks, achieved accuracies of 98.33% and 88.23% for binary and multi-
classification tasks, respectively. Cheng et al. utilized two deep learning models,
VGG16 and InceptionV3, combined with transfer learning and data augmenta-
tion methods, achieving accuracies of 94.43% and 82.64% for benign-malignant
binary classification, and 82.97% and 58.78% for eight-class pathological sub-
type classification. Nguyen et al. established a CNN model incorporating resized
original images and other methods for automatic classification of multiple breast
cancer types, achieving an accuracy of 73.68%. Mt et al. processed each image
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dataset using image enhancement techniques, selected and processed important
key regions of images through attention modules, and established the BreastNet
model, which achieved a maximum accuracy of 98.80% for benign-malignant bi-
nary classification. Li Yuqian used deep learning methods as a feature extractor
and constructed a random forest model based on breast image features, achiev-
ing a multi-classification accuracy of 92.5%. Jiang et al. established a convolu-
tional neural network model based on small SE-ResNet modules, achieving accu-
racies of 98.87%~99.34% and 90.66%~93.81% for benign-malignant binary clas-
sification and eight-class pathological subtype classification, respectively. Liu
Qiaoli et al. proposed a breast cancer classification model based on DenseNet,
achieving an average recognition accuracy of 99.2% in binary classification tasks.
Liu Jingwen et al. proposed a breast cancer pathological image recognition
method based on Inception-ResNet-V2, achieving an eight-classification accu-
racy of 79.7%. Ming Tao et al. combined attention mechanism algorithms and
proposed a deep learning-based multi-scale channel recalibration model, which
demonstrated an accuracy of 88.87% in benign-malignant binary classification
experiments. Yu Lingtao et al. proposed a multi-task model based on convolu-
tional neural networks, achieving classification accuracies of 98.55%~99.52% in
binary tasks and 92.26%~94.85% in multi-classification tasks. Zhao Xiaoping
et al. proposed a multi-classification model for breast cancer histopathological
images based on dense convolutional neural networks, attention mechanisms,
and focal loss functions, achieving a benign-malignant binary classification ac-
curacy of 99.1% and an eight-class pathological subtype classification accuracy
of 95.5% on the BreakHis dataset.

In clinical diagnosis of breast pathological types, pathologists typically observe
and analyze breast pathological WSI (Whole Slide Image) images directly.
Therefore, research on breast pathological WSI image data holds greater
practical value. Cruz-Roa et al. proposed a deep learning method for automatic
detection and visual analysis of invasive ductal carcinoma tissue regions in
whole-slide breast pathological images, achieving a balanced accuracy of 84.23%
on 49 WSI images. Wang et al. designed a metastatic breast cancer detector for
automatic detection of sentinel lymph node WSI images, achieving an image
classification AUC of 0.995 and a tumor localization score of 0.733. Gecer
et al. established a deep learning model composed of four fully convolutional
networks for five-class classification of breast WSI images, with prediction
results showing 55% similarity to diagnoses by 45 pathologists.

To achieve accurate and efficient classification of pathological subtypes in breast
whole-slide images, this paper utilizes breast pathological WSI images from Mi-
anyang Central Hospital to establish the BreastSet dataset and proposes a gated
convolutional network model based on hybrid connections (HC-GCN) for clas-
sification research. The model employs a hybrid connection architecture that
accelerates forward information propagation through cross-layer“shortcut”con-
nections, reducing the massive redundancy caused by dense connections. It
utilizes a gating structure combining attention mechanisms to effectively fuse
feature information, thereby improving pathological category discrimination ac-
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curacy and reducing computational complexity of the classification model. Ad-
ditionally, this paper employs the Tanh’function as the activation function for
the hybrid module characteristics, avoiding the issue of neuron “death”caused
by the ReLU function that prevents further training. The model performance
is enhanced from both network structure and activation function perspectives.

1.1 Hybrid Connections
The residual connections proposed by He et al. broke through the development
bottleneck of deep learning, enabling the training of effective deep neural net-
works through cross-layer data channel structures and establishing the ResNet
model. However, in practice, ResNet typically involves numerous network lay-
ers, so despite its internal parameter sharing mechanism, the parameter count
and computational load remain substantial. Additionally, during the stacking of
residual modules, early feature information is naturally lost, and excessive resid-
ual aggregation leads to excessive feature information loss, ultimately resulting
in irreparable errors. DenseNet, proposed by Huang G et al., is a network model
based on dense connections. Like ResNet, it employs cross-layer connection pat-
terns, but differs in that the output of residual blocks is the sum of output
and input, while the output of dense blocks is the concatenation of output and
input along the channel dimension. DenseNet alleviates the gradient vanishing
problem, promotes effective transmission and utilization of feature information,
preserves more feature information, requires less network depth, and features
significantly fewer channels per network layer, reducing model parameters. How-
ever, in dense connection networks, each layer’s feature information aggregates
all previous layers. While this approach protects feature information utilization,
it also causes the model to repeatedly extract redundant information, resulting
in extremely high redundancy and persistent computational load.

To improve breast cancer detection accuracy while reducing algorithm com-
plexity and computation time, this paper proposes a hybrid connection that
combines local residual connections with global dense connections. The basic
structure of the hybrid connection module is illustrated in Figure 1.

Figure 1 shows a hybrid module composed of two SEG blocks connected in a
hybrid manner, with each hybrid module consisting of 2 or more SEG blocks.
Solid arcs represent dense connections, dashed arcs represent residual connec-
tions,“+”denotes the addition of two inputs,“[,]”denotes concatenation along
the channel dimension, and � and � represent the compression unit and activation
unit in the SEG block, respectively.

The ultimate goal of the hybrid module is to replace the original dense block in
the DenseNet network, implementing hybrid connections in the network model
and enhancing the feature extraction capability of the pathological classification
model for breast pathological images.
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1.2 Squeeze-Excitation-and-Gated Unit
SEG1 and SEG2 in Figure 1 represent special structures built specifically for
hybrid modules, similar in function and principle to bottleneck layers, called
SEG blocks. The specific structure of the SEG block is shown in Figure 2.

Let 𝐻, 𝑊 , and 𝐶 denote the height, width, and number of channels of the
feature map, respectively. As shown in Figure 2, in the SEG module, convolu-
tional and group convolutional structures are first used to compress the input
feature map, controlling feature dimensions, reducing model channel numbers,
and thereby decreasing model parameters and computational requirements.

Secondly, forget gate and update gate structures incorporating attention mech-
anisms are employed to effectively process feature information. The forget gate
uses a global context model to calculate spatial attention feature weights for
each position and adds a Sigmoid function for weighted attenuation of each chan-
nel, effectively reducing computational requirements. The update gate uses the
Softmax function for comparative selection, identifying the most salient feature
information to overlay with original information, promoting model exploration
and application of new features, and improving classification accuracy to a cer-
tain extent. Simultaneously, the structures of both update and forget gates
can effectively model global context like self-attention mechanism models while
conserving computational resources. The following sections introduce the three
structures in the SEG block: compression and activation, forget gate, and up-
date gate.

1.2.1 Compression and Activation

The compression unit operation consists of two main steps: First, a 1$×$1 stan-
dard convolution is used to compress the input feature map to reduce channel
numbers, decreasing from 𝐶 to 𝛼𝐶, where 𝛼 represents the channel width. Then,
a 3$×$3 group convolution with group number 𝑔 further compresses the feature
map, with stride settings enabling downsampling operations to reduce feature
map height, width, and channel numbers. The fundamental purpose of both
compression operations is to reduce model parameters and computational load.

After feature information is compressed, it enters the activation unit, where
3$×$3 depthwise convolution is employed for activation and data padding. Hid-
den information in breast pathological images is substantially more abundant
than in common classification images (e.g., cats, dogs, flowers). Extracting more
information requires more convolutional kernels in convolutional layers, which
increases computational scale. Under the same input-output feature map dimen-
sions, depthwise convolution requires very few input channels and has extremely
low parameter and computational costs, with significantly fewer parameters and
computations compared to standard convolution. Using depthwise convolution
for activation and data padding can enhance model performance without affect-
ing efficiency.
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1.2.2 Forget Gate

The leftmost connection line in Figure 2 and the dashed line in Figure 1 both
represent residual connections within the SEG block. Unlike ordinary resid-
ual connections that simply add channel information to residual connection
information, this implementation simultaneously uses both residual and dense
connections. To efficiently utilize repeatedly transmitted feature information in
channels, a forget gate incorporating attention mechanisms is embedded in the
residual connection to attenuate and filter reused feature information.

To satisfy the attenuation requirement for reused features, the forget gate must
ensure effective feature information flow while mapping each channel weight’s
final output within the range (0, 1). Therefore, the forget gate employs both
spatial and channel attention mechanisms while using the Sigmoid function for
final attenuation.

The forget gate structure is shown in Figure 3, with operation steps divided into
five main phases:

Step 1: The feature map 𝑋 is input into a 1$×$1 standard convolution, out-
putting a spatial attention feature 𝑆′ with reduced channel dimensions.

Step 2: The Softmax function normalizes the spatial attention feature map to
obtain a new spatial attention feature 𝑆, where each element can be represented
by the formula:

𝑆𝑖,𝑗 = 𝑒𝑆′
𝑖,𝑗

∑𝐻
𝑖=1 ∑𝑊

𝑗=1 𝑒𝑆′
𝑖,𝑗

Step 3: The feature map 𝑋 passes through a global attention pooling layer,
generating a reduced global feature map 𝑧. The representation formula for the
global feature map of channel 𝑐 is:

𝑧𝑐 =
𝐻

∑
𝑖=1

𝑊
∑
𝑗=1

𝑆𝑖,𝑗 ⋅ 𝑋𝑖,𝑗,𝑐

Step 4: The global attention feature map 𝑧 passes through two consecutive fully
connected layers. Since parameter updates during network training cause input
data distribution changes in subsequent layers, a Batch Normalization + Tanh
activation layer is added between the two fully connected layers for buffering,
performing batch normalization operations between the layers.

Step 5: The Sigmoid function performs final attenuation. The final output
feature map of the forget gate is represented by:

𝑓 = 𝜎(𝑊𝑓,2 ⋅ Tanh(BN(𝑊𝑓,1 ⋅ 𝑧 + 𝑏𝑓,1)) + 𝑏𝑓,2)

where 𝑓 represents the final output feature map of the forget gate, 𝑊𝑓,𝑖 and
𝑏𝑓,𝑖 represent the weights and bias values of the 𝑖-th fully connected layer in the
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forget gate, 𝜎 represents the Sigmoid function, and 𝑟𝑓 represents the bottleneck
ratio number set for the forget gate, with 𝐶/𝑟𝑓 denoting the number of neurons
in the intermediate layer.

1.2.3 Update Gate

The update gate is designed to more effectively process new features obtained
from 3$×$3 depthwise convolution. The specific structure is shown in Figure 4.
The difference between the update gate and forget gate lies in their purposes:
the forget gate aims to attenuate information, while the update gate aims to
promote feature information mining and utilization. Structurally, the update
gate does not use the Sigmoid function for feature attenuation and includes
a simple addition operation between its final output and the global attention
pooling layer output.

Let ℎ represent the hidden feature map output after the Batch Normalization +
activation function layer, where ℎ ∈ ℝ𝐶/𝑟𝑢×1×1, and 𝑟𝑢 represents the bottleneck
ratio number set for the update gate. The specific formula for the hidden feature
map is:

ℎ = Tanh(BN(𝑊𝑢,1 ⋅ 𝑧 + 𝑏𝑢,1))
where 𝑊𝑢,1 and 𝑏𝑢,1 represent the weights and bias values of the first fully
connected layer, respectively.

The hidden feature map ℎ generates a channel attention feature map 𝑣 after
passing through the second fully connected layer:

𝑣 = 𝑊𝑢,2 ⋅ ℎ + 𝑏𝑢,2

where 𝑊𝑢,2 and 𝑏𝑢,2 represent the weights and bias values of the second fully
connected layer, respectively.

The output 𝑣 of the second fully connected layer is added to the output 𝑧 of the
global attention pooling layer to obtain the final output 𝑋′ of the update gate:

𝑋′ = 𝑣 + 𝑧

Essentially, the update gate and forget gate treat the compact feature map 𝑧
formed by the compression unit as reused old features and the output 𝑋″ formed
by 3$×$3 depthwise convolution as extracted new features, finally extracting
and aggregating old and new features to constitute the final output 𝑋′. This
processing method not only promotes effective feature reuse while saving pa-
rameters and computations but also enhances the ability to mine more feature
information.

1.2.4 Activation Function Selection

Activation functions introduce nonlinear factors into neural network training
processes, improving model feature expression capabilities. Figure 5 shows the
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function images of three commonly used activation functions: ReLU, Sigmoid,
and Tanh.

The ReLU function offers advantages such as alignment with neural network
coding characteristics, overcoming gradient descent problems, and improving
computational efficiency. However, the ReLU function curve in Figure 5 reveals
two critical drawbacks. First, when input neurons 𝑥 < 0, ReLU’s gradient is
zeroed out, which can likely cause neuron “death”where input data cannot be
activated. Second, ReLU function outputs are always positive without negative
values, significantly undermining the model’s feature representation capability
and preventing effective feature information training. Additionally, ReLU func-
tions do not control numerical magnitude, and excessive magnitude variation in
deep networks may prevent model training.

Sigmoid and Tanh functions effectively solve the neuron“death”problem, protect
feature information, and control numerical magnitude. However, as shown in
Figure 5, when using Sigmoid as the activation function, if the current input
parameter 𝑥 < 0, the optimal optimization direction is (𝜔1, 𝜔2) + (−𝑑, +𝑑).
Since the Sigmoid function is not zero-centered and its output values are always
positive, the model cannot achieve the fastest parameter update but instead
approaches the optimal solution in a zigzag pattern. Therefore, using the Tanh
function, which is zero-centered with a value range of [−1, 1], can accelerate
model convergence. Moreover, Tanh’s gradient vanishing problem is less severe
than Sigmoid’s, but Tanh’s approximate linearity in the [−1, 1] interval may
cause classification errors and reduce feature learning accuracy.

To address Tanh’s gradient vanishing and classification error issues, this paper
selects Tanh’as the activation function for HC-GCN. The specific formula is:

Tanh′(𝑥) = Tanh(𝑥) ⋅ sigmoid(𝑥)

Using the Tanh’function as the activation function can effectively solve the
“neuron death”problem, protect feature information, control numerical mag-
nitude, eliminate classification errors caused by approximate linear processing,
and achieve better model performance and classification results. Additionally,
hybrid connections significantly strengthen gradient backpropagation, largely
compensating for potential gradient vanishing issues caused by activation func-
tions.

1.3 Overall Model Architecture
The overall architecture of HC-GCN is similar to DenseNet, with the main
difference being that DenseNet’s primary building block is the dense block, while
HC-GCN’s primary building block is the hybrid block. Both hybrid blocks and
dense blocks define the input-output connection patterns of bottleneck blocks
within the model.
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The HC-GCN model takes breast pathological images requiring pathological cat-
egory classification as network input. First, input images undergo standardiza-
tion processing through a feature block composed of a 3$×$3 convolutional layer,
Batch Normalization (BN), and ReLU function. Then, features are passed into
a backbone network where hybrid modules and transition layers are intercon-
nected, with transition layers primarily controlling channel numbers. Finally,
extracted feature information enters a Global Average Pooling (GAP) layer,
fully connected layer, and Softmax classifier to complete classification. Figure
6 shows the HC-GCN backbone network composed of 3 hybrid modules and 2
transition layers in alternating connection, where each hybrid module internally
contains multiple Squeeze-Excitation-and-Gated modules (SEG) connected in
dense mode.

In practical applications, to obtain better pathological category classification
results for breast pathological images, different HC-GCN structures can be con-
structed by varying the number of hybrid modules, SEG blocks, and adjusting
hyperparameters.

2.1 Dataset Sources
The image data used in this paper are breast pathological WSI images provided
by Mianyang Central Hospital, with source files in KFB format that can be
viewed and processed using K-Viewer software. Figure 7 shows partial samples
from the BreastSet dataset.

After exporting original data as RGB three-channel images in PNG format, a
classification dataset is formed containing 3,498 WSI pathological images from
patients with different breast cancer conditions. Classification labels include
eight categories: Medullary Breast Carcinoma (MBC), Non-Special Type Inva-
sive Breast Carcinoma (NST), Apocrine Carcinoma (AC), Invasive Micropapil-
lary Carcinoma (IMPC), Invasive Lobular Carcinoma (ILC), Mucoid Carcinoma
(MC), Solid Papillary Carcinoma (SPC), and Tubular Carcinoma (TC). This
dataset is named the Breast Pathological Image Classification Dataset (Breast-
Set). Table 1 presents the data structure of the BreastSet dataset.

2.2 Data Augmentation
WSI images have large dimensions and memory footprints, making image data
in the BreastSet dataset difficult for computers to directly process and apply.
To ensure accurate image data reading and improve model feature expression
capability, data augmentation can be applied to the dataset. In addition to
basic methods such as resizing, the quad-tree segmentation-based image data
augmentation method shown in Figure 8 can also be used.

Quad-tree is a tree data structure where each node has four sub-blocks, com-
monly applied in two-dimensional spatial data analysis and classification. It
divides data into four quadrants, with data ranges that can be square, rectan-
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gular, or any other shape. Quad-tree has a continuous structure where, at each
level, the input image from the previous level is equally divided into four parts.
After segmentation, each sub-image is considered to have the same class label
as the original image.

2.3 Fusion Algorithm
Due to the quad-tree image segmentation method, one image is divided into
multiple sub-image blocks, each of which may produce different classification
results after model computation. Therefore, a fusion algorithm is needed to
effectively integrate classification results from each image block. Commonly
used fusion algorithms include sum rule, product rule, max rule, and majority
voting rule. The specific calculation formulas for sum rule, product rule, and
max rule algorithms are as follows:

Sum Rule:

𝜙 = arg max
𝑘

𝑁
∑
𝑖=1

𝑝𝑖𝑘

Product Rule:

𝜙 = arg max
𝑘

𝑁
∏
𝑖=1

𝑝𝑖𝑘

Max Rule:
𝜙 = arg max

𝑘
max

𝑖
𝑝𝑖𝑘

where 𝑝𝑖𝑘 represents the probability value that the 𝑖-th sub-image block of one
image is classified as class 𝑘 by the model; 𝐾 represents the total number of
pathological categories; and 𝑁 represents the total number of split blocks for
one image.

This paper employs an integration method combining multiple fusion algorithms.
Figure 9 shows the complete fusion classification result process for one case
image, where the final output classification result is determined by voting among
classification results obtained from the three fusion rules.

2.4 Evaluation Metrics
Recording model training and testing results provides the basis for further model
improvement and quality evaluation. To assess model applicability for breast
pathological subtype classification tasks on WSI, this paper calculates classifica-
tion accuracy, model parameters (params), floating-point operations (FLOPs),
precision (P), recall (R), and F1 scores for evaluation.

In the medical field, classification accuracy of computer-aided diagnosis models
includes three types: image-level, patient-level, and pathology-level. Image-level
accuracy (IA) refers to the ratio of correctly classified images to total sample
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images. Patient-level accuracy (PA) refers to the average classification accuracy
of breast pathological images corresponding to each patient. Pathology-level ac-
curacy (PLA) refers to the average classification accuracy of breast pathological
images for each pathological type in multi-classification scenarios.

Precision, recall, and F1 score are important metrics for measuring model per-
formance. Precision is the probability that patients diagnosed as positive are
true positives, while recall is the probability that true positive patients are
diagnosed as positive. High precision reduces misdiagnosis rates, preventing
healthy individuals from receiving unnecessary treatment and wasting medical
resources. High recall reduces missed diagnosis rates, preventing patients from
missing optimal treatment windows.

The F1 score is an important metric in statistics for measuring model accuracy
and represents a harmonic mean of precision and recall. Specific calculation
formulas are shown in equations (5)~(7):

precision = TP
TP + FP

recall = TP
TP + FN

F1 = 2 × precision × recall
precision + recall

where TP represents true positive count, FP represents false positive count, and
FN represents false negative count.

In multi-classification pathological scenarios, macro-average and micro-average
values must be calculated for precision, recall, and F1 scores. Macro-average
refers to calculating the average of precision, recall, and F1 scores for each
pathological category separately, treating each category equally and thus being
susceptible to categories with fewer samples. Micro-average refers to calculating
precision, recall, and F1 scores overall without distinguishing categories, treating
each sample equally and thus being susceptible to categories with more samples.
By calculation principle, Micro-P, Micro-R, and Micro-F1 are numerically equal
to IA.

3.2 Model Architecture and Hyperparameter Settings
To achieve better model classification performance, after multiple rounds of
testing and adjusting the number of SEG blocks in hybrid modules and growth
rate parameters, an HC-GCN model was constructed with 3 hybrid modules,
each containing 8 SEG blocks. Table 3 shows the specific structural settings of
the model.

Additionally, several important hyperparameters are set as follows: batch size
is 16, epoch is 100, learning rate is 0.1, compression factor 𝜃 between transition
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layers and hybrid modules is 0.5; group number 𝑔 for 3$×$3 group convolution
in SEG blocks is 4, width multiplier 𝛼 is 4, reduction ratios for update gate and
forget gate (𝑟𝑢 and 𝑟𝑓) are both 2, stride 𝑆 is 1; in transition layers, compression
factor 𝜃 is set to 1, expansion factor 𝛼 is 1.5, stride 𝑆 is 2; depthwise convolution
kernel size is 2.

3.3 Training and Testing
As shown in Table 1, before experiments, the training set, validation set, and
test set were allocated in an 8:1:1 ratio. This paper trained on level 0 and
level 1 of breast pathological image data augmentation, meaning training was
conducted in two modes: directly using original data and training after quad-
splitting images, where each original image was cut into 4 blocks for training
and voting fusion.

Figure 10 shows the training set loss curve and validation set image-level accu-
racy curve obtained by HC-GCN based on the BreastSet dataset. The upward-
curving solid line represents the validation set image-level accuracy curve for
original data classification (Acc0), the downward-curving solid line represents
the training set loss curve for original data classification (Loss0), the upward-
curving dotted line represents the validation set image-level accuracy curve for
quad-split training mode (Acc1), and the downward-curving dotted line repre-
sents the training set loss curve for quad-split training mode (Loss1).

Figure 10 demonstrates that HC-GCN achieves good accuracy results and low
loss when trained on both original and quad-split datasets, indicating that the
established model possesses certain accuracy and scientific validity. The model’
s training and validation loss curves show a relatively stable training process on
the BreastSet dataset, demonstrating model stability. When epoch is greater
than or equal to 40, accuracy and loss values become relatively high and grad-
ually converge, indicating model convergence.

Comparing the validation image-level accuracy curves of the two training modes
in Figure 10, both training modes show smooth training accuracy curves with
high accuracy values, demonstrating that the HC-GCN model is suitable for
subtype classification research on the current breast pathological dataset.

3.4 Experimental Results Analysis
Table 4 shows the classification experimental results of the proposed method
and other classical deep learning methods based on the BreastSet dataset.

From the data corresponding to various models in original data training mode
and quad-split training mode, all accuracy performance metrics including ac-
curacy and F1 scores obtained in quad-split training mode are superior to
those in original data training mode. Simultaneously, Figure 10 shows that
compared with original data training mode, quad-split training mode generally
yields higher validation set image accuracy curves and lower training set loss
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curves, proving that the quad-tree segmentation-based image data augmentation
method helps improve model classification performance for breast pathological
WSI images.

HC-GCN achieves good pathological type recognition accuracy using very few
parameters and computations, helping reduce model dependence on computa-
tional resources and increasing model scalability and portability.

3.5 Comparison with Other Methods
This paper also selected multiple classical and popular image classification mod-
els for comparison with HC-GCN. Each model performed pathological subtype
classification based on the BreastSet dataset, with experimental results listed
in Table 4.

Table 4 shows that many excellent models can achieve high classification
accuracy on breast pathological image classification tasks. Compared with
DenseNet121, which has the highest accuracy at each level, HC-GCN improves
image-level, patient-level, and pathology-level accuracies by 1.14%, 0.23%,
and 0.65%, respectively, in original data training mode, and by 0.37%, 0.40%,
and 0.65%, respectively, in quad-split training mode. This demonstrates
that HC-GCN can achieve higher classification accuracy than the DenseNet
model while requiring only approximately 3/8 of the parameters and 1/6
of the floating-point operations of DenseNet121, effectively alleviating the
excessive redundancy problem caused by feature reuse mechanisms and saving
computational resources.

Compared with ShuffleNetv2, which has a smaller parameter count, HC-GCN
achieves improvements of 9.77%, 9.53%, and 9.45% in image-level, patient-level,
and pathology-level accuracies, respectively, in original data training mode, and
improvements of 5.57%, 3.53%, and 17.61%, respectively, in quad-split training
mode, while using even fewer parameters and computations.

Compared with AlexNet, MobileNetv2, and MobileNetv3, which have smaller
computational requirements, although HC-GCN uses 0.19GB~0.28GB more
computations, it improves image-level, patient-level, and pathology-level
accuracies by 5.46%~19.54%, 5.84%~16.89%, and 6.66%~29.32%, respectively,
in original data training mode, and by 6.24%~12.33%, 5.93%~12.37%, and
5.24%~11.75%, respectively, in quad-split training mode.

Compared with other models listed in Table 4, HC-GCN achieves superior ac-
curacy, precision, recall, and F1 score values while using fewer parameters and
computations. Experimental results demonstrate that HC-GCN significantly
improves subtype classification performance for WSI breast pathological images.

In summary, compared with other methods, HC-GCN not only improves patho-
logical category classification accuracy for breast pathological images but also
reduces required model parameters and computations, saving computational
resources.
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3.6 Ablation Experiments
To test and verify the effectiveness of the proposed methods and modules, four
sets of comparative ablation experiments were designed. Table 5 shows the
sequential addition of improved structural modules in the ablation experiments.

In Table 5, RC represents residual connection, FG represents forget gate, and
UG represents update gate. In the first ablation experiment, each bottleneck
block contains one standard batch normalization layer, ReLU activation
function layer, 1$×1𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 3×3𝑔𝑟𝑜𝑢𝑝𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 3×$3 depthwise convo-
lution, and Dropout layer. The purpose of the first experiment is to form a
baseline for comparison with models after adding various module structures
to verify whether each structure can effectively improve model classification
performance. In the second through fourth ablation experiments, the standard
batch normalization layer, ReLU layer, and Dropout layer are removed from
bottleneck modules, and residual connection, forget gate, and update gate
structures are sequentially added to bottleneck blocks, gradually forming the
SEG block designed in this paper. This design aims to observe the impact of
each structure on model performance.

Observing the corresponding accuracy values in Table 5, the accuracy increases
significantly from the first to second group and from the third to fourth group,
indicating that residual connection and update gate structures help improve
model classification accuracy. Comparing experimental data between the sec-
ond and third groups shows that adding the forget gate does not significantly
affect model classification accuracy or parameter count, while the forget gate’
s attenuation operation effectively reduces model computational load. Com-
paring experimental data between the third and fourth groups shows that the
update gate can significantly improve model classification accuracy while occu-
pying only a small number of parameters and computations. In summary, both
the proposed hybrid connection pattern and SEG block structure can effectively
enhance model performance.

3.7 Comparison with Methods from Other Literature
To demonstrate the

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202205.00047 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00047

	Postprint: WSI-Based Classification of Breast Pathology Subtypes
	Abstract
	Full Text
	Preamble
	0 Introduction
	1.1 Hybrid Connections
	1.2 Squeeze-Excitation-and-Gated Unit
	1.2.1 Compression and Activation
	1.2.2 Forget Gate
	1.2.3 Update Gate
	1.2.4 Activation Function Selection

	1.3 Overall Model Architecture
	2.1 Dataset Sources
	2.2 Data Augmentation
	2.3 Fusion Algorithm
	2.4 Evaluation Metrics
	3.2 Model Architecture and Hyperparameter Settings
	3.3 Training and Testing
	3.4 Experimental Results Analysis
	3.5 Comparison with Other Methods
	3.6 Ablation Experiments
	3.7 Comparison with Methods from Other Literature


