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Abstract

To address the issues of time-consuming training, large memory consumption,
and difficulty in model updating associated with traditional offline hashing algo-
rithms, as well as the phenomenon of substantial label loss in real-world image
datasets, we propose an online hashing algorithm for balanced label prediction
(balanced label prediction for online hashing, BLPOH). BLPOH generates pre-
dicted labels through a label prediction module and fuses them with incomplete
ground-truth labels, thereby effectively alleviating model performance degrada-
tion caused by label loss. Observing the distribution imbalance of labels, we
propose a label category similarity balancing algorithm and apply it to the la-
bel prediction module to enhance label prediction accuracy. By incorporating
information from old data into the online update process of the hash function,
the compatibility of the model with old data is improved. Experiments on
two widely used datasets and comparisons with several current state-of-the-art
algorithms confirm the superiority of BLPOH.
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Abstract: Traditional offline hashing algorithms suffer from time-consuming
model training, large memory consumption, and difficulty in model updating.
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Moreover, real-world image datasets often exhibit significant label loss. To ad-
dress these issues, this paper proposes a Balanced Label Prediction for Online
Hashing (BLPOH) algorithm. BLPOH generates predicted labels through a
label prediction module and fuses them with incomplete real labels, effectively
mitigating performance degradation caused by label loss. Observing the phe-
nomenon of imbalanced label distribution, we propose a label category similarity
balancing algorithm applied to the label prediction module to improve label pre-
diction accuracy. By incorporating information from old data into the online
update process of the hash function, the model’ s compatibility with historical
data is enhanced. Extensive experiments on two widely used datasets, compared
with several state-of-the-art algorithms, confirm the superiority of BLPOH.

Keywords: online hashing; multi-label; label prediction; image retrieval

0 Introduction

Hashing algorithms have long attracted significant attention in image retrieval
due to their efficient search capabilities and low storage requirements. These
algorithms map high-dimensional image features into a low-dimensional binary
space [1], producing compact hash codes that preserve similarity information
between images [2]. Because of these properties, image retrieval tasks can be
performed efficiently in a low-dimensional space, making the quality of hash
codes a critical factor affecting retrieval performance.

Researchers have dedicated considerable effort to learning effective hash func-
tions that produce high-quality hash codes. Gionis et al. [3] proposed Locality-
Sensitive Hashing (LSH), an unsupervised hashing algorithm that randomly
maps original data into different hash buckets and obtains hash codes through
a sign function. Weiss et al. [4] introduced Spectral Hashing (SH), which applies
image segmentation concepts to solve the encoding problem for image features.
Wang et al. [5] developed Semi-Supervised Hashing (SSH) for image retrieval,
while Liu et al. [6] proposed Hashing with Graphs (AGH). AGH shares many
concepts with SH but approximates the nearest neighbor graph between sample
points through a nearest neighbor graph between data cluster centers and sam-
ple points. Shen et al. [7] presented Supervised Discrete Hashing (SDH), which
solves hash codes bit by bit through a Discrete Cyclic Coordinate Descent (DCC)
algorithm to avoid suboptimal solutions caused by relaxation.

However, all these hashing algorithms employ offline learning [8], training hash
functions from all data at once. Faced with increasingly large image datasets,
these offline hashing algorithms not only consume substantial memory space but
also require considerable training time. Moreover, whenever new data arrives,
offline hashing algorithms must retrain the entire model from scratch. Online
hashing algorithms effectively address these challenges by processing data in a
streaming fashion [9], training and updating models from a single data stream
with minimal space requirements, fast training, and easy model updates. In
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recent years, researchers have proposed various online hashing algorithms, in-
cluding Online Kernel Hashing (OKH) [10], Online Supervised Hashing (OSH)
[11], Adaptive Hashing (AdaptHash) [12], Sketching Hashing (SketchHash) [13],
Online Hashing with Mutual Information (MIHASH) [14], Balanced Similar-
ity for Online Discrete Hashing (BSODH) [15], Online Hashing with Efficient
Updating of Binary Codes (OHWEU) [16], Hadamard Matrix Online Hashing
(HMOH) [17], and Online Hashing via Hadamard Codebook (HCOH) [18].

Although these online hashing algorithms solve the problems of training and
updating models on massive datasets, they still suffer from certain drawbacks.
Real-world image datasets inevitably suffer from missing labels due to annota-
tion errors [19], yet current online hashing algorithms assume complete label
information, leading to degraded model accuracy. Taking BSODH as an exam-
ple, which considers only multi-label data and determines image similarity based
on whether two images share at least one label [20], incomplete labels result in
inaccurate construction of the image label similarity matrix, ultimately causing
model performance degradation.

The main contributions of this paper are as follows:

a) We introduce an online hashing algorithm that addresses the challenges
of training and updating models on massive datasets. By incorporating a
label prediction module, we mitigate performance degradation caused by
missing labels in real-world image data.

b) Considering the problem of imbalanced label category distribution, we
design a label category similarity balancing algorithm within the label
prediction module to improve prediction accuracy.

¢) We establish a similarity equivalence relationship between old and new
data through a degenerate form of Hamming distance, enabling informa-
tion from old data to supervise the online update of the hash function.
This solves the problem of performance degradation on old data in online
hashing and improves the compatibility of the hash function with histori-
cal data.

This paper proposes BLPOH, an online hashing algorithm capable of balanced
label prediction. By adopting online hashing, we avoid the time-consuming train-
ing, large memory consumption, and retraining requirements of offline hashing
algorithms on massive image datasets. To address the issue of missing labels in
real-world images, we introduce a label prediction module [21] that predicts la-
bels for neighboring images based on image similarity and label category similar-
ity, thereby combating performance loss caused by label incompleteness. Since
most label categories are dissimilar while only a few are similar, label categories
exhibit inherent imbalance. Therefore, we design a novel label category similar-
ity balancing algorithm within the label prediction module to enhance prediction
accuracy. Additionally, we cleverly measure distances between hash codes and
labels of old and new data using a degenerate form of Hamming distance [22],
allowing information from old data to participate in the online update of the
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hash function. We conduct extensive experiments on MIR Flickr25k and NUS-
WIDE datasets and compare BLPOH with several state-of-the-art algorithms
to demonstrate its superiority.

1 Algorithm Framework

Figure 1 illustrates the overall framework of BLPOH. Whenever new data ar-
rives in the data stream, we compute an image similarity matrix by finding
approximate nearest neighbors and apply this matrix to label prediction. Then,
we calculate an image label similarity matrix using the predicted labels and
establish connections with old data, enabling information from historical data
to participate in the online update process of the hash function. Finally, hash
codes for the image data are computed through the hash function.

1.1 Problem Definition

Consider a multi-label dataset where X = [z, ...,x,] € R¥" represents image
features, with #; € R? being the i-th image instance and I, € R its corre-
sponding label. Here, n denotes the number of instances, u the number of label
categories, and d the dimensionality of image features. The hash function maps
image feature data to B = [by,...,b,] € {—1,1}**" where b, is the binary hash
code vector for image instance x; and k is the number of hash bits. Typically,
hash functions adopt linear hash mapping similar to BSODH. To suit our data
processing approach, we define the hash function as:

B =sgn(WTX)

where W is the projection matrix and sgn(-) is the sign function that returns 1
if the variable is greater than 0 and -1 otherwise.

Table 1 introduces the main variables and their definitions used in this paper.

Table 1. Introduction to Key Variables

Variable Definition

X3 Data stream at time ¢

X7 Existing old data at time ¢

L Predicted label matrix for data stream X at time ¢
L Predicted label matrix for old data X{ at time ¢

B} Hash code matrix for data stream X} at time ¢

Bf Hash code matrix for old data X{ at time ¢

W, Projection matrix for hash function at time ¢

V, Projection matrix between X; and X; at time ¢
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We represent the data stream in online hashing algorithms as X; =
[}, 2f,, ] € RP™ and X§ = [af,,...,2f,,] € R”™, where X} de-
notes new data arriving at time ¢ and Xy represents existing old data at
time ¢. Here, n, indicates the data volume in the stream at time ¢, and
m, denotes the volume of existing data at time ¢. Correspondingly, we
represent the hash code matrix for new data in the time ¢ data stream as
Bi =sgn(WIX7) = [bf1,...,b;,,.] € {=1,1}**", and the hash code matrix for
existing old data at time ¢ as By = sgn(W; X7) = [bf 1, ...,bf ,, ] € {1, L}Fxme,
In our online hashing algorithm, the projection matrix W, for hash
codes at time t is updated in an online manner as new data X ar-
rives. We denote the predicted label matrix for the time ¢ data stream
as Yy = [y} 1, ¥in,] € {—1,1}*", and the predicted label matrix for
existing old data as Y,* = [yf 1, ..., ¥f,,,] € {—1,1}"*™, where -1 indicates the
absence of a label.

1.2.1 Label Prediction and Label Category Similarity Balancing

As previously mentioned, real-world image datasets inevitably suffer from miss-
ing labels due to annotation errors. To address this, we establish a label pre-
diction module to combat model accuracy degradation caused by label loss.
Inspired by [21], assuming the label category similarity matrix K is known, an
image instance’ s labels can be approximately represented by its nearest neigh-
bors. Similarly, an image instance’ s labels can also be approximated by the
nearest neighbors of that label. Following [21], we establish a label prediction
regularization term, yielding the following relational expression at time ¢:

H}l/ihn ”}/tth - SfY;SH% st. YP e {_17 1}u><nt
t

where S} is the similarity matrix between image instances computed through
approximate nearest neighbors at time ¢, and || - || denotes the Frobenius norm.

Unlike [21], we innovatively propose a label category similarity balancing algo-
rithm. This algorithm addresses the phenomenon of imbalanced label category
distribution: the vast majority of label pairs are dissimilar, while only a small
minority are similar. To solve this problem, we divide the label category sim-
ilarity matrix into @); and @, representing similar and dissimilar label pairs,
respectively. We assign a smaller weight to @); and a larger weight to @,
thereby shifting the label category similarity toward the direction of dissimilar
label pairs. For models without this balancing algorithm, achieving comparable
accuracy requires more iterations, resulting in lower prediction accuracy and
slower convergence speed under the same number of iterations. We define the
label category similarity balancing algorithm as follows:

ns ifQ;; >0
Qij = .
ng Qi <0
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where 7, represents the smaller weight and 7, represents the larger weight.

1.2.2 Mapping Relationship and Loss Function Definition

Additionally, we establish a linear mapping relationship from X; to predicted
labels Y,?, represented by V,, and define the Frobenius norm loss at time ¢
between X; and Y;’:

min [V;F X7 — V7|7
Vi

The goal of hashing algorithms is to learn a hash function. According to Equa-
tion (1), we minimize the error between the linear hash function W, and the
corresponding hash codes Bj, establishing:

: TXS —_ Bs 2
%tn Wy X; A
We therefore obtain the closed-form solution for Equation (10):

W, = (XP(X))T + M) X3 (BT

where [ is a d x d identity matrix.

Update V,: Similar to updating W,, we fix W,, B}, By, Y,’, and Y?, then learn
V.. The sub-problem becomes:
win |V, X7 = Y715+ AV
Thus, we obtain the closed-form solution for V;:
Vi = (XP(XP)T + AD)TIXF (V)T

Update Bj: Similarly, fixing all other variables, we update Bj. The sub-
problem is:

min [W X7 — Bf[f: + o BjQ, — S;Yy 5 st By € {11}
t
Following [23], Equation (14) can be reduced to solving:
min | Bf —sen(W/ XP)[F st. B € {~1,1}™

Solving Equation (15) yields:
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B} = sgn(W{ X7)

Update Bjf: Fixing all other variables, we learn By. The sub-problem is:
min [W X7 — Bf | + o BfQ, — S{Yel7 st Bf € {—1,1}m

Expanding Equation (17) gives:

min [ Bf — sgn(W XE)[% + o BfQ, — S{Ye[7 st By € {—1, 1}

1.2.3 Incorporating Old Data Information into Online Hash Function
Updates

Hamming distance measures the distance between two vectors of equal dimen-
sionality. The more similar two data points are, the smaller the Hamming
distance between their corresponding binary hash codes, and vice versa. When
training on new data and updating the model, the resulting model should remain
applicable to old data. Therefore, when training models from data streams, in-
formation from old data must be considered. If data z; and x; are similar, they
should have similar label matrices, and by the property of hash functions, hash
codes preserve similarity relationships between data. Consequently, we can es-
tablish a similarity equivalence relationship between new and old data through
hash codes and label data. When hash codes are represented by -1 and 1, the

Hamming distance h(b;,b;) between hash codes b; and b; can be expressed as:

1 7] 17y

1
h(biub) = & Ok (b, y)
Equation (18) can be simplified to:

(b, b.) =k — 2h(b;,b.)

(2] (2]

Similar to BSODH, let (b;,b;) represent the inner product of b; and b;. Let b;,
b¢, y?, and y; denote the i-th rows of B, B, Y;°, and Y;?, respectively, while

Bi i Bi i Yiis and Y, represent all rows except the i-th.

Similarly, for a given label category, -1 and 1 indicate the absence and presence
of the label, respectively. Minimizing the Frobenius norm loss between them
yields:

: BsBeT_YsyeTQ
élsn}glen 7 (BY) (Y R

tr 2t
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where the remaining rows are excluded.

Equation (20) transforms to:
min | B P — Y7 LI
B

where L is the label similarity matrix.

Solving Equation (21) gives:

By = Y LPT(PPT + \I)™!

To effectively utilize incomplete real label information, when computing the
label similarity matrix L, we append the preserved real label information to
the corresponding predicted labels. Specifically, we add values from the real
label matrix at positions where they equal 1 to the corresponding positions
in the predicted label matrix, fully leveraging existing real label information
to further improve model accuracy. Since we only need to utilize information
about label presence, we replace values of -1 in Y;* and Y}* with 0 while keeping

values of 1 unchanged, denoted as ?f and }7;6, respectively. The computation
of L is defined as:

L=T(F)"

In summary, we establish the BLPOH model formula:

i WX By el B Q87 Y7 et BIV X Y [ B =Y LBANIW 3 +IVi[3) st B
tr Vit trtt

1.3 Algorithm Optimization

Due to the binary constraint problem, we adopt an iterative solution approach.
When updating one variable, we fix all others and treat them as constants,
iteratively solving each row to obtain the final solution.

Update Y;’: Fixing all other variables, we learn Y,°. The sub-problem is:

min ol BQu—S{ ¥y [+ BV X; —Yel340|Bi P-YeLlE s Yyt € {~1, 1)

Transforming Equation (23) into a standard linear equation:

(a(S7)78; + BT + Y LLT vee(Yy) = vee(a(S;)T BjQ, + BV X; +yB; PLT)
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where ® denotes the Kronecker product and I, ., is a un, x un, identity
matrix.

Update @),: Fixing all other variables, we update ),. The solution process is
similar to solving Equation (23). We use the Preconditioned Conjugate Gradient
(PCG) method to solve the linear equations in practice.

Algorithm 1 describes BLPOH.

Input: Dataset X, hash code length k, data stream size n, parameters «, 3, 7,
A, image nearest neighbor count K, and weights 7, n,.

Output: W and B, where B = sgn(W7TX).

a) Normalize dataset X, split X} from X according to n, randomly initialize
W and V, initialize () as an identity matrix, and compute initial By and
By.

b) Compute similarity matrix S7 between data in X; based on K nearest
neighbors.

Update W, and V, using Equations (11) and (13), respectively.
Update B; using Equation (16).
Iteratively update Y;® using Equation (22).

)
)
)
f) Update Bf and @, using Equations (24) and (25), respectively.
) Set t =t + 1 and split the next X from X.

)

Repeat steps b) through g).

2 Experiments
2.1 Datasets

This paper conducts experiments on two publicly available datasets. To more
accurately simulate label loss in real-world scenarios, we construct datasets with
deterministic label loss. First, we filter data with a minimum number of specific
labels to create the required image datasets and corresponding label sets. We
then use the VGG-16 convolutional neural network to extract image features
with a dimensionality of 4096. Simultaneously, we encode the corresponding
label sets to establish label matrices. For model similarity computation, we
mark a label as 1 if an image contains it and -1 otherwise. Finally, following
[21], we consider incomplete label rates by randomly discarding labels from
training data at rates of {0%, 20%, 40%, 60%, 80%} to create five sub-datasets
for each condition.

The MIR Flickr25k dataset contains 25,000 images and 24 label categories. We
filter images with at least 3 labels, obtaining 17,568 images. After feature
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extraction and label matrix construction, we randomly discard labels at rates
of {0%, 20%, 40%, 60%, 80%} to simulate label loss. In experiments, except for
those analyzing the impact of database size, we randomly select 12,400 images
from the filtered 17,568 images, using 10,000 as the database for training and
the remaining 2,400 as the query set.

The NUS-WIDE dataset contains 269,648 images and 81 label categories. We
select the 21 most frequent categories as labels. Following a similar process as
with MIR Flickr25k, we filter 57,073 images and randomly select 12,100 as our
experimental dataset, using 10,000 for training and the remaining 2,100 as the
query set.

2.2 Baseline Methods and Evaluation Metrics

We compare BLPOH against several state-of-the-art online hashing algorithms:
BSODH, MIHASH, OKH, AdaptHash, SketchHash, HMOH, and OHWEU. Dur-
ing experiments, BLPOH and comparison algorithms use identical datasets and
label loss rate settings. For each comparison algorithm, parameters are specifi-
cally tuned to achieve optimal performance. The experimental environment uses
Windows 10, an R5-3600 CPU, and 32GB RAM. For MIR Flickr25k, parameters
are set as « = = 0.8, v = 0.9, A = 0.6, stream size = 200, nearest neighbors
K =10, n, =04, n; = 1. For NUS-WIDE, parameters are « = § = v = 0.9,
A = 0.1, stream size = 200, nearest neighbors K = 12, n, = 0.2, n; = 1. We
use Mean Average Precision (MAP) as the evaluation metric to assess algorithm
performance.

2.3.1 MAP Comparison

Tables 2-4 and Figure 2 present MAP results comparing BLPOH with baseline
algorithms on MIR Flickr25k and NUS-WIDE datasets under label loss rates of
{0, 20%, 40%, 60%, 80%} across different hash code lengths.

As shown in Table 2, on MIR Flickr25k with various label loss rates, BLPOH
consistently achieves higher MAP than all comparison algorithms. HMOH and
OHWEU perform relatively close to BLPOH, while AdaptHash performs the
worst overall. On NUS-WIDE, when the label loss rate is 0, BLPOH’ s MAP
is higher than all algorithms except HMOH. As the label loss rate increases,
BLPOH surpasses all comparison algorithms including HMOH, demonstrating
its superior performance. Comparing with HMOH on NUS-WIDE reveals that
when no labels are missing, HMOH achieves higher MAP, but when the label loss
rate reaches 20% and beyond, BLPOH outperforms HMOH, proving BLPOH’
s effectiveness against label loss. In practical applications where label loss can
be severe, BLPOH is more suitable for real-world scenarios.

Figure 2 illustrates how MAP varies with increasing label loss rates for BLPOH
and comparison algorithms on MIR Flickr25k and NUS-WIDE across different
hash code lengths. The results show that BLPOH s MAP decreases more
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gradually and maintains higher levels in most cases, regardless of dataset or
hash code length.

2.3.2 Key Parameter Sensitivity Analysis

This subsection analyzes the impact of label category similarity weight parame-
ters 1, and 7, on experimental results. In experiments, we set n; = 1 and vary
n, in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} to examine their effects.

As shown in Figure 3(a), on MIR Flickr25k, MAP reaches its maximum when
n, is between (0.3, 0.5), and drops significantly when 7, exceeds 0.8. The lowest
MAP occurs when 7, =1 (i.e., n, = 1,), representing the case without label cat-
egory similarity balancing. We select n, = 0.4 as the practical parameter value.
Figure 3(b) shows that on NUS-WIDE, MAP is lowest when 1, = 1, and we
ultimately choose n, = 0.2 as the practical parameter value. The performance
across both datasets demonstrates that MAP without label category similarity

balancing is consistently lower than with balancing, proving the effectiveness of
this technique for BLPOH.

2.3.3 Impact of Database Sample Size

As an improved online hashing algorithm, we test BLPOH’ s retrieval perfor-
mance by analyzing how experimental results vary with increasing database
samples. We set query set sizes to 2,400 and 2,100 for MIR Flickr25k and NUS-
WIDE, respectively, using the remainder for training. As shown in Figure 4(a),
on MIR Flickr25k, BLPOH achieves the worst MAP when the database contains
2,000 samples. MAP gradually increases with sample sizes beyond 4,000 and
stabilizes at 10,000 samples. Figure 4(b) shows that on NUS-WIDE, BLPOH’ s
MAP increases progressively from 2,000 samples and stabilizes at 8,000 samples.

2.3.4 Impact of Label Category Similarity Balancing Algorithm

During algorithm optimization, we transform the optimization of predicted label
matrix Y,® and label category similarity matrix @), into solving corresponding
linear systems (Equations 23 and 24). In practice, we use Preconditioned Con-
jugate Gradient (PCG) to solve these equations.

This section analyzes the impact of label category similarity balancing on
BLPOH through PCG convergence behavior, using label prediction and
similarity matrix solving on NUS-WIDE as examples. As shown in Figure 5(a),
during label prediction for each data stream arrival, the algorithm with label
category similarity balancing consistently converges faster and more stably
than without balancing. Similarly, Figure 5(b) demonstrates that solving the
label category similarity matrix is also more stable with balancing.

chinarxiv.org/items/chinaxiv-202205.00044 Machine Translation


https://chinarxiv.org/items/chinaxiv-202205.00044

ChinaRxiv [$X]

2.3.5 Image Instance Retrieval Performance

To demonstrate BLPOH’ s practical retrieval effectiveness, we compare its in-
stance retrieval performance with BSODH on MIR Flickr25k. We select an im-
age from the dataset and return the top 5 most similar images based on models
trained under identical conditions. As shown in Figure 6, the BLPOH-trained
model returns 5 human portraits, while the BSODH-trained model returns 4
human portraits and one animal image, clearly showing BLPOH’ s superior
retrieval quality.

3 Conclusion

This paper proposes an improved online hashing algorithm that processes data
in a streaming fashion, training and updating models online to ensure the algo-
rithm is not constrained by dataset size and maintains good real-time perfor-
mance. By incorporating information from old data to supervise hash function
updates, we enhance compatibility with historical data. Additionally, consid-
ering the problem of missing labels in real-world image data, we introduce a
label prediction module and innovatively propose a label category similarity
balancing algorithm to guide label prediction, making predicted labels more ac-
curate and improving image label similarity accuracy, thereby further enhancing
model precision. Our label prediction module not only effectively combats la-
bel missingness but also ensures model performance degrades gradually as label
loss rates increase, showing promising application prospects for online image
retrieval tasks with missing labels. However, our label prediction model is rel-
atively simple, and its robustness is not entirely satisfactory. Future work will
consider incorporating ensemble learning to improve model robustness.
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