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Abstract
Let 𝑍𝑛 be a supercritical branching process in an i.i.d. environment. In this pa-
per, we obtain two non-uniform Berry-Esseen bounds for 𝑍𝑛. This result extends
the Berry-Esseen bound of Grama et al. [Stochastic,Process.,Appl.,127(4),1255-
1281,2017] to the non-uniform case. Finally, we discuss applications of these
results to interval estimation.
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Abstract
Let (𝑍𝑛) be a supercritical branching process in an independent and identi-
cally distributed random environment. We establish nonuniform Berry-Esseen
bounds for the process (𝑍𝑛), which refine the Berry-Esseen bound of Grama
et al. [Stochastic Process. Appl., 127(4), 1255-1281, 2017]. We also discuss an
application of our result to constructing confidence intervals for the criticality
parameter.
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1. Introduction
Branching processes in random environments have been extensively studied
since the pioneering work of Smith and Wilkinson [1]. Consider a branching
process (𝑍𝑛)𝑛≥0 in an i.i.d. random environment 𝜉 = (𝜉0, 𝜉1, …). The process
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evolves such that, given the environment 𝜉𝑛, the offspring distribution at gener-
ation 𝑛 is 𝑝(𝜉𝑛) = {𝑝𝑘(𝜉𝑛) = 𝑃(𝑋𝑛,𝑖 = 𝑘 ∣ 𝜉𝑛) ∶ 𝑘 ∈ ℕ}, where (𝑋𝑛,𝑖)𝑖≥1 are i.i.d.
random variables representing the number of offspring of the 𝑖-th individual in
generation 𝑛.

Let 𝑚𝑛 = 𝐸𝜉𝑋𝑛,𝑖 denote the conditional mean offspring number in generation
𝑛, and define Π𝑛 = ∏𝑛−1

𝑖=0 𝑚𝑖 with Π0 = 1. The process 𝑊𝑛 = 𝑍𝑛/Π𝑛 forms a
nonnegative martingale with respect to the filtration ℱ𝑛 = 𝜎{𝜉, 𝑋𝑘,𝑖, 0 ≤ 𝑘 ≤
𝑛 − 1, 𝑖 ≥ 1}. Under suitable conditions, 𝑊𝑛 converges almost surely to a limit
𝑊 with 𝐸[𝑊] ≤ 1.

The asymptotic behavior of 𝑍𝑛 is governed by the random walk 𝑆𝑛 = log Π𝑛 =
∑𝑛−1

𝑖=0 𝑋𝑖, where 𝑋𝑖 = log 𝑚𝑖. Let 𝜇 = 𝐸[𝑋] and 𝜎2 = Var(𝑋). The process is
classified as subcritical (𝜇 < 0), critical (𝜇 = 0), or supercritical (𝜇 > 0). In the
supercritical case, 𝜇 > 0 and the process grows exponentially at rate 𝜇.

Previous work has established central limit theorems and Berry-Esseen bounds
for log 𝑍𝑛. Grama et al. [9] proved a uniform Berry-Esseen bound:

sup
𝑥∈ℝ

∣𝑃 ( log 𝑍𝑛 − 𝑛𝜇
𝜎√𝑛 ≤ 𝑥) − Φ(𝑥)∣ ≤ 𝐶√𝑛,

under moment conditions 𝐸[𝑋2+𝛿] < ∞ and 𝐸[𝑍𝑝
1 ] < ∞ for some 𝑝 > 1 and 𝛿 ∈

(0, 1]. However, uniform bounds do not capture the precise rate of convergence
in the tails.

Nonuniform Berry-Esseen bounds provide refined estimates that depend on 𝑥,
typically of the form:

∣𝑃 ( log 𝑍𝑛 − 𝑛𝜇
𝜎√𝑛 ≤ 𝑥) − Φ(𝑥)∣ ≤ 𝐶

(1 + |𝑥|1+𝛿′) ,

for 𝛿′ ∈ (0, 𝛿). Such bounds are crucial for constructing confidence intervals and
understanding moderate deviations.

2. Model and Main Results
2.1 Branching Process in Random Environment

Let 𝜉 = (𝜉0, 𝜉1, …) be an i.i.d. sequence of random variables representing the
environment. The branching process (𝑍𝑛)𝑛≥0 is defined recursively by:

𝑍0 = 1, 𝑍𝑛+1 =
𝑍𝑛

∑
𝑖=1

𝑋𝑛,𝑖, 𝑛 ≥ 0,

where, conditioned on 𝜉, the random variables (𝑋𝑛,𝑖)𝑖≥1 are i.i.d. with distri-
bution 𝑝(𝜉𝑛). The conditional mean offspring number is 𝑚𝑛 = 𝐸𝜉𝑋𝑛,𝑖, and we
define:

Π0 = 1, Π𝑛 =
𝑛−1
∏
𝑖=0

𝑚𝑖, 𝑛 ≥ 1.
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The normalized process 𝑊𝑛 = 𝑍𝑛/Π𝑛 is a nonnegative martingale converging
a.s. to 𝑊 with 𝐸[𝑊] ≤ 1.

Let 𝑋𝑖 = log 𝑚𝑖 and define the random walk:

𝑆0 = 0, 𝑆𝑛 = log Π𝑛 =
𝑛−1
∑
𝑖=0

𝑋𝑖, 𝑛 ≥ 1.

Assume 𝜇 = 𝐸[𝑋] ∈ (0, ∞) and 𝜎2 = Var(𝑋) ∈ (0, ∞). The criticality parame-
ter 𝜇 determines the exponential growth rate of 𝑍𝑛.

We impose the following moment conditions:

• (A1) There exists 𝛿 ∈ (0, 1] such that 𝐸[|𝑋|2+𝛿] < ∞.
• (A2) There exists 𝑝 > 1 such that 𝐸[𝑍𝑝

1 ] < ∞.
• (A3) There exists 𝜆0 > 0 such that 𝐸[𝑒𝜆0𝑋] = 𝐸[𝑚𝜆0

0 ] < ∞ (Cramér’s
condition).

• (A4) There exists 𝑝 > 1 such that 𝐸[𝑍𝑝
1 ] < ∞.

2.2 Main Results

Our first result establishes a nonuniform Berry-Esseen bound under conditions
(A1) and (A2).

Theorem 1. Assume (A1) and (A2) hold. Then for any 𝛿′ ∈ (0, 𝛿), there exists
a constant 𝐶 > 0 such that for all 𝑥 ∈ ℝ and 𝑛 ≥ 1,

∣𝑃 ( log 𝑍𝑛 − 𝑛𝜇
𝜎√𝑛 ≤ 𝑥) − Φ(𝑥)∣ ≤ 𝐶

1 + |𝑥|1+𝛿′ . (2.3)

This refines the uniform bound of Grama et al. [9] by providing 𝑥-dependent con-
vergence rates. The bound (2.3) is particularly useful for moderate deviations
where |𝑥| = 𝑜(√𝑛).
Under stronger exponential moment conditions, we obtain an even sharper
bound:

Theorem 2. Assume (A3) and (A4) hold. Then there exist constants 𝐶, 𝑐 > 0
such that for all 𝑥 ∈ ℝ and 𝑛 ≥ 1,

∣𝑃 ( log 𝑍𝑛 − 𝑛𝜇
𝜎√𝑛 ≤ 𝑥) − Φ(𝑥)∣ ≤ 𝐶(1 + 𝑥2) exp (− 𝑐𝑥2

1 + |𝑥|/√𝑛) . (2.4)

This bound provides exponential decay in the tails and is valid for |𝑥| = 𝑜(√𝑛).
The result improves upon Theorem 1.1 in Grama et al. [9] by giving an explicit
nonuniform estimate.

chinarxiv.org/items/chinaxiv-202205.00042 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00042


Theorem 3 (Confidence Interval). Under (A1) and (A2), let 𝜅𝑛 ∈ (0, 1)
satisfy | log 𝜅𝑛| = 𝑜(log 𝑛). Then for the interval:

[ log 𝑍𝑛√𝑛 − 𝜎Φ−1(1 − 𝜅𝑛/2), log 𝑍𝑛√𝑛 + 𝜎Φ−1(1 − 𝜅𝑛/2)] ,

we have:

𝑃 (𝜇 ∈ [ log 𝑍𝑛
𝑛 − 𝜎√𝑛Φ−1(1 − 𝜅𝑛), log 𝑍𝑛

𝑛 + 𝜎√𝑛Φ−1(1 − 𝜅𝑛)]) = 1−𝜅𝑛+𝑜(1).

This provides a practical method for constructing asymptotic confidence inter-
vals for the criticality parameter 𝜇.

3. Preliminary Lemmas
We establish several technical lemmas concerning the martingale limit 𝑊 and
its logarithm.

Lemma 2. Under (A1) and (A2), for any 𝑞 ∈ (1, 1 + 𝛿), we have 𝐸[| log 𝑊|𝑞] <
∞ and sup𝑛 𝐸[| log 𝑊𝑛|𝑞] < ∞.

Proof. Using the decomposition log 𝑍𝑛 = 𝑆𝑛 + log 𝑊𝑛 from (2.1) and moment
estimates for 𝑊𝑛, we obtain the uniform bound:

𝐸[| log 𝑊𝑛|𝑞] ≤ 𝐶𝐸[𝑊] + 𝐸[| log 𝑊|𝑞1{𝑊≤1}] < ∞.

Lemma 3. Under (A1) and (A2), there exists 𝛾 ∈ (0, 1) such that:

𝐸[| log 𝑊𝑛 − log 𝑊|] ≤ 𝐶𝛾𝑛.

This exponential convergence is crucial for controlling the remainder term in
the decomposition of log 𝑍𝑛.

Lemma 4. Under (A1) and (A2), for any 𝑥 ∈ ℝ and 𝛿′ ∈ (0, 𝛿):

∣𝑃 (𝑆𝑛 − 𝑛𝜇
𝜎√𝑛 ≤ 𝑥) − Φ(𝑥)∣ ≤ 𝐶

1 + |𝑥|1+𝛿′ . (4.18)

The proof follows from classical nonuniform Berry-Esseen bounds for i.i.d. sums
(see Bikelis [11] and Chen & Shao [12]).

Lemma 5. Under (A1) and (A2), for any 𝑥 > 0:

𝑃 ( log 𝑍𝑛 − 𝑛𝜇
𝜎√𝑛 ≥ 𝑥) ≤ 𝐶 exp (− 𝑐𝑥2

1 + |𝑥|/√𝑛) . (4.19)
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4. Proof of Main Results
The key identity is the decomposition:

log 𝑍𝑛 = 𝑆𝑛 + log 𝑊𝑛, (2.1)

where 𝑆𝑛 = ∑𝑛−1
𝑖=0 𝑋𝑖 is the random walk of environmental means and 𝑊𝑛 =

𝑍𝑛/Π𝑛 is the normalized population size.

4.1 Proof of Theorem 1

We analyze the probability:

𝑃 ( log 𝑍𝑛 − 𝑛𝜇
𝜎√𝑛 ≤ 𝑥) = 𝑃 (𝑆𝑛 − 𝑛𝜇

𝜎√𝑛 + log 𝑊𝑛
𝜎√𝑛 ≤ 𝑥) .

Let 𝑚 = ⌊𝑛/2⌋ and define 𝑉𝑛 = log 𝑊𝑛. Then:

𝑃 (𝑆𝑛 − 𝑛𝜇
𝜎√𝑛 ≤ 𝑥, log 𝑍𝑛 − 𝑛𝜇

𝜎√𝑛 > 𝑥) ≤ 𝑃(|𝑉𝑛−𝑉𝑚| > 𝛼𝑛)+𝑃 (𝑌𝑛 ≤ 𝑥 + 𝛼𝑛, 𝑌𝑛 > 𝑥) ,

where 𝑌𝑛 = 𝑆𝑛−𝑛𝜇
𝜎√𝑛 and 𝛼𝑛 = 𝑛−1/2.

Using Lemma 3, we bound:

𝑃(|𝑉𝑛 − 𝑉𝑚| > 𝛼𝑛) ≤ 𝐸|𝑉𝑛 − 𝑉𝑚|
𝛼𝑛

≤ 𝐶𝛾𝑚√𝑛 ≤ 𝐶
1 + |𝑥|1+𝛿′ .

The main term is controlled by Lemma 4, yielding:

∣𝑃 ( log 𝑍𝑛 − 𝑛𝜇
𝜎√𝑛 ≤ 𝑥) − Φ(𝑥)∣ ≤ 𝐶

1 + |𝑥|1+𝛿′ .

4.2 Proof of Theorem 2

Under the Cramér condition (A3), we apply Nagaev’s inequality to obtain
exponential tail bounds for 𝑆𝑛. Combining with the decomposition (2.1) and
Lemma 5, we derive for |𝑥| ≤ 𝑛1/4:

∣𝑃 ( log 𝑍𝑛 − 𝑛𝜇
𝜎√𝑛 ≤ 𝑥) − Φ(𝑥)∣ ≤ 𝐶(1 + 𝑥2) exp (− 𝑐𝑥2

1 + |𝑥|/√𝑛) .

For |𝑥| > 𝑛1/4, the bound follows from Lemma 5 and standard Gaussian tail
estimates:

1 − Φ(𝑥) ≤ 𝑒−𝑥2/2
√

2𝜋(1 + 𝑥) .
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4.3 Proof of Theorem 3

The confidence interval construction uses the quantile function Φ−1(𝑝). For
𝑝 → 0, we have the asymptotic expansion:

Φ−1(1 − 𝑝) = −√2 log(1/𝑝) + 𝑂(log log(1/𝑝)).

Applying Theorem 1 with 𝜅𝑛 → 0 slowly enough that | log 𝜅𝑛| = 𝑜(log 𝑛), we
obtain:

𝑃 ( log 𝑍𝑛 − 𝑛𝜇
𝜎√𝑛 ∈ [−Φ−1(1 − 𝜅𝑛), Φ−1(1 − 𝜅𝑛)]) = 1 − 𝜅𝑛 + 𝑜(1).

This yields the claimed confidence interval for 𝜇.
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