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Abstract

Let f(n) denote the maximum possible number of edges in an n-vertex graph
containing no cycles of equal length. The problem of determining f(n) was posed
by Erdos in 1975. This paper provides a lower bound for f(n).
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Abstract

In 1975, P. Erd6s proposed the problem of determining the maximum number
f(n) of edges in a graph with n vertices in which any two cycles have different
lengths. The sequence (c¢;, ¢y, -, ¢, ) represents the cycle length distribution of
a graph G with n vertices, where c¢; is the number of cycles of length ¢ in G.
Let f(aq,a4,,a,) denote the maximum possible number of edges in a graph
satisfying ¢, < a,, where a; is a nonnegative integer. In 1991, Shi posed the
problem of determining f(aq,as, -, an), which extended Erdés’ s problem. It
is clear that f(n) = f(1,1,--,1). Let g(n,m) = f(a;,a9,,q,), where a, = 1
if i/m is an integer, and a; = 0 otherwise. It is clear that f(n) = g(n,1).

- 1
liminf ) =0 2+ 7654 9 4u4
n—00 \/ﬁ 99

We prove that
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for all even integers m, which improves upon previous bounds (Lai, 2017). We
show that

lim inf 7f(n) —n > 1654

which is better than the previous bounds: /2 (Shi, 1988) and earlier results.
We make the following conjecture:

— 4
lim inf M = 765

noeo  n * To071
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Introduction

Let f(n) be the maximum number of edges in a graph with n vertices in which
no two cycles have the same length. In 1975, Erdds raised the problem of
determining f(n) (see Bondy and Murty [?], p. 247, Problem 11). Shi [?] proved
the following lower bound:

Theorem 1 (Shi [?]). f(n) >n+ [(V8n—23+1) /2] for n > 3.

Additional related results were obtained by Chen, Lehel, Jacobson and Shreve
[?], Jia [?], Lai [?, 7, ?, ?], and Shi [?, ?]. Boros, Caro, Fiiredi and Yuster [?]
proved the following upper bound:

Theorem 2 (Boros, Caro, Fiiredi and Yuster [?]). For n sufficiently large,
f(n) <n+1.98/n.

Lai [?] improved Shi’ s lower bound as follows:

Theorem 3 (Lai [?]). Let ¢ = 1260r + 169 (r > 1), then

t2 + 87978t + 15957
4t +1

f(n) =n+

for n > 2242 4 20994 4 6932215.

Lai [?] proposed the following conjecture:
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Conjecture 4 (Lai [?]).

n—00 n

lim inff(n)\f_n =2

> /2. Survey papers on this

It would be nice to prove that liminf, , £ (T\L/E"
problem can be found in Tian [?], Zhang [?], and Lai and Liu [?]. The progress

on all 50 problems in [?] can be found in Locke [?].

The sequence (cq,¢q, -+, ¢,,) is the cycle length distribution of a graph G with n
vertices, where ¢; is the number of cycles of length ¢ in G. Let f(a;,aq, -, a,)
denote the maximum possible number of edges in a graph which satisfies ¢; < a;,
where a; is a nonnegative integer. Shi [?] posed the problem of determining
flay,aq,+,a,), which extended the problem due to Erdds. It is clear that
f(n) = f(1,1,--,1). Let g(n,m) = f(a;,ay,,a,), where a; = 1 if i/m is an
integer, and a; = 0 otherwise. It is clear that f(n) = g(n,1).

In this paper, we obtain the following results:
Theorem 5. Let m be even, s; > s,, s + 359 > k, then
ginym)>n+ (k+s, +2s,+ 1)t —1
forn > (%mk2 + %mksl + %mk + %mksz + %mslsQ + %ms2 —k—s, —2s9+ %m — 1) t+
1.

Theorem 6. Let ¢t = 1260r 4+ 169 (r > 1), then for n > 130942 — 13431594 4
6932215,

119
f(n) = n+ =t — 26399,

Proof of Theorem 5
Proof. Let

3 1 3 1 1 9 1
n, = <1mk2 + §mk51 + zmk + imkst + §msls2 + M2 — k—s, —2sq + 5Mm— 1) t+1,
where m is even, s; > sy, §; + 35y > k, and n > n,. It suffices to show that
there exists a graph G on n vertices with n 4 (k + s, + 25, + 1)t — 1 edges such
that all cycles in G have distinct lengths and all cycle lengths are multiples of
m.

We construct the graph G consisting of several subgraphs B, for 0 < ¢ < sy,
i=58,;+7(1<j<sq),and i =83, + Sop + 7 (1 < j < t). These subgraphs all
share a single common vertex x, and are otherwise vertex-disjoint.

For 1 <14 < sy, let the subgraph B, ., consist of a cycle

CsltJri = ZTajag a’msu+2m52t+mi71x
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and a path

..aZ

= qt
- msy+2msq, +mi—2°

8141 Msy+msq,+mi

Based on this construction, B, ; contains exactly three cycles of lengths ms,,+
mi, msy, + msy, +mi, and msy;, + 2msq, + mi.

For 1 <14 <, let the subgraph B, .. ., consist of a cycle

— Bt
C51t+52t+i =Y ymslt+3m32t+mk(k+1)t+mi—1x

and k paths sharing the common vertex x, with their other endpoints on the
cycle s 1, it

Psu+52t+i,p = y:nslt+3m32t—mkt+m(p—1)t+mi y;nslt+3mszt+mk(2p—1)t+m(p—1)t+mi <p
As a cycle with k chords contains exactly (k;Q) distinct cycles, B, ., .; con-
tains cycles of lengths msy, + 3msy, + mkht + (h + j — 1)mt + mq for j > 1,
h>0,and k+12>j+ h.

B, is a path with one endpoint at = and length n —n,. All other B, are simply
cycles of length mi.

Therefore, g(n,m) > n+ (k+ s; +2s, + 1)t — 1 for n > n,. This completes the
proof.

From Theorem 5, we have

.. .g(nym)—n k+s;+2s9+1
lim inf >3 ER— PR o T 5 T
n—o0 Vn gmk? 4+ smks; + gmk + 5mksy + 3ms; 2 + Jms, + 5m

for all even integers m.

Let s; = 28499066, s, = 4749839, k = 14249542. Then
lminf 2" 2" B m
n—o00 \/ﬁ

for all even integers m.

Proof of Theorem 6
Proof. Let t = 1260r + 169 with r > 1, and let

1309 , 1349159
= 2 —

n, = =3 t + 6932215,

For n > n,, it suffices to show that there exists a graph G on n vertices with
n+ 13&1? — 26399 edges such that all cycles in G have distinct lengths.

We construct the graph G consisting of several subgraphs B, for 0 < ¢ < 22t,
i =22t45 (1 <j<38) i =23+ 2245 (1 <j< 58 andi=32t+;—60
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(58 < j <t — 742). These subgraphs all share a single common vertex z, and
are otherwise vertex-disjoint.

For1<:i< 5t3’ 8 let the subgraph By, +; consist of a cycle

CY22t+i = Ta;ag a28t+¥+2i,3x

and a path
Pogyri = ey o 076y
Based on this construction, B,,, ; contains exactly three cycles of lengths 22+,
25t + 51 +i— 1, and 28t + 22 + 2 — 2.
For 1 <i < 558 et the subgraph Bogpy 22 consist of a cycle

— it %
Cz3t+%+i = abjby b

284262 12527

and a path
P23t+¥+i = 01141 brgr g
Based on this construction, By, 2e2 ; contains exactly three cycles of lengths

23t + 22 4, 27t + i — 1, and 28t + 252 4 2i — 1.

For 58 < i <t — 742, let the subgraph Bs,,,; ¢, consist of a cycle

i i
Cso11i—60 = TY1 " Y1371+ 11i+890F

and ten paths sharing the common vertex z, with their other endpoints on the
cycle Czat 1 60°

P32t+i—60,1 = yiu—z "'yélt—59+i’
Psoivi 602 = yi2t72 "'y§1t753+2i’
Psoiii 603 = yiztﬂ "'yilt+156+3i7
Psoiri604 = yi3t—2 "'y§1t+155+4i7
Psyiri 605 = Yisi o "'yé1t+155+5i’
Psoiii 606 = yht—z "'y%1t+154+6i’
Poivic07 = y§4t72 "'y§1t+153+7i7
Psyiri 608 = y55t72 "'yélt+147+8i>
Psoiii 609 = yi5t72 "'ylio1t+149+9m

i i
P32t+i—60,10 = Yi6t—2 " Y111t+151+10i"

As a cycle with d chords contains exactly (d;rZ) distinct cycles, Bgq; ;6o contains

cycles of lengths: 32t + i — 60, 33t + i+ 4, 34t + i + 207, 35t +i— 3, 36t +i — 2,
3Tt +1—3,38t+¢—3, 39t +17—8, 40t + ¢, 41t + 4, 42t + 1 + 739, 43t + 2¢ — b4,
43t + 21 4 213, 45t + 29 + 206, 45t + 21 — 3, 47t + 21— 3, 4Tt + 20— 4, 49t 4+ 2 — 9,
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A9t +2i—6, 51t +2i+2, 51¢+2i+ 741, 53t +3i+ 155, 54t +3i+212, 55t + 3 + 206,
56t + 3i — 4, 57t + 3i — 4, 58t + 3i — 10, 59¢ + 3i — 7, 60¢ + 3i — 4, 61¢ + 3i + 743,
64t +4i + 154, 64¢ +4i+ 212, 66t +4i + 205, 66t +4i—5, 68t +4i— 10, 68¢+4i—8,
T0t+4i—5, TOt-+4i+737, Tdt+5i+ 154, 75t +5i+211, 76t +5i+204, T7t+5i—11,
78t+5i—8, 79t +5i—6, 80t+5i+ 736, 85¢+6i+ 153, 85¢+6i+ 210, 87¢+6i+ 198,
87t+6i—9, 89t +6i—6, 89t+6i+735, 95¢+Ti+ 152, 96t +T7i+204, 97¢+T7i+ 200,
98¢ + 7i — 7, 99t + Ti + 735, 106t + 8 + 146, 106t + 8i + 206, 108t + 8i + 202,
108t + 8i+ 734, 116t +9i + 148, 117t + 9i + 208, 118t + 9i + 943, 127¢ + 10i + 150,
127t + 10 + 949, 137¢ + 115 + 891.

B, is a path with one endpoint at = and length n —n,. All other B, are simply
cycles of length 3.

Therefore, f(n) > n+ %t — 26399 for n > n,. This completes the proof.
From Theorem 6, we have

lim inf 7f(n) —n > 77654 )
n—00 NG 19071

which is better than the previous bounds: v/2 (see [?]) and |/2 + 1924 (see [?]).

Combining this with Boros, Caro, Fiiredi and Yuster’ s upper bound (Theorem
2), we obtain

f(n)—n S 7654

. f(n) — .
1.08 > 1 ) 20 i inf ik
98 = limsup =772 = Im Inf =72 = \ 2+ 79071

From the proof of Theorem 6, we have
lim inf gln,m) —n >4/24 1651
n—00 Vn 19071

If m =1and 1 <4<, we could construct a subgraph similar to B, |, .; con-
sisting of a cycle C | +sg+i and k paths sharing a common vertex x, with their
other endpoints on the cycle C such that all cycles in B have

for all integers m.

S1¢t+Soi+1? S14+89:+1
distinct lengths. This would yield liminf, . 5= > V2444 >\ /2+ {24
However, we have only constructed such a subgraph for m = 1 and 58 < i <
t — 742, using a cycle with ten paths sharing a common vertex x to obtain

liminf, f(%n =42+ 123605741'

Since the liminf for M% for even m is v/2.444, it is reasonable to suspect

that such a lower bound also holds for % We make the following conjecture:

Conjecture 7.

liminf L™ " _ o add.
n—00 \/ﬁ
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