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Abstract

To address the suboptimal segmentation performance of existing visible-infrared
(RGB-T) image semantic segmentation models, this paper proposes a nested
segmentation network based on deep difference feature complementary fusion.
Specifically, the encoder and decoder components are interconnected via multi-
level dense intermediate paths to form a nested architecture, wherein the de-
coder leverages multi-level pathways to densely reuse shallow and deep features
from the encoder for multi-scale feature exploitation. Additionally, multi-modal
deep features are enhanced in their semantic representation capability through
a feature difference fusion strategy. Experimental results demonstrate that the
proposed network achieves 65.8% mean accuracy and 54.7% mean Intersection
over Union (mlIoU) on the MFNet dataset, exhibiting superior segmentation
performance compared to other state-of-the-art RGB-T segmentation models.

Full Text

Nested Semantic Segmentation Network Fusing Deep Dif-
ference Features
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Abstract: Existing visible-infrared (RGB-T) image semantic segmentation
models suffer from limited segmentation performance. To address this issue,
we propose a nested segmentation network based on complementary fusion of
deep difference features. Specifically, the encoding and decoding components
of the network are connected through multi-level dense intermediate pathways
to form a nested architecture, enabling dense multi-scale feature reuse for the
decoder through hierarchical pathways from the encoder. Additionally, multi-
modal deep features are enhanced in their semantic expressiveness through a
feature differential fusion strategy. Experimental results demonstrate that the
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proposed network achieves 65.8% mean accuracy and 54.7% mean Intersection
over Union (mlIoU) on the MFNet dataset, exhibiting superior segmentation
capability compared to other state-of-the-art RGB-T segmentation models.

Keywords: RGB-T semantic segmentation; nested network; feature reuse; fu-
sion strategy

0 Introduction

Semantic segmentation aims to assign pixel-level category labels to images, with
broad applications in autonomous driving [1], medical analysis [2], and robot
localization [3]. Due to limitations in visible light sensor imaging mechanisms
[4], current mainstream RGB segmentation models inevitably experience perfor-
mance degradation under conditions such as dense fog and low light [5]. Ben-
efiting from infrared sensors’ ability to capture thermal radiation information,
infrared images can effectively compensate for missing information in RGB im-
ages under adverse conditions [6], making the fusion of these two modalities
more robust for scene representation.

RGB-T semantic segmentation has attracted considerable research attention in
recent years. MFNet [7] pioneered real-time RGB-T semantic segmentation for
autonomous driving, drawing inspiration from the FuseNet architecture [8] with
two symmetric low-parameter encoders and a single decoder. The final two
encoder layers capture multi-scale features with larger receptive fields through
micro-downsampling perception modules. RTFNet [9] utilizes ResNet [10] as the
backbone for both encoders to integrate RGB and infrared information, with the
decoder progressively restoring resolution and reconstructing features through
two types of upsampling modules. Xu et al. [11] improved the encoder to a
ResNet with dilated convolution operations to enhance small object detection,
and designed a co-attention mechanism module to fuse extracted multi-modal
features. Guo et al. [12] focused on multi-scale information utilization, proposing
an auxiliary decoding module to receive features from all encoder levels, enabling
more flexible context fusion through cross-scale feature transmission.

While these studies have contributed to RGB-T semantic segmentation at var-
ious levels, several challenges remain to be addressed. First, relying solely on
deep features transmitted unidirectionally to sequentially connected decoder lay-
ers leads to loss of edge detail information due to encoding downsampling [9,11].
Although skip connections partially alleviate this by reusing same-scale encoder
features at the decoder [7], the utilization of shallow and deep features remains
insufficient. Moreover, encoders do not adequately account for feature modality
differences between RGB and infrared images during fusion. For instance, in
nighttime environments, infrared images contain information imperceptible to
RGB images. Simple addition [9] or channel-wise concatenation [7] can, in cer-
tain cases, cause hedging effects on easily identifiable features, weakening the en-
coding response of dominant features—particularly impacting high-dimensional
features more significantly. Meanwhile, co-attention fusion based on Softmax
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operators [11] lacks learnable parameters for more comprehensive reuse of multi-
level encoder features and mitigating modality differences in high-dimensional
feature fusion.

To enable more comprehensive reuse of multi-level encoder features and reduce
the impact of modality differences on high-dimensional feature fusion, this pa-
per proposes an RGB-T nested semantic segmentation network that fuses deep
difference features from RGB and infrared images. The contributions are:

a) Dense reuse of encoder shallow and deep features. The encoder and
decoder are connected through multi-level intermediate pathways. Scale-
diverse encoder features from different levels are integrated via stacking
and fed to the decoder, enabling utilization of richer multi-scale feature
information for semantic partitioning.

b) Deep feature fusion strategy. During deep feature fusion, consider-
ing the inherent differences between RGB and infrared images, we design
a feature differential fusion strategy to extract complementary features
from both modalities, achieving better information fusion and thereby en-
hancing the semantic representation capability of deep high-dimensional
abstract features.

1 Nested Semantic Segmentation Network

The nested connection architecture was first proposed by Zhou et al. [13] for
medical image segmentation tasks. Based on the observation that features at
different levels exhibit varying sensitivity to objects of different sizes, they re-
placed the long skip connections in U-Net [14] with a nested combination of
upsampling and short/long skip connections. Figure 1 illustrates the nested
connection framework.

In nested structures, shallow and deep encoder features undergo dense concate-
nation and reuse in the channel dimension through upsampling and dense con-
nections, enabling effective integration of features at various levels. Inspired by
this, we introduce the nested structure into RGB-T semantic segmentation to
construct a network that can fully integrate multi-scale feature information. As
shown in Figure 2, the proposed segmentation model comprises two identically
structured encoders and one decoder. The dual encoders on the left perform hier-
archical downsampling to extract shallow and deep features, while the decoder
on the right progressively reconstructs features. The encoding and decoding
components are connected through densely connected multi-level intermediate
transition layers, forming an overall nested architecture. Compared with ex-
isting RGB-T segmentation networks, the dense intermediate information flow
channels effectively preserve semantic feature information at all levels.
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1.2 Deep Difference Feature Complementary Fusion

The final dense feature unit transmits deep information through only a single
channel, presenting a challenge during decoding reconstruction: deep networks
capture limited gradient information for difficult targets such as small-scale
objects. At this stage, RGB and infrared features exhibit higher-dimensional
abstract semantics. Particularly under adverse lighting conditions, blind spot
information carried by RGB images makes their deep features more difficult to
learn. In such cases, incorporating infrared information should focus more on
compensating for weak feature regions of both modalities. Given the imaging
principle differences between RGB and infrared images, we propose a comple-
mentary fusion strategy based on feature differences constructed at the pixel
level to enhance semantic expression of deep features.

As shown in Figure 3, the differential fusion module takes RGB and infrared
feature maps as input. During RGB deep feature encoding, dual-modal features
first undergo convolution operations to obtain compressed feature mapping ma-
trices Q and K. These matrices are spatially unfolded and processed through
the following operation to obtain a modality feature difference weight matrix:

W =1 — softmax(Q7 K)

Feature maps manifest as numerical vector matrices at the pixel level. The mul-
tiplication of () and K reflects the feature correlation between RGB and infrared
features. The softmax normalization ensures the correlation matrix represents
weight coefficients reflecting common features across global positions. There-
fore, modality feature differences can be expressed through the complement to
1. Subsequently, the linear transformation matrix V' of the RGB feature map is
weighted with W to obtain complementary features of the RGB feature map:

Feature XS — v . W

com
Similarly, complementary features of the infrared feature map Feature?;m are
obtained through the same process. Finally, the two complementary features are
added to the input dual-modal features to achieve deep feature complementary
fusion enhancement.

1.1 Multi-level Reuse of Shallow and Deep Features

Many RGB-T segmentation models adopt ResNet as the backbone. Consider-
ing that DenseNet [15] offers denser information propagation pathways with
fewer parameters, this paper employs the DenseNet framework for the encoder
backbone. To preserve more original spatial information and enhance structural
uniformity within the encoder, the classification layer of DenseNet is removed,
and an additional transition layer consistent with other transition layers is ap-
pended after the fourth dense block. Consequently, the encoder can be divided

chinarxiv.org/items/chinaxiv-202205.00026 Machine Translation


https://chinarxiv.org/items/chinaxiv-202205.00026

ChinaRxiv [$X]

into an initial convolution layer, a max pooling layer, and four dense feature
units composed of dense blocks and transition layers. Dense blocks maintain fea-
ture map resolution, while the remaining components perform 2x downsampling.
Considering that infrared images are single-channel grayscale, the input chan-
nel number of the initial convolution layer in the infrared encoder is modified
to 1. For the first five downsampling processes, RGB and infrared information
are fused through element-wise addition. For deep high-dimensional features
extracted during the final downsampling stage, fusion is completed through the
feature differential fusion strategy.

In the proposed model, fused features at each layer undergo multi-level backflow
through upsampling and intermediate layers. The backflow features and output
from previous fusion layers are densely stacked together and transmitted to the
input of the corresponding-level reconstruction layer. Compared with using only
long skip connections, the semantic gap between encoder and decoder layers can
be alleviated through intermediate layers. As shown in Figure 1, the upsam-
pling unit resembles a residual structure, doubling feature resolution through
transposed convolution. The intermediate layer comprises two cascaded convo-
lution layers, avoiding the insufficient non-linear feature extraction capability
of a single convolution.

1.3 Feature Decoder

The decoder reconstructs features based on received encoder features to obtain
dense pixel predictions. The proposed network’ s decoder includes upsampling
modules, reconstruction layers, and a classification layer (see Figure 1). The
classification layer consists of a single convolution layer and bilinear interpola-
tion operation, functionally consistent with the upsampling module, doubling
feature map resolution and completing pixel-level semantic classification. The
convolution output channel number of the classification layer is set to the total
number of semantic categories. To enhance gradient propagation, reconstruc-
tion layers adopt a residual structure composed of two sequentially connected
convolution layers and a 1$x$1 convolution on the residual path.

Since each reconstruction layer receives stacked features from the same and lower
scales, the first convolution and residual layer of the reconstruction layer reduce
feature map channels to match the output channel number of the encoder layer
at the same level, while the second convolution maintains feature map resolu-
tion and channel number. All convolution layers in the network are followed
by batch normalization and ReLU layers. Overall, the decoder comprises five
reconstruction units composed of upsampling modules and reconstruction lay-
ers, plus one classification layer. The multi-level shallow and deep feature reuse
pathways effectively assist semantic prediction, while the progressive feature
scale restoration ensures structural symmetry between decoder and encoder.

Given that DenseNet has variants with different numbers of convolutional layers
—DenseNet-121, DenseNet-169, DenseNet-201, and DenseNet-161 (with feature
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channel growth rates of 32 for the first three and 48 for the last)—and increas-
ing parameter complexity, when adopting different variants, the feature output
channels at each downsampling stage align with the corresponding variant, and
the input feature channel numbers of the decoder’ s reconstruction units adjust
accordingly.

1.4 Loss Function

The loss function is closely related to network fitting direction and convergence
speed. The semantic segmentation field typically employs cross-entropy for
training:

M
Leg =— Y y.log(p,)

c=1

where M is the number of categories, and y,. and p, represent the ground truth
label vector and predicted probability map for category ¢, respectively. Consid-
ering that target distribution across scales cannot be perfectly balanced, cross-
entropy loss cannot adequately balance this sample discrepancy. Therefore, this
paper additionally introduces an improved DiceLoss [16] term to enhance net-
work learning capability:

N
2 Zizl P;ig;
N N
Zi:l DPi + Zi:l 9;
where p, and g, denote the binary predicted value and binary ground truth label

value for the i-th pixel in the image’ s pixel domain N, respectively. Thus, the
total network loss is:

Ly=1-

1
Liotar = §(LCE +Lg)

Since the value ranges of the two loss terms share the same order of magni-
tude, they each occupy half the weight. These two terms jointly guide network
learning, compensating for the shortcomings of using a single cross-entropy loss
term.

2 Experiments
2.1 Dataset and Training Details

MFNet released the first pixel-level semantically annotated RGB-T urban road
scene image dataset, containing 820 daytime and 749 nighttime RGB-infrared
image pairs, all uniformly resized to 480$x$640. The dataset manually anno-
tates nine semantic classes on driving roads: Car, Person, Bike, Curve, Car Stop,
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Guardrail, Color Cone, Bump, and Unlabelled background. Pixel counts across
categories are extremely imbalanced, particularly for Car Stop and Guardrail.
This paper follows the original dataset split, with a 2:1 ratio for training and
validation sets (day/night images equally split), and the remaining 393 image
pairs used as the test set.

The network model is implemented in PyTorch, using Stochastic Gradient De-
scent (SGD) as the optimizer. Network layers are initialized via the Xavier
scheme [17], with the learning rate starting at 1 x 1072 and decaying exponen-
tially per epoch with a decay weight of 0.95. Input images are normalized to
[0,1] and randomly flipped before each epoch to prevent overfitting. BatchSize is
adjusted according to the backbone variant: 2 for DenseNet-161, 4 for DenseNet-
201 and DenseNet-169, and 6 for DenseNet-121. All training and testing are
conducted on a computer equipped with an NVIDIA GeForce RTX 3090 GPU
(24GB VRAM), 32GB RAM, and an AMD Ryzen 9 5900X CPU. Training con-
tinues until the loss function ceases to decrease, with the best weights selected
via the validation set. No processing is applied to inputs during testing.

2.2 Performance Evaluation Metrics

Segmentation performance is evaluated through both qualitative and quantita-
tive means—visual comparison of segmentation results and numerical analysis
via mean Accuracy (mAcc) and mean Intersection over Union (mIoU). mAcc
measures the average probability of correctly classifying target image pixels
across all semantic categories:

1. TP,
Acc = — S i
e N;TPi+FNi

where N is the total number of categories (here N =9), TP, denotes the num-
ber of pixels correctly predicted as class i (true positives), and FN, denotes
pixels incorrectly predicted as non-i (false negatives). mIoU measures the aver-
age overlap between predicted segmentation and ground truth labels across all
categories:

TP,

3

1 N
ToU = —
o N;TPi—i—FPi—&—FNi

where FP, represents pixels incorrectly predicted as class ¢ (false positives).
Both metrics positively correlate with segmentation performance.
2.3 Experimental Results Analysis

The proposed network’ s segmentation performance is validated on the MFNet
test set, with comparative methods involving current state-of-the-art RGB-T
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segmentation models. All data are sourced from corresponding papers and open-
source code. Table 1 and Figure 4 provide quantitative comparison results and
visualization comparisons of day/night image sequences, respectively.

As shown in Table 1, the proposed segmentation network achieves the best val-
ues for both mAcc and mloU metrics. Specifically, Car and Person semantic
categories attain the highest overall metrics, likely benefiting from the combined
effects of the nested architecture and deep difference feature fusion strategy. The
former enhances learning capability for large-scale and easily identifiable objects,
while the latter strengthens deep semantic expression for targets with significant
feature differences—most notably benefiting Cars and Persons, which exhibit the
greatest feature modality differences at night. For Curve, its white reflective
properties provide slightly superior imaging advantages over thermal radiation
information at night, somewhat enhancing its inherent feature strengths. In con-
trast, the Bike category, often densely clustered in multiple scenes, may suffer
from overfitting in dense intermediate layers, weakening segmentation advan-
tages for individual bikes and preventing the best accuracy. Small-scale objects
like Color Cones likely benefit from this approach, as evidenced by MFNet and
RTFNet, whose models lack information flow channels bridging encoders and
decoders, resulting in insufficient feature learning capability for small objects.
AFNet and MLFNet, through co-attention fusion and multi-level encoder fea-
ture skipping advantages respectively, both demonstrate excellent segmentation
capabilities across scales. For other categories, Guardrail and Car Stop have in-
sufficient sample counts in the test set (Guardrail appears in only 4 of 393 image
pairs), causing poor segmentation performance across all models—particularly
MFNet and RTFNet—likely due to loss of already scarce feature information
during training in networks lacking feature reuse or adjustment mechanisms.

Further detailed differences can be observed in Figure 4. Taking columns 2 and
8 as examples, the Bike category shows segmentation results closest to ground
truth.

To further investigate model segmentation efficacy, Table 2 lists experimental
comparison results on daytime and nighttime images separately.

As shown in Table 2, all methods achieve better segmentation performance at
night. This may be because under well-lit conditions, RGB images already
contain rich detail information for easy segmentation, and incorporating ther-
mal radiation information can cause hedging effects on some dominant features,
weakening their semantic expression. At night, the two modalities exhibit a
larger semantic gap, making infrared information incorporation more effective
for improving semantic partitioning results.

Comparing day /night test sequences, the proposed method demonstrates better
mean accuracy and mloU in nighttime scenes, indirectly corroborating that the
proposed deep difference feature fusion strategy can fully integrate RGB and
infrared features, as infrared images naturally possess imaging advantages at
night when feature differences become more pronounced.

chinarxiv.org/items/chinaxiv-202205.00026 Machine Translation


https://chinarxiv.org/items/chinaxiv-202205.00026

ChinaRxiv [$X]

2.3.1 Encoder Backbone Variants Different DenseNet variants as encoder
backbones yield varying segmentation performance. To investigate this impact,
we retrain the network with only the backbone variant changed until loss ceases
to decrease. Figure 5 shows performance on the MFNet test set.

In Figure 5, mFPS denotes mean frames per second on the test set. To align with
the increasing direction of segmentation metrics, the actual inverse of mFPS is
plotted. Results show that as DenseNet variant complexity increases, the pro-
posed network exhibits increasing trends in both accuracy and IoU metrics. In
contrast, the average time consumed per segmented frame correlates approxi-
mately only with network depth. This suggests that deeper architectures with
increased parameters possess stronger segmentation learning capability, while
network inference speed is primarily affected by network depth.

2.3.2 Encoding Feature Reuse Methods In the proposed model, encoders
and decoders are connected via nested upsampling and intermediate layers, en-
abling dense reuse of shallow and deep encoder features. To validate this ap-
proach, we remove all information reuse paths between encoding and decoding
components, retaining only the connection between the encoder’ s final layer
and decoder (denoted as U-shaped Direct Connection). Additionally, we add
skip connections to the U-shaped structure to transmit same-level encoder fea-
tures to corresponding decoder reconstruction layers (denoted as Same-level
Skip Connection). Using DenseNet-161 as the backbone and keeping other con-
ditions unchanged, we retrain until convergence. Table 3 presents segmentation
comparison results on the MFNet test set.

As shown in Table 3, network segmentation performance degrades sharply when
decoder features are not reused. Performance improves when same-scale features
are reused via long connections, particularly in accuracy. When multi-scale
shallow and deep features are reused through nested connections, accurate seg-
mentation coverage further improves, though per-pixel segmentation precision
slightly degrades. In summary, reusing encoder features substantially impacts
segmentation performance. Dense reuse of shallow and deep features most ef-
fectively improves mloU but slightly weakens accuracy improvement, possibly
because dense intermediate connections cause segmentation overfitting in some
scenes.

2.3.3 Deep Feature Fusion Strategy To validate the effectiveness of the
deep difference feature fusion strategy, we compare two alternative fusion strate-
gies: the self-similarity fusion unit from Transformers [19] and pixel-difference-
based complementary fusion. The former focuses on spatial correlations between
pixel positions within feature maps themselves, resembling a position-attention
mechanism, while the latter focuses on semantic correlations between multi-
modal features at the pixel level. In contrast, our proposed strategy focuses on
semantic correlations between vector features of RGB and infrared feature maps.
Table 4 presents ablation experimental results for these three fusion strategies
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on the MFNet test set.

As shown in Table 4, the proposed fusion strategy provides optimal fusion guid-
ance for RGB and infrared deep features. This is because, in multi-modal fea-
ture fusion, self-similarity fusion strategies neglect expression of dissimilar image
features, while pixel-difference-based fusion only focuses on local feature correla-
tions—both having limitations in integrating high-dimensional features of multi-
modal images with property differences. In summary, for high-dimensional ab-
stract feature fusion of multi-modal objects with different imaging mechanisms,
mining their respective distinct features and performing targeted feature-level
complementary fusion yields fused features with more robust semantic expres-
sion.

3 Conclusion

This paper designs a nested semantic segmentation network that fuses deep dif-
ference features from RGB and infrared images. Considering that features from
different encoding scales possess semantic representations at various levels, the
model constructs nested intermediate pathways to achieve efficient dense reuse
of shallow and deep features. Simultaneously, to enhance the semantic expres-
siveness of high-dimensional abstract features from RGB and infrared images,
a deep difference feature fusion strategy is designed to achieve feature comple-
mentary enhancement. Comparative experiments with state-of-the-art models
on public datasets demonstrate the proposed model’ s superior segmentation
performance, with ablation experiments validating the effectiveness of dense
feature reuse and deep difference feature fusion strategies.

Future work will focus on optimizing the combination of difference feature fusion
strategies and attention mechanisms to improve segmentation accuracy for com-
plex objects. Additionally, we consider generalizing the RGB-T segmentation
network to other multi-modal image semantic segmentation domains.
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