ChinaRxiv [$X]

AT translation - View original & related papers at
chinarxiv.org/items/chinaxiv-202205.00025

RB-Raft: A Byzantine Fault-Tolerant Raft Con-
sensus Algorithm Postprint

Authors: Shuzhi Li, Zou Yijie, Deng Xiaohong, Luo Zhigiong, Liu Huiwen
Date: 2022-05-11T10:48:43+00:00

Abstract

To address the issues that the Raft algorithm cannot resist attacks from Byzan-
tine nodes and that logs are susceptible to tampering and forgery, we design an
RB-Raft (Resist Byzantine-Raft) algorithm that resists Byzantine nodes. First,
we employ a hash chain approach to perform iterative hashing on each log block,
and verify logs through a dynamic verification mechanism, thereby providing a
certain fault tolerance rate against malicious behavior of Leader nodes, which
solves the problem of log forgery and verification. Second, we propose a “last
will” mechanism based on threshold encryption, which legitimizes the process
of Candidate nodes soliciting votes, preventing attacks where Byzantine nodes
arbitrarily solicit votes to change the Leader node, and solves the problem of
Byzantine nodes affecting system consistency. Experimental results demon-
strate that the proposed RB-Raft algorithm possesses Byzantine resistance ca-
pability, with a log recognition rate reaching 100%. Meanwhile, compared to
PBFT, the consensus latency of our algorithm is reduced by 53.3%, and the
throughput is increased by 61.8%. The algorithm proposed in this paper is
suitable for consensus in untrusted consortium blockchains.

Full Text

Preamble
RB-Raft: A Byzantine Fault-Tolerant Raft Consensus Algorithm

Li Shuzhi', Zou Yijie!, Deng Xiaohong?f, Luo Zhigiong', Liu Huiwen?

(1. College of Information Engineering, Jiangxi University of Science & Tech-
nology, Ganzhou, Jiangxi 341000, China;

2. School of Electronics & Information Engineering, Gannan University of Sci-
ence & Technology, Ganzhou, Jiangxi 341000, China)

Abstract: To address the limitations of the Raft algorithm in resisting Byzan-
tine node attacks and preventing log tampering, this paper proposes the RB-Raft

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025
https://chinarxiv.org/items/chinaxiv-202205.00025

ChinaRxiv [$X]

(Resist Byzantine-Raft) algorithm. First, we employ a hash chain approach to
iteratively hash each log block, and through a dynamic verification mechanism,
we enable fault tolerance for malicious behavior by Leader nodes, thereby solv-
ing the problems of log forgery and verification. Second, we introduce a “legacy”
mechanism based on threshold encryption that legitimizes vote solicitation by
Candidate nodes and prevents Byzantine nodes from arbitrarily pulling votes to
replace the Leader, thus resolving the issue of Byzantine nodes affecting system
consistency. Experimental results demonstrate that the proposed RB-Raft algo-
rithm can effectively resist Byzantine nodes, achieving a 100% log recognition
rate. Compared with PBFT, the algorithm reduces consensus latency by 53.3%
while increasing throughput by 61.8%. The proposed algorithm is suitable for
consensus in untrusted consortium blockchains.

Keywords: consensus mechanisms; Byzantine fault tolerance; hash chain;
threshold encryption; “legacy” mechanism

0 Introduction

Since Nakamoto’ s 2008 paper “Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem” [?], blockchain technology has continuously evolved as the underlying core
technology of Bitcoin, giving rise to various types of blockchains. These include
public blockchains such as Ethereum [?], consortium blockchains such as Hyper-
ledger Fabric [?], and private blockchains such as Alibaba’ s Ant Blockchain [?].
Blockchain is a decentralized, tamper-proof, and traceable distributed database
system that integrates economics, P2P networks, consensus algorithms, asym-
metric encryption, and other technologies—representing a highly integrated prod-
uct of Internet technologies. As a distributed database system, the most criti-
cal challenge in blockchain is designing a consensus algorithm [?, ?] to ensure
data consistency among distributed nodes. Different blockchains employ differ-
ent consensus algorithms: Bitcoin uses Proof of Work (PoW) [?], consortium
blockchains generally adopt Practical Byzantine Fault Tolerance (PBFT) [?],
while private blockchains typically use classical consistency algorithms such as
Raft [?] and Paxos [?]. Among these, the Raft algorithm is widely applied
in current engineering fields as a distributed protocol with strong consistency,
high performance, and high reliability. Compared to Paxos, Raft is easier to
understand and implement, but its inability to resist Byzantine nodes limits its
application to private blockchains. Therefore, improving the Raft algorithm to
make it applicable to consortium blockchains and even public blockchains has
become a hot research topic.

The primary challenge in porting Raft to consortium blockchains lies in achiev-
ing Byzantine fault tolerance [?], which ensures that honest nodes can reach
consensus despite interference from malicious nodes, guaranteeing normal sys-
tem operation. PBFT reduces the computational complexity of Byzantine fault
tolerance protocols from exponential O(n(f+1)) to polynomial O(n?), making

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025

ChinaRxiv [$X]

Byzantine protocols practical for distributed systems and becoming the main-
stream consensus algorithm in current consortium blockchains. PBFT can tol-
erate at most (n-1)/3 faulty nodes, whereas the original Raft algorithm can
tolerate at most (n-1)/2 crash-fault nodes. Moreover, Raft’ s communication
complexity of O(n) is far less than PBFT’ s O(n?). Consequently, researchers
have attempted to improve Raft to combine the advantages of both protocols.

In 2016, Christopher Copeland and Hongxia Zhong from Stanford proposed Tan-
garoa [?], a Byzantine fault-tolerant Raft that incorporates PBFT characteris-
tics (including signed messages, malicious leader detection, and election verifi-
cation) to achieve Byzantine fault tolerance while maintaining implementability
and robustness. Reference [?] requires Follower nodes to sign votes to prevent
forgery and mandates client signatures on logs to prevent Byzantine Leaders
from forging logs, thereby enhancing Byzantine resistance to some extent. Ref-
erence [?] addresses the issues of vote splitting among multiple Candidate nodes
and voting inefficiency caused by increasing Follower nodes in Raft’ s leader elec-
tion by using a double-layer Kademlia protocol to establish K-buckets for stable
elections within Candidate sets. It also proposes a multi-Candidate parallel
log replication scheme to balance Leader node load and address inefficiency in
single-node log replication. Reference [?] adopts a two-level consensus mecha-
nism that groups all nodes in Raft, with each group electing leaders to form
a network committee. Raft consensus is used within groups, while PBFT is
employed for consensus among committee members. However, this approach
cannot effectively suppress Byzantine nodes within groups. Reference [?] trans-
forms the vote-pulling process into a threshold signature process to prevent blank
vote solicitation and introduces incremental hashing to ensure log immutability,
though this increases log size and has limitations. Moreover, it cannot prevent
Byzantine nodes from becoming Candidates and forcibly pulling votes to replace
the Leader.

In summary, while Raft can be optimized to resist Byzantine nodes, several
issues remain: (a) logs are easily tampered with and lack cryptographic protec-
tion; (b) vote casting lacks guarantees, as relying solely on term size for vote
allocation is insecure, and votes are susceptible to forgery. To address these
problems, we propose the RB-Raft (Resist Byzantine-Raft) algorithm with the
following main innovations:

a) To prevent Byzantine Leader nodes from forging and tampering with logs,
we implement a dynamic log verification mechanism based on hash chains,
achieving tamper-proof logs and verifiable integrity.

b) To address vote forgery and the exploitation of votes by Byzantine nodes
to replace the current Leader, we design a “legacy” mechanism based
on threshold encryption. When the Leader node has not crashed, Fol-
lower nodes will not cast votes unless they obtain the Leader’ s post-crash
“legacy,” which can only be acquired through threshold encryption. This
prevents abnormal replacement of the Leader by Byzantine nodes.

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025

1.1 Raft Workflow

The Raft algorithm defines three roles that nodes can assume, though a node
cannot hold multiple roles simultaneously: Leader, Follower, and Candidate.
Each role has distinct responsibilities: the Leader interacts with clients, syn-
chronizes log information to Follower nodes, and maintains connections with
Followers through HeartBeat messages; Followers respond to the Leader’ s log
synchronization requests and Candidate’ s vote requests, storing the Leader’
s log files locally—all nodes start as Followers; Candidates are responsible for
election voting, transitioning to Leader status through voting when the Leader
crashes. Raft begins by electing a Leader to manage log replication. The Leader
accepts transaction requests (logs) from clients, replicates them to other cluster
nodes, and notifies them to commit logs, ensuring all nodes remain synchro-
nized. When the Leader crashes, other nodes initiate an election to select a new
Leader. The Raft workflow is fundamentally determined by the Raft node state
machine, as illustrated in Figure 1.

Raft employs a heartbeat mechanism to trigger re-election when the Leader
crashes. Each Leader sends heartbeat signals to all cluster nodes to prove it
is still alive. When a Leader crashes and cannot send heartbeats, Follower
nodes that do not receive heartbeats within a specified timeout period switch
to Candidate status, send election requests to other nodes, and receive votes if
their logs are more up-to-date and their Term is larger; otherwise, nodes reject
the vote request. If a Candidate receives more than n/2 votes (where n is the
number of nodes), it becomes Leader and increments its Term. If a Leader
heartbeat is received during the election process, the node reverts to Follower
status.

1.2 Vote Forgery Problem

Similar to PBFT” s view concept, Raft uses a Term—a continuously increasing
number representing the period during which a Leader holds authority. Each
Term can produce only one Leader. Initially, all Followers have Term 1. When a
Follower’s logical clock expires without detecting a Leader heartbeat, it becomes
a Candidate and increments its Term to 2. The node with the larger Term
has higher priority and will not vote for a node with a smaller Term. If a
Leader discovers a Follower with a larger Term, it automatically becomes a
Follower. Essentially, each Term increment triggers a new election. During
normal operation, all nodes share the same Term, which persists until a node
fails. Requests with smaller Terms are rejected.

In Raft, the number of votes determines who becomes Leader because the node
with more votes typically detected the Leader’s crash earlier. Nodes uncondition-

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025

ChinaRxiv [$X]

ally vote for Candidates with larger Terms, and the algorithm selects Leaders
based on vote count to quickly restore normal cluster operation. However, since
a node’s role is determined by its state machine, Byzantine nodes can arbitrarily
change their identity. When the current Leader has not crashed, a Byzantine
node can become a Candidate, increase its Term, solicit votes from other nodes,
and replace the legitimate Leader upon obtaining sufficient votes.

1.3 Log Forgery Problem

Log replication is central to Raft, ensuring data consistency across the cluster.
Only the Leader accepts client requests and forwards log entries to Followers.
The Leader never deletes logs, and Followers only accept logs from the Leader.
The log structure is shown in Figure 2, where x and y represent commands.
Logs consist of an index and entries, with each entry containing a Term and
command. The committed range includes logs accepted and stored by more
than half of the nodes.

In Raft, each entry is uniquely identified by its index and Term, with all pre-
ceding entries being consistent. When a Leader crashes and a new Leader is
elected, all nodes synchronize to the new Leader’ s local log structure, keeping
only the portion with identical indexes and Terms—excess entries are deleted
and missing ones are synchronized to maintain consistency.

However, Raft Followers unconditionally accept and replicate the Leader’ s log
structure, even if their own logs are more recent. Since log messages are pack-
aged and disseminated by the Leader, a Byzantine Leader could tamper with
client-submitted logs. Therefore, ensuring log content cannot be forged or tam-
pered with is crucial for Byzantine resistance.

2.1 Hash Chain-Based Dynamic Log Verification Mecha-
nism

The concept of “hash chain” was first proposed by Lamport in 1981 in “Password
authentication with insecure communication” [?] to prevent password theft and
tampering during transmission. Hash chains use hash functions for multiple it-
erative encryptions, offering strong interference resistance while allowing servers
to verify entire ciphertext sequences by storing only the final hash. Since log
structures require immutable order and content, we use hash chains to link all
log blocks, enabling verification of all previous blocks by checking only the final
hash value.

Log Hash Chain Generation: When clients batch logs, they perform hash
chain operations on log blocks. The generation process is illustrated in Figure

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025

ChinaRxiv [$X]

3, where Log represents the log block body and Proof represents the verification
hash. The algorithm is described as follows:

Algorithm 1: Construct Log Hash Chain

Input: Log block sequence Log]]

Output: Log hash chain table ProofTable

1. Int i, j = 1 // i is the log loop index, j is the proof loop index
. while (i |= MaxLength(Log)) // Continue until hash chain covers all logs
. string file = getLogBlockToFile(Log][i]) // Retrieve log

. int proof // Define new proof for each iteration

if i == 1 // Check if first log block

proof = MD5toFile(file);

. ProofTable[j] = proof;

B R AT o o

9. break; // Enter next loop

10. end if

11. proof = MDb5toFile(file);

12. ProofTable[i] = HybridMD5(proof, ProofTable[i-1]);

13. j++, i++;

14. break;

15. end while

After generation, Follower nodes must verify received log blocks. In our ap-
proach, Follower nodes send verification requests to clients. When verification
is needed, a Follower computes the hash chain of its stored logs to obtain the
Proof of the last block, which represents all logs in the node. It then sends
the last log block index as a request parameter to the client, which returns the
corresponding Proof for comparison. If comparison fails, indicating inconsis-
tency, the node rolls back to the previous Proof and repeats the comparison
until a match is found. Incorrect Proof logs are deleted, and the node requests
synchronization of the corrupted logs from the client.

Dynamic Log Verification Mechanism: Log comparison failures may result
from: (1) the current Leader being Byzantine and modifying logs; (2) a previous
Byzantine Leader that went undetected; or (3) transmission anomalies such as
network fluctuations or I/O errors causing log loss or corruption. Since the cause
cannot be determined, the Leader node cannot be immediately rejected when
errors occur. Therefore, we design the following dynamic verification mechanism
for fault tolerance:

Each Follower sends detection requests to the client every T logs, returning
the Proof corresponding to its current local log index and performing iterative
hashing for verification. Leveraging the logarithmic function’s rapid convergence
near 1, we design the piecewise function shown in Equation (1): T _n represents
the T value in round n, and x acts as a credit value initialized to 1 with a step
size of 0.1.

When verification fails, detection frequency should increase (i.e., T should de-

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025

ChinaRxiv [$X]

crease). For example, with x initially 1, when an error is detected, x first
decreases by 0.1. When negative and rounded up, 2”x becomes a decreasing
function. When x < 1, T_n becomes smaller than T_ {n-1}, shortening the de-
tection span and increasing frequency. Conversely, when verification succeeds,
x increases by 0.1. When x > 1, 27x becomes an increasing function, causing
T_n to exceed T_{n-1}, reducing detection frequency to avoid overloading the
client. When T reaches 1, meaning the Follower verifies after each log synchro-
nization, the Leader is considered untrustworthy. When half of the Followers
reach this state, the client replaces the Leader and initiates a new election.

The decision to replace the Leader depends on three factors: T value, the number
of erroneous logs sent by the Leader, and cluster synchronization speed. While
the latter two cannot be controlled, the initial T value can be set to determine
the mechanism’ s strictness. The T value decreases at a rate of 2"x. A larger
T permits higher error rates, while a smaller T enforces stricter verification.

2.2 Threshold Encryption-Based “Legacy” Mechanism

A “legacy” traditionally refers to a public document specifying how to distribute
a deceased person’ s assets. In Raft, when the Leader crashes, Follower nodes
decide whether to cast votes based solely on Term size, which is determined by
whether they receive heartbeats from the Leader. This is easily exploited by
Byzantine nodes that can modify their Term to obtain votes and replace the
legitimate Leader.

To solve this problem, we design a “legacy” mechanism where a Leader gen-
erates a legacy (will) upon election, and only nodes obtaining this legacy can
solicit votes from Followers (asset distribution). The legacy content can only be
opened after the Leader crashes. To ensure security, we encrypt the legacy using
threshold encryption, proposed by Desmedt and Frankel [?]. Threshold cryp-
tography distributes key information among multiple users; decryption requires
more than the threshold number of key shares—fewer than the threshold cannot
decrypt. Only when most Follower nodes provide their key shares can the legacy
be decrypted and vote solicitation proceed. Whether to provide key shares de-
pends on receiving the Leader’ s heartbeat (verifying Leader liveness), forming
a complete verification loop that prevents Byzantine nodes from replacing the
Leader by modifying Terms.

Legacy Generation Phase: The Leader first uses KeyGen with security pa-
rameter A, user count n, and threshold t (typically set to half the cluster size) to
generate public key pk and private key shares sk = (sk_ {id1}, ---, sk_ {idn}). It
then encrypts the legacy message Lmsg using Enc(pk, Lmsg) to obtain cipher-
text L.

Key and Legacy Distribution Phase: The Leader broadcasts the legacy
(L, the encrypted ciphertext), each Follower’ s corresponding private key share

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025

ChinaRxiv [$X]

sk_{idj}, and the hash value HashLegacy of Lmsg.

Legacy Decryption Phase: When a Follower’ s heartbeat timer expires with-
out receiving a heartbeat, it obtains decryption shares L {id} from other nodes
to perform threshold decryption on L using Dec(sk_{id}, L). The node must
collect t shares and combine them using Combine(L_ {id1}, -+, L_ {idj}) to re-
cover Lmsg. When receiving threshold requests, nodes check if the time since
the last heartbeat exceeds M; only then will they provide their private key share.
If the Leader has not crashed, some nodes will have received heartbeats within
M time, preventing key share distribution. M is set to 2/3 of the Follower’ s
heartbeat timeout, as experiments show most nodes receive heartbeats within
the first 2/3 of the timeout period.

Vote Solicitation Phase: After obtaining the legacy content, the node be-
comes a Candidate and sends RequestVote messages to other Followers. Vote
recipients must verify the Candidate’s Lmsg by hashing it and comparing it with
the previously received HashLegacy from the Leader. Only if the verification
passes can normal voting proceed; otherwise, no vote is cast.

The legacy generation and decryption process is illustrated in Figure 4. The
subsequent normal vote solicitation phase was introduced in Section 2.1.

Algorithm 2: Legacy Generation

Input: Lmsg, n, t, A

Output: sk, pk, L

1. if node.status = Leader and flag = true then // Node becomes Leader
. pk, sk = KeyGen(A, n, t) // Generate key pair

. L = Enc(pk, Lmsg) // Encrypt legacy

. HashLegacy = h(Lmsg)

. Broadcast(pk, sk, L, HashLegacy) // Broadcast legacy

. end if

Algorithm 3: Threshold Share

Input: L, sk_{id}

Output: L_ {id}

1. if node.status = Follower and getLMessage then // Follower requested for
key share

2. if T > timeout then // If time exceeds timeout

3. return L_ {id} = Dec(sk_{id}, L) // Provide key share

4. else

5. return err

S O W N

Algorithm 4: Legacy Decryption

Input: L_{id1}, -, L_{idj}, L

Output: Lmsg

1. if node.status = Follower and heartbeat = false then // Follower received no
heartbeat

2. if count(L_ {id1}, -, L_{idj}) > t then

3. Lmsg = Combine(L_ {id1}, -, L_{idj}) // Decrypt legacy

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025

. node.status = Candidate
. return Limsg

else

. return err

N oo

Algorithm 5: Legacy Verification

Input: Lmsg, HashLegacy

Output: vote

1. if node.status = Follower and getLmsg then // Received vote request
. if HashLegacy == h(Lmsg) then

. Proceed to normal voting judgment

. if judgment passes then

. return vote

. return err

S O W N

3 Security Analysis

As a Byzantine-resistant Raft algorithm, RB-Raft must satisfy the following
security requirements: (1) Logs cannot be modified by the Leader—ensuring
consistency across all nodes is the most critical property of a consensus algo-
rithm; (2) The Leader must not be abnormally replaced through malicious vote
solicitation by Candidates.

3.1 Log Integrity

Ensuring log integrity requires: (1) Immutable log order; (2) Identical log blocks.
We define log block B_ i wherei > 0 andi 7, and hash sequence H_j where j
>0andj T, withi, j

Definition 2: h(Text) is a hash function (MD5 in this paper) that returns a
fixed-length hash value.

If a malicious Byzantine node modifies log block B_k to B’ _k, the resulting
hash sequence H’ _j is:

H/ = h(h(-h(h(B}), B}, 1),-), By)

Therefore, there must exist H J/ + H ;» indicating that tampering with any log
block in the sequence changes H_j. Upon detection, the corrupted log can be
synchronized from the client, ensuring log integrity and authenticity.

3.2 Node Election Security

In Raft, the Leader periodically sends AppendEntries heartbeats to Followers
to declare its liveness. When the Leader crashes, Followers that fail to receive

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025

ChinaRxiv [$X]

AppendEntries within their heartbeat timeout increment their Term and be-
come Candidates to elect a new Leader. In Byzantine environments, Candidate
vote solicitation lacks restrictions—malicious Candidates can replace the current
Leader even if it hasn’ t crashed (since their larger Term triggers vote casting).
To prevent this, our threshold signature-based “legacy mechanism” ensures that
Byzantine nodes must exceed threshold t (typically n/2) to obtain the legacy.
This guarantees that vote solicitation is justified by evidence of Leader failure,
ensuring election security.

3.3 Byzantine Resistance Capability Analysis

Raft is a private blockchain consensus algorithm that tolerates only crash faults,
not Byzantine nodes. RB-Raft, improved for consortium blockchains, permits
Byzantine nodes. We compare it with the mainstream PBFT algorithm.

Byzantine resistance depends on the maximum tolerable Byzantine nodes f in a
cluster of n nodes. In RB-Raft, following the majority principle, normal nodes
only need to outnumber Byzantine nodes by one, giving n = 2f + 1 and maxi-
mum tolerance f = (n - 1)/2. In PBFT, assuming faulty and Byzantine nodes
are distinct, there are f faulty nodes and f Byzantine nodes. After excluding
faulty nodes, normal nodes must outnumber Byzantine nodes by one, giving n
= 3f + 1 and maximum tolerance f = (n - 1)/3. Therefore, RB-Raft tolerates
(n - 1)/6 more Byzantine nodes than PBFT, demonstrating stronger Byzantine
resistance.

4 Simulation Experiments

We implemented RB-Raft in Go, simulated consensus processes with multiple
nodes on a single machine, and recorded throughput, consensus latency, and
Byzantine behavior data for comparative experiments. Results demonstrate
RB-Raft’ s Byzantine resistance, high throughput, and low latency advantages.

4.1 Byzantine Resistance Performance Testing

This section introduces controllable Byzantine nodes to test cluster resistance,
conducting experiments with different identities and behaviors.

1. Log Anti-Forgery Testing: We first test log anti-forgery capabilities. Due
to election randomness, we set the election timeout of controllable nodes much
smaller than normal nodes but longer than normal communication time, ensur-
ing they become Leaders first during cluster initialization. We then send 500
identical logs from the client to the Leader, which uses a pseudo-random gener-
ator to modify 10 logs with indices in [1, 500]. We monitor whether Followers
can correctly detect and roll back tampered logs. Experiments were conducted
on both Raft and RB-Raft clusters, with results shown in Table 1.

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025

ChinaRxiv [$X]

Table 1: Log Security Test Results | Tampered Log Indices |

Detected Tampered Log Indices | | | | | Raft:
383,11,484,103,133,211,371,368,75,320 | None detected | | RB-Raft: 327,33,451,440,30,179,98,117,254,413
| 327,33,451,440,30,179,98,117,254,413 (100% detection) |

Raft completely fails to detect tampered logs, synchronizing all logs from the
Leader—clearly unacceptable in Byzantine environments. RB-Raft accurately
detects all randomly tampered logs and performs rollbacks, achieving 100%
accuracy and demonstrating excellent resistance to log forgery.

We also test the dynamic verification mechanism’ s ability to quickly replace
malicious Leaders while reducing detection frequency for normal Leaders to
alleviate verification pressure. From a Follower’ s perspective, we test T-value
curves for both Byzantine Leaders (modifying logs) and normal Leaders, with
initial T = 8. Results are shown in Figure 5.

Figure 5: T-Value Change Curve Comparison

Normal Leaders increased T to 16 after round 11, reducing detection frequency
and alleviating node pressure. Byzantine Leaders caused T to rapidly decrease
to 1 by round 2 after log modification, reaching an untrusted state and enabling
replacement. This behavior stems from the piecewise function in Equation (1),
where x acts as a credit value affecting T through its increments and decrements.

2. Legacy Mechanism Testing: We again introduce controllable malicious
nodes and have them solicit votes while the Leader remains alive in both Raft
and RB-Raft clusters. After 20ms, we count received Follower votes, with results
in Tables 2 and 3.

Table 2: Legacy Mechanism Test with 100 Nodes | Algorithm | Votes
Received | Threshold Shares | Legacy Obtained? | | | | |
—— | | Raft | 51 | N/A | Yes | | RB-Raft | 0 | 15 (insufficient) | No |

Table 3: Legacy Mechanism Test with 500 Nodes | Algorithm | Votes
Received | Threshold Shares | Legacy Obtained? | | | | |
— | | Raft | 251 | N/A | Yes | | RB-Raft | 0 | 72 (insufficient) | No |

Raft cannot contain Byzantine behavior—nodes obtain majority votes even when
the Leader hasn’ t crashed, enabling replacement. RB-Raft receives zero votes
because threshold shares (15% and 14.4%) are below the threshold, preventing
legacy acquisition and thus blocking malicious vote solicitation.

4.2 Consensus Latency

Consensus latency, measured as the time from client command issuance to re-
ceiving the cluster’ s synchronization completion command, is a critical metric.
Figure 6 compares PBFT, Raft, and RB-Raft latencies.

Figure 6: Consensus Latency Comparison

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025

ChinaRxiv [$X]

PBFT exhibits higher latency due to its multi-phase communication complexity.
RB-Raft’ s latency is slightly higher than Raft because of added key distribution
and legacy mechanisms, but remains within acceptable ranges. Thus, RB-Raft
sacrifices some efficiency for Byzantine resistance.

4.3 Throughput Testing

Throughput, measured as TPS (Transactions Per Second), is a key blockchain
performance indicator primarily affected by consensus efficiency. Using the
EOSBenchTool and controlling variables with only the algorithm changing,
we compare Raft, PBFT, and RB-Raft throughputs, selecting 20 random test
groups shown in Figure 7.

Figure 7: Throughput Test Comparison

RB-Raft and Raft both achieve high throughput. RB-Raft’ s throughput is
39.1% lower than Raft but 61.8% higher than PBFT. Byzantine fault tolerance
requires mutual identity verification and increased communication, reducing
throughput relative to Raft but maintaining superiority over PBFT.

4.4 Algorithm Performance Comparison

Table 4: Algorithm Performance Comparison | Algorithm | Max Byzan-
tine Nodes (of n) | Avg. Latency (ms) | Avg. Throughput (TPS) | Communica-
tion Overhead | | | | | \ | | PBFT
| (0-1)/3] O@?) |- |- | | Raft | 0] 2(n-1) | - [- | | RB-Raft | (n-1)/2 | 3(n-1) |

RB-Raft tolerates the most Byzantine nodes ((n-1)/2), showing strongest re-
sistance. Its latency is lower than PBFT but slightly higher than Raft, and
throughput exceeds PBFT while remaining below Raft. Communication over-
head is O(n?) for PBFT, but only O(n) for both Raft and RB-Raft.

Table 5: Comparison with Byzantine Fault-Tolerant Raft Variants |
Algorithm | Max Byzantine Nodes | Leader Election Time | Log Encryption |
Vote Verification | | | | | | | | RB-Raft |
(n-1)/2 | Same as Raft | Yes | Yes | | Reference [13] | (n-1)/2 | Same as Raft
| Only vote signing | No | | Reference [14] | 4f,f,+2f,+f; (grouped) | Faster
(Kademlia) | No | No | | Reference [15] | Depends on PBFT | Same as PBFT |
No | No | | Reference [16] | (n-1)/2 | Same as Raft | Incremental hash | Threshold
signature |

RB-Raft matches reference [13] in Byzantine tolerance but provides more com-
prehensive improvements in log encryption and vote verification. Reference
[14] achieves faster election through Kademlia but lacks Byzantine resistance.
Reference [15]’ s grouping approach inherits PBFT" s fault tolerance without
significantly improving Raft. RB-Raft offers balanced enhancements in security
and performance.

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025

5 Conclusion

This paper proposes RB-Raft, a Byzantine-resistant Raft algorithm that solves
log tampering and Byzantine fault tolerance issues in uncertain environments.
We employ hash chains for log processing with dynamic verification to prevent
forgery while reducing verification overhead. Our threshold encryption-based
“legacy” mechanism uses heartbeat verification as proof to prevent Byzantine
nodes from replacing the Leader through vote solicitation, ensuring system con-
sistency. Experimental data show RB-Raft achieves 100% log recognition, 53.3%
lower consensus latency than PBFT, and 61.8% higher throughput. RB-Raft is
suitable for consensus in untrusted consortium blockchain environments requir-
ing high efficiency and security, such as vehicular and IoT networks. Future
work will focus on applying this algorithm to vehicular and IoT scenarios.

References

[1] Nakamoto S. Bitcoin: A peer to peer electronic cash system [EB/OL]. 2008.
https://bitcoin.org/bitcoin.pdf.

[2] Ferretti S, D’ Angelo G. On the ethereum Blockchain structure: A complex
networks theory perspective [J]. Concurrency and Computation: Practice and
Experience, 2020, 32(12): e5493.

[3] Wang G, Zhang S, Yu T, et al. A systematic overview of Blockchain research
[J]. Journal of Systems Science and Information, 2021, 9(3): 257-275.

[4] Li W, He M, Haiquan S. An overview of Blockchain technology: applications,
challenges and future trends [C]// 2021 IEEE 11th International Conference on
Electronics Information and Emergency Communication (ICEIEC). IEEE, 2021:
31-39.

[5] Arnold R, Longley D. continuity: a deterministic byzantine fault toler-
ant asynchronous consensus algorithm [J]. Computer Networks, 2021, 199(11):
108431-108443.

(6] 38, EER, 348, F. ETRRRESREEARLEAR [J]. HENRARR, 2022, 39(1):
1-8. (Deng Xiaohong, Wang Zhigiang, Li Juan, et al. Comparative research on
mainstream Blockchain consensus algorithms [J]. Application Research of Com-
puters, 2022, 39(1): 1-8.)

[7] Meneghetti A, Sala M, Taufer D. A survey on pow-based consensus [J]. An-
nals of Emerging Technologies in Computing (AETiIC), 2020, 4(1): 8-18.

[8] Li Y, Wang Z, Fan J, et al. An extensible consensus algorithm based on
PBFT [C]// 2019 International conference on cyber-enabled distributed com-
puting and knowledge discovery (CyberC). IEEE, 2019: 17-23.

[9] Ongaro D, Ousterhout J. In search of an understandable consensus algo-
rithm [C]// 2014 USENIX Annual Technical Conference (USENIX ATC 14).
2014: 305-319.

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025

ChinaRxiv [$X]

[10] Lamport L. Fast paxos [J]. Distributed computing, 2006, 19(2): 79-103.
[11] Lamport L, Shostak R, Pease M. The byzantine generals problem [M]//
Concurrency: the Works of Leslie Lamport. 2019: 203-226.

[12] Copeland C, Zhong H. Tangaroa: a byzantine fault tolerant raft [J]. Stan-
ford University. 2016.

[13] Tian S, Liu Y, Zhang Y, et al. A Byzantine Fault-Tolerant Raft algorithm
combined with schnorr signature [C]// 2021 15th International Conference on
Ubiquitous Information Management and Communication (IMCOM). IEEE,
2021: 1-5.

(14] EB8%, B, $RE, ¥ BTHREENIFFSESHELHREE [J]. tENRZE, 2021,
48(09): 317-323. (Wang Rihong, Zhou Hang, Xu Quanging, et al. Non-byzantine
fault tolerance consensus algorithm for consortium Blockchain [J]. Computer Sci-
ence, 2021, 48(09): 317-323.)

[15] #&48, =R, KR, ¥ RBFT: £F Raft SBENELESHESLRNG [J]. BEF
&, 2021, 42(03): 209-219. (Huang Dongyan, Li Lang, Chen Bin, et al. RBFT:
a new Byzantine fault-tolerant consensus mechanism based on Raft cluster [J].
Journal on Communications, 2021, 42(03): 209-219.)

[16] EB%E, ik, @AM, ¥ —MEs BLS SEWAFELESE Raft 8% [J]. 28
B2 2020, 38(01): 93-104. (Wang Rihong, Zhang Lifeng, Zhou Hang, et
al. A byzantine fault tolerance raft algorithm combines with BLS signature [J].
JOURNAL OF APPLIED SCIENCES—Electronics and Information Engineer-
ing, 2020, 38(01): 93-104.)

[17] Lamport L. Password authentication with insecure communication [J]. Com-
munications of the ACM, 1981, 24(11): 770-772.

[18] DESMEDT Y, FRANKEL Y. Threshold cryptosystems [C]. In: Advances
in Cryptology—CRYPTO’ 89. Springer Berlin Heidelberg, 1989: 307-315. [DOL:
10.1007/0-387-34805-0_ {28}]

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202205.00025 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00025

	RB-Raft: A Byzantine Fault-Tolerant Raft Consensus Algorithm Postprint
	Abstract
	Full Text
	Preamble
	0 Introduction
	1.1 Raft Workflow
	1.2 Vote Forgery Problem
	1.3 Log Forgery Problem
	2.1 Hash Chain-Based Dynamic Log Verification Mechanism
	2.2 Threshold Encryption-Based “Legacy” Mechanism
	3 Security Analysis
	3.1 Log Integrity
	3.2 Node Election Security
	3.3 Byzantine Resistance Capability Analysis

	4 Simulation Experiments
	4.1 Byzantine Resistance Performance Testing
	4.2 Consensus Latency
	4.3 Throughput Testing
	4.4 Algorithm Performance Comparison

	5 Conclusion
	References

