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Abstract
Abstract: With realizing the importance of ecosystem services to society, the ef-
forts to evaluate the ecosystem services have increased. As the largest tributary
of the Yellow River, the Weihe River has been endowed with many ecological
service functions. Among which, water yield can be a measure of local availabil-
ity of water and an index for evaluating the conservation function of the region.
This study aimed to explore the temporal and spatial variation of water yield
and its influencing factors in the Weihe River Basin (WRB), and provide basis
for formulating reasonable water resources utilization schemes. Based on the
InVEST (integrated valuation of ecosystem services and tradeoffs) model, this
study simulated the water yield in the WRB from 1985 to 2019, and discussed
the impacts of climatic factors and land use change on water yield by spatial
autocorrelation analysis and scenario analysis methods. The results showed that
there was a slight increasing trend in water yield in the WRB over the study
period with the increasing rate of 4.84 mm/10a and an average depth of 83.14
mm. The main water-producing areas were concentrated along the mainstream
of the Weihe River and in the southern basin. Changes in water yield were
comprehensively affected by climate and underlying surface factors. Precipita-
tion was the main factor affecting water yield, which was consistent with water
yield in time. And there existed significant spatial agglomeration between wa-
ter yield and precipitation. Land use had little impact on the amount of water
yield, but had an impact on its spatial distribution. Water yield was higher in
areas with wide distribution of construction land and grassland. Water yield of
different land use types were different. Unused land showed the largest water
yield capacity, whereas grassland and farmland contributed most to the total
water yield. The increasing water yield in the basin indicates an enhanced water
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supply service function of the ecosystem. These results are of great significance
to the water resources management of the WRB.
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Abstract
As awareness of the importance of ecosystem services to society has grown, ef-
forts to evaluate these services have intensified. The Weihe River, as the largest
tributary of the Yellow River, provides numerous ecological service functions,
among which water yield serves as both a measure of local water availability
and an index for evaluating regional conservation capacity. This study aimed
to explore the temporal and spatial variation of water yield and its influenc-
ing factors in the Weihe River Basin (WRB) to provide a basis for formulating
rational water resource utilization schemes. Using the InVEST (Integrated Val-
uation of Ecosystem Services and Tradeoffs) model, we simulated water yield in
the WRB from 1985 to 2019 and examined the impacts of climatic factors and
land use change through spatial autocorrelation analysis and scenario analysis.
The results revealed a slight increasing trend in water yield over the study pe-
riod, with a rate of 4.84 mm/10a and an average depth of 83.14 mm. Primary
water-producing areas were concentrated along the Weihe River mainstream
and in the southern basin. Water yield changes were comprehensively affected
by both climate and underlying surface factors. Precipitation was the dominant
factor affecting water yield, showing temporal consistency and significant spa-
tial agglomeration with water yield. Land use had minimal impact on the total
amount of water yield but influenced its spatial distribution, with higher water
yield observed in areas with extensive construction land and grassland. Water
yield varied among different land use types, with unused land exhibiting the
highest yield capacity, while grassland and farmland contributed most to total
water yield. The increasing water yield in the basin indicates enhanced water
supply service functions of the ecosystem. These findings hold great significance
for water resources management in the WRB.
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1 Introduction
Ecosystems directly or indirectly provide various services to human beings (Sym-
mank et al., 2020), which have been defined as“the benefits that humans derive
from nature”(Hassan and Scholes, 2005). As an attribute of ecosystems and
a key component of ecological processes, water yield can produce water-related
ecosystem services (Costanza et al., 1998). For example, it regulates surface
runoff during dry and flood seasons, reduces potential drought and flood risks,
and ensures drinking water sources (Zhang et al., 2010). In summary, water
yield is a resource supporting human life and development, including agriculture,
industry, human consumption, hydropower, fisheries, and recreational activities
(Natalia et al., 2015).

Over the last few decades, growth in the global human population, improve-
ments in living standards, changes in consumption patterns, and expansion of
irrigated agriculture have resulted in gradually increasing demand for water re-
sources (Ercin and Hoekstra, 2014; Gómez et al., 2014; Vorosmarty et al., 2000).
Consequently, many countries face escalating water scarcity challenges (Qiu,
2010; Liu and Wu, 2012; Mekonnen and Hoekstra, 2016). In China, high food
demand and regional economic development imbalances have led to increased
water resource utilization and uneven distribution (Mekonnen and Hoekstra,
2016).

Relevant studies have shown sharp decreases in measured runoff in major Chi-
nese river basins in recent decades (Xu et al., 2010). Changes to water resources
in the Yellow River have attracted particular attention due to this river’s impor-
tance in China (Qiang et al., 2009). In the late 1990s, the average runoff entering
the Yellow River was only 35.99$×10^{8}$ m3, a decrease of 62.06$×10^{8}$
m3 compared with the 1950s (Xia et al., 2007). This runoff further decreased
in the 21st century (Zhao et al., 2018).

The Weihe River is the largest tributary of the Yellow River and provides irri-
gation water for nearly 1$×10^{4}$ km2 of farmland in the Guanzhong Plain,
supporting nearly 61% of the population, 56% of cultivated land, and 81% of
gross domestic product (GDP) in Shaanxi Province, China (Liu and Hu, 2008).
However, the imbalance between water supply and demand in the Weihe River
Basin (WRB) has intensified due to rapid human development, water conser-
vancy construction, soil conservation projects, and other engineering measures
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(Ma et al., 2008; Cheng et al., 2019; Xu et al., 2021). According to the Shan-
nxi Water Resources Bulletin (2019), agriculture is the sector consuming the
most water in the basin (55.13$×10^{8}$ m3), including forestry, animal hus-
bandry, fishery, and livestock farming, accounting for 60% of total water con-
sumption. Industrial and municipal water consumption were 14.85$×10^{8}$
and 14.28$×10^{8}$ m3, accounting for 16.05% and 14.12% of total water con-
sumption, respectively. Water consumption in the basin will increase further
with economic development, imposing additional pressure on available water
resources (Zhang et al., 2016).

The WRB belongs to a typical transitional climate zone in the arid and semi-
arid area of northwestern China, where water resources are sensitive to climate
change (Chen et al., 2013). Global climate variability over the last few centuries
has been characterized by temperature rise and precipitation changes, which
have had destructive impacts on natural ecosystems and human economic and
social development (Milliman et al., 2008). Water yield has gradually become
an important factor restricting sustainable societal development. Therefore,
evaluating water yield in the WRB is of great significance.

Models serve as useful tools for evaluating water-related ecosystem service
functions and quantitatively estimating water yield under various conditions.
Available models include the Soil and Water Assessment Tool (SWAT) (Baker
and Miller, 2013; Gassman et al., 2017), Social Values for Ecosystem Services
(SolVES) (Greg et al., 2012; Sherrouse et al., 2011), Multi-scale Integrated
Models of Ecosystem Services (MIMES) (Boumans and Costanza, 2008), and
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) (Sharp
et al., 2020). Among these, the InVEST model has been most widely applied
due to its lower data requirements and ability to visualize simulation results
(Huang et al., 2013; Scordo et al., 2018; Cara et al., 2020). The InVEST
model integrates a series of ecosystem processes and can simulate the quality
and value of ecosystem services regulated by land use, physical environmental
factors, and socio-economic factors (Jiang et al., 2021). Numerous studies have
applied it to various regions worldwide, achieving good results in North Korea
(Kim and Jung, 2020), the Wildcat Creek Watershed in Indiana and Upper
Upatoi Creek Watershed in Georgia, United States (Dennedy-Frank et al.,
2016), and several regions of China (Yang et al., 2019; Yin et al., 2020; Li et al.,
2021). However, few attempts have applied the InVEST model to the WRB,
and those that did were unable to identify temporal and spatial variation
characteristics in water yield due to short study periods. Most of these studies
also only analyzed quantitative relationships between water yield and driving
factors (Yang et al., 2019) without examining their spatial correlations.

The present study used the InVEST model to: (1) simulate water yield in the
WRB from 1980 to 2019 and analyze its spatiotemporal variation; (2) identify
the main factors regulating water yield under different climate conditions and
land use types; and (3) discuss the mechanisms regulating water yield.
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2.1 Study Area
The Weihe River originates from Niaoshu Mountain in Weiyuan County, Gansu
Province, and flows through the Ningxia Hui Autonomous Region and Shaanxi
Province from west to east, covering 10 regions and 84 counties. The Weihe
River merges into the Yellow River at Tongguan County, Shaanxi Province,
China. As the largest tributary of the Yellow River, the Weihe River has a total
length of 818 km and drains an area of 13.5$×10^{4}$ km2. The WRB is located
in the southeastern Loess Plateau, China (33°42�−37°20�N, 106°18�−110°37�E).
The terrain of the WRB gradually decreases from west to east, with an elevation
difference of over 3000 m a.s.l. (Fig. 1). The climate of the WRB is cold and
dry in winter and hot and rainy in summer, with an annual average temperature
of 7.8℃−13.5℃ and average annual precipitation of 572 mm.

Fig. 1. Elevation, and hydrological and meteorological stations in the Weihe
River Basin, China

2.2 Data Sources
The model requires meteorological, soil, and land use/land cover (LULC) data.
Raster input data were derived directly or indirectly from these sources. Table
1 summarizes the relevant basic data used in the present study.

Table 1. Relevant basic data sources and description

Data description Data source
Climate data
Daily precipitation China Meteorological Science

Data Sharing Service Network
(http://www.cma.gov.cn/)

Daily maximum temperature
Daily minimum temperature
Daily mean temperature
Soil data
Soil texture (clay, sand, and silt) Harmonized World Soil

Database (HWSD)
Soil organic carbon
Soil depth
Land use/land cover
Land use/land cover during 1980–2020 at 1
km spatial resolution

Resource and Environmental
Science Data Center, Chinese
Academy of Sciences
(http://www.resdc.cn)

Digital elevation model (DEM)
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Data description Data source
Elevation of the Weihe River Basin at 30 m
spatial resolution

Geospatial Data Cloud
Platform of Chinese Academy
of Sciences
(https://www.gscloud.cn/)

Streamflow data
Runoff data
Measured runoff of Huaxian and Zhuangtou
hydrological stations from 1980 to 2019

Yellow River Hydrological
Yearbook

Restored runoff of Huaxian and Zhuangtou
hydrological stations from 1980 to 1984

Runoff data of the Yellow River
Basin

2.3.1 Introduction of the InVEST Model
The InVEST model calculates water yield using the Budyko curve (Budyko,
1974) and annual average precipitation (P). Water yield simulated by the model
represents water outflow from the landscape, including surface flow, under-
ground flow, and base flow (Sharp et al., 2020). The model assumes that water
yield from a pixel reaches the specified outlet through one of several paths
mentioned above (Zhang et al., 2004; Donohue et al., 2012). The formula is
expressed as:

𝑌 (𝑥) = 𝑃(𝑥) × (1 − 𝐴𝐸𝑇 (𝑥)
𝑃(𝑥) )

where 𝐴𝐸𝑇 (𝑥) is the annual actual evapotranspiration (mm) and 𝑃(𝑥) is the
precipitation for a pixel (mm).

For vegetation-covered land, 𝐴𝐸𝑇 (𝑥) was calculated (Fu, 1981; Zhang et al.,
2004):

𝐴𝐸𝑇 (𝑥)
𝑃(𝑥) = ⎡⎢

⎣
1 + 𝑃𝐸𝑇 (𝑥)

𝑃(𝑥) − (1 + (𝑃𝐸𝑇 (𝑥)
𝑃(𝑥) )

𝜔(𝑥)
)

1/𝜔(𝑥)
⎤⎥
⎦

where 𝑃𝐸𝑇 (𝑥) is the potential evapotranspiration (mm) and 𝜔(𝑥) is a nonphys-
ical parameter characterizing regional climate and soil conditions, ranging from
1.25 to 5.00 (Yang et al., 2008; Donohue et al., 2012). The minimum value can
be selected when the root depth is 0 cm (bare soil), and 𝜔(𝑥) is calculated as:

𝜔(𝑥) = 𝑍 × 𝐴𝑊𝐶(𝑥)
𝑃(𝑥) + 1.25
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where 𝑍 is a local parameter related to precipitation and other hydrogeological
features, with possible values of 1 to 30, and 𝐴𝑊𝐶(𝑥) is the plant available
water capacity (mm), calculated as:

𝐴𝑊𝐶(𝑥) = min(rest layer depth, root depth) × 𝑃𝐴𝑊𝐶

where 𝑃𝐴𝑊𝐶 is the plant available water capacity (Fig. 2a) and rest layer
depth is the depth of the root restricting layer, often expressed as the depth at
which 95% of root biomass of the plant occurs (Fig. 2b).

Fig. 2. Spatial distributions of biophysical characteristics of the Weihe River
Basin, China. (a) PAWC, plant available water capacity; (b) soil depth; (c)
land use/land cover (LULC) in 2020.

2.3.2 Data Preparation
Model inputs included rasterized annual P, average annual ET0, LULC, depth
of the root restricting layer, PAWC, watershed and sub-watershed layers, a bio-
physical table, and an appropriate Z parameter (Sharp et al., 2020). All raster
data were unified into the Krasovsky_{1940}_{Albers} coordinate system be-
fore input. The processing methods are described below.

(1) P and ET0
Annual P and ET0 data were obtained by aggregating daily precipitation
and monthly ET0 data within each year, followed by Kriging interpolation of
data from 22 meteorological stations around the WRB to provide values for
each raster cell. ET0 was calculated using the modified Hargreaves equation
(Droogers and Allen, 2002):

𝐸𝑇0 = 0.0013 × 0.408 × 𝑅𝐴 × (𝑇𝑎𝑣 + 17) × (𝑇 𝐷 − 0.0123)0.76

where 𝑇𝑎𝑣 is the average of mean 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 for each month (℃), 𝑇 𝐷 is
the difference between mean 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 for each month (℃), and 𝑅𝐴 is
extraterrestrial radiation (MJ/(m2・d)). Radiation data were obtained from
the United Nations Food and Agriculture Organization (FAO) Irrigation and
Drainage Paper (Fao et al., 1982).

(2) PAWC
PAWC (Fig. 2a) is the field capacity minus wilting point, ranging from 0 to 1,
calculated as (Zhou et al., 2005):

𝑃𝐴𝑊𝐶 = 54.509−0.132×sand−0.003×(sand)2−0.055×silt−0.006×(silt)2−0.738×clay−0.007×(clay)2+2.688×𝑂𝑀−0.501×(𝑂𝑀)2
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where sand, silt, clay, and organic matter (OM) are expressed as percentages
(%).

(3) LULC
ArcGIS 10.2 was used to reclassify 25 secondary land use types into 6 primary
types (Fig. 2c): farmland, forestland, grassland, water body, construction land,
and unused land.

(4) Watershed and sub-watershed
In ArcGIS 10.2, the hydrology tool was used to divide the WRB into 377 sub-
watersheds by setting the threshold flow accumulation (TFA) to 4$×10^{5}$
m3.

(5) Biophysical table
The biophysical table (Table 2) contains information for each LULC grid re-
quired by the model (Sharp et al., 2020). The 𝐿𝑈𝐿𝐶𝑣𝑒𝑔 parameter determines
which AET calculation formula to use. LULC with vegetation cover is assigned
as 1, and others as 0. 𝐾𝑐 is the evapotranspiration coefficient of vegetation,
based on alfalfa, used to adjust ET0 to obtain PET, with a range from 0.0 to
1.5. Root depth (Fig. 2b) is the maximum depth that a plant root system can
extend, often expressed as the depth at which 95% of root biomass occurs (Allen
et al., 2006). Data in Table 2 were obtained from relevant literature (Yang et
al., 2020) and values recommended by the FAO and InVEST model.

Table 2. Biophysical table for the InVEST model

Land use type 𝐿𝑈𝐿𝐶𝑣𝑒𝑔 Root depth (m) 𝐾𝑐

Farmland 1 0.5 1.0
Forestland 1 3.0 1.0
Grassland 1 0.5 1.0
Water body 0 1.0 1.0
Construction land 0 0.1 0.2
Unused land 0 0.1 0.2

Note: 𝐿𝑈𝐿𝐶𝑣𝑒𝑔, land use/land cover with vegetation cover; 𝐾𝑐, evapotranspira-
tion coefficient.

2.3.3 Model Calibration
The InVEST model simulates natural runoff of a basin, with simulation accu-
racy largely dependent on parameter 𝑍 (Eq. 3). The present study validated
parameter 𝑍 by comparing simulated water yield data with natural runoff data
at Huaxian and Zhuangtou hydrological stations in the WRB from 1980 to 1984.
Simulation accuracy was assessed using the correlation coefficient (𝑅2), Nash
coefficient (NSE), and relative error (𝑅𝑒) (Rientjes et al., 2011). The study set
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the 𝑍 value range for the study area to 3.6–9.0, consistent with relevant studies
(Wu et al., 2018; Yue et al., 2021). The model was initiated with 𝑍 = 3.6, which
was gradually increased by 0.2 until maximized values of 𝑅2, NSE, and 𝑅𝑒 were
obtained. After nearly a thousand tests, optimal values of 𝑅𝑒 = 2%, 𝑅2 = 0.98,
and NSE = 0.63 were obtained at an input 𝑍 value of 8.8.

2.4 Trend Analysis
The Mann-Kendall (M-K) test is a non-parametric method that does not require
samples to follow a specific distribution and is not affected by outliers (Mann,
1945; Kendall, 1975). The M-K test is commonly used to identify trends in pre-
cipitation and drought under climate change influence (Sheng and Paul, 2004).
This study applied the M-K test to detect trends in water yield and climate
factors over time. It should be noted that the statistic 𝑍 value from the M-K
test differs from the seasonal parameter 𝑍 required as input into the InVEST
model.

2.5.1 Global Spatial Autocorrelation
The present study used Moran’s I to express global spatial autocorrelation, an-
alyzing overall correlations between spatial units and assessing whether spatial
agglomeration existed. Moran’s I ranges from −1 to 1. Values of 𝐼 > 0 indicate
that spatial attribute values have a spatial agglomeration effect with surround-
ing attribute values, with values closer to 1 indicating more significant spatial
agglomeration. Values of 𝐼 < 0 indicate spatial differentiation effects, with
values closer to −1 indicating more significant spatial differences, while 𝐼 = 0
indicates no spatial autocorrelation (Tu and Xia, 2008). The spatial weight ma-
trix was set as a simple binary adjacency matrix. Moran’s I is calculated as
follows (Moran, 1950):

𝐼 =
𝑛 ∑𝑛

𝑖=1 ∑𝑛
𝑗=1 𝑊𝑖𝑗(𝑥𝑖 − ̄𝑥)(𝑥𝑗 − ̄𝑥)

∑𝑛
𝑖=1 ∑𝑛

𝑗=1 𝑊𝑖𝑗 ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2

where 𝑊𝑖𝑗 is the spatial weight matrix of cells 𝑖 and 𝑗; 𝑥𝑖 and 𝑥𝑗 are measured
values of cells 𝑥 and 𝑦, respectively; ̄𝑥 is the average measured value of all cells;
and 𝑛 is the number of all evaluation units.

2.5.2 Bivariate Local Moran’s I
We used the Local Indicators of Spatial Association (LISA) method to assess
the strength of correlation between attributes of each spatial unit and adjacent
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units according to local Moran’s I (Harries, 2006). Here, 𝐼𝑖 > 0 indicates that
spatial units are highly correlated, including high-high and low-low types; 𝐼𝑖 < 0
indicates large differences in spatial units, including high-low and low-high types.
The formula is as follows (Tepanosyan et al., 2019):

𝐼𝑖 =
(𝑥𝑖 − ̄𝑥) ∑𝑛

𝑗=1 𝑊𝑖𝑗(𝑥𝑗 − ̄𝑥)
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2

This method can be used to study the spatial agglomeration effect of meteorolog-
ical factors and water yield. High-high and low-low types refer to proportional
relationships between meteorological factors and water yield, whereas high-low
and low-high types indicate inverse correlations.

3.1.1 Temporal Variation
Precipitation (P), actual evapotranspiration (AET), potential evapotranspira-
tion (PET), and simulated water yield in the WRB from 1985 to 2019 are
shown in Figure 3. The annual average P over the study period was 542.09
mm, with no significant temporal trend (𝑍 = 1.28, 𝑃 > 0.05). Minimum and
maximum P values of 364.26 mm and 766.12 mm occurred in 1997 and 2003,
respectively. The average PET was 695.55 mm, showing no significant trend
(𝑍 = 0.43, 𝑃 > 0.05). The average AET was 458.81 mm, showing a significant
increasing trend (𝑍 = 1.93, 𝑃 < 0.05), suggesting that more than 80.00% of
precipitation in the WRB returned to the atmosphere through evaporation an-
nually. Water yield in the WRB fluctuated and correlated with precipitation,
with maximum and minimum values of 261.62 mm and 6.08 mm in 2003 and
1997, respectively. The annual average water yield was 83.14 mm, accounting
for approximately 15.33% of annual precipitation. There was an insignificantly
increasing trend in water yield over the entire study period (𝑍 = 0.94, 𝑃 > 0.05)
at a rate of 4.84 mm/10a, with a turning point occurring in 2003.

Fig. 3. Annual precipitation, actual evapotranspiration (AET), potential evap-
otranspiration (PET) and water yield of the Weihe River Basin, China during
1985−2019

3.1.2 Spatial Variation
As shown in Figure 4, the present study examined spatial distributions of simu-
lated annual water yield. In 1985, overall basin water yield was high, with main
water-producing areas located in the Beiluo River Basin, the northern Jinghe
River Basin, and the upper reaches of the Weihe River. From 2005 to 2015, an-
nual water yield decreased from east to west and from south to north, with main
water-producing areas including the Weihe River mainstream and the southern
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Qinling Mountains. Low water yield areas were located in the Jinghe River and
Beiluo River basins. Global Moran’s I values obtained by the Geoda model
ranged from 0.38 to 0.68, indicating that water yield had a significant spatial
agglomeration effect.

Fig. 4. Spatial distribution of water yield in the Weihe River Basin, China. (a)
1985; (b) 2005; (c) 2015; (d) average.

3.2 Response of Water Yield to P and LULC
According to the water yield model principle, P and AET are the main factors
affecting simulation results, with AET largely influenced by LULC. This study
designed two scenarios to explore changes in water yield under different LULC
and P conditions (Table 3). Scenario 1 examined water yield changes under
different P intensities, with 1997, 2003, and 2010 representing dry, wet, and
average years, respectively. Scenario 2 examined water yield changes under
different LULC conditions.

Table 3. P and LULC under different scenarios

Index Scenario 1 Scenario 2
P 1997, 2003, 2010 2010
LULC 2010 1990, 2010, 2019

Note: P, precipitation; LULC, land use/land cover.

3.2.1 Change in Water Yield under Scenario 1

Scenario 1 results showed that basin water yield changed significantly under
different P conditions (Fig. 5). As P increased from less to more, water yield
changed accordingly. Maximum water yield during a wet year (675.40 mm)
exceeded that during a dry year (133.53 mm) by a factor of 5, and exceeded
that during a normal year (365.20 mm) by a factor of 2. Average water yield
varied greatly with changing P in 1997, 2003, and 2010, with values of 6.36,
264.63, and 72.96 mm, respectively. The spatial distribution of water yield was
consistent with that of P, which was concentrated in southern and eastern areas,
corresponding with the main water-producing areas of the WRB.

Fig. 5. Spatial distributions of annual precipitation (P, a–c) and water yield
(d–f) in the Weihe River Basin, China under scenario 1
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3.2.2 Spatial Correlation between Water Yield and P

The bivariate Moran’s I of P and water yield obtained by the Geoda model
ranged from 0.30 to 0.80, showing a positive correlation (𝑃 > 0.05). LISA ag-
glomeration maps of P and water yield showed aggregations mainly of high-high
and low-low correlation relationships (Fig. 6). Areas with high-high relation-
ships were concentrated in the southern and eastern WRB, while areas with
low-low relationships were concentrated in the northern Jinghe River and Beiluo
River basins.

Fig. 6. Spatial distribution of the relationship between annual precipitation and
water yield in the Weihe River Basin, China in 1997 (a), 2003 (b) and 2007 (c)

3.2.3 Change in Water Yield under Scenario 2

Scenario 2 results showed that LULC had no significant effect on water yield
but impacted its spatial distribution (Fig. 7). There were minimal differences
between maximum and average water yield in the basin across 1990, 2010, and
2019, with maximum values of 468.10, 466.88, and 474.54 mm, respectively, and
average values of 140.07, 140.9, and 142.85 mm, respectively. Land use type
distribution had some impact on the spatial characteristics of water yield. As
shown in Figure 7, areas of higher water yield correlated with grassland and
farmland, such as the northern Jinghe River and upper reaches of the Weihe
River.

Fig. 7. Spatial distributions of LULC (land use/land cover) types (a–c) and
water yield (d–f) in the Weihe River Basin, China under scenario 2

3.2.4 Water Yield under Different LULC

ArcGIS 10.2 spatial analysis was used to identify zones of water yield for each
land use type under scenario 2. As shown in Figure 8, water yield fluctuations
differed among LULC types. Water yields from farmland, forestland, grassland,
water body, and construction land continued to increase over the study period,
whereas unused land first increased then decreased. The maximum and mini-
mum average water yields were obtained for unused land and water body, at
162.40 and 131.58 mm, respectively.

Fig. 8. Water yield of different LULC (land use/land cover) types in the Weihe
River Basin, China

LULC in the WRB changed significantly during the study period. As shown
in Table 4, farmland, grassland, and construction land areas changed substan-
tially. Farmland area decreased by 4146.83 km2, while water yield increased
by 20.00 mm. Forestland, grassland, and construction land areas increased by
498.42, 1624.8, and 1791.96 km2, respectively, while water yield increased by
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11.34, 24.31, and 12.53 mm, respectively. Unused land area decreased by 9.71
km2, while water yield decreased by 17.44 mm. These results indicated that
forestland, grassland, unused land, and water body areas had positive correla-
tions with water yield, whereas farmland had a negative correlation. However,
grassland and farmland were the dominant land use types in the WRB, account-
ing for over 80% of the basin’s area in 2020. Therefore, water yield was larger
in grassland and agricultural land.

Table 4. Changes of LULC (land use/land cover) types of the Weihe
River Basin, China from 1990 to 2020

Index
Farmland
(km2)

Forestland
(km2)

Grassland
(km2)

Construction
(km2)

Unused
(km2)

Water
(km2)

Total
(km2)

1990 58,723.94 21,432.95 49,592.64 2,111.34 1,100.00 1,000.00 133,960.87
2020 54,577.11 21,931.37 51,217.44 3,903.30 1,090.29 1,441.36 134,160.87
Change-

4,146.83
+498.42 +1,624.80 +1,791.96 -9.71 +441.36 +200.00

4.1 Effects of Various Factors on Water Yield
Combined examination of trend analysis, spatial analysis, and scenario analysis
results showed that precipitation was the most direct factor affecting regional
water yield, consistent with relevant research (Jiang et al., 2016; Li et al., 2021).
Regarding AET, it directly participates in the hydrological cycle process (Lewis
and Allen, 2017). With emerging challenges from global climate change, AET
has gradually increased in recent decades (Fig. 3). This increase may accelerate
the hydrological cycle and affect temporal and spatial distributions of hydro-
logical elements (Gusev et al., 2019; Cheng and Li, 2020). AET is affected not
only by meteorological factors (temperature, wind speed, relative humidity, and
sunshine hours) but also by land use conditions (Lang et al., 2017).

Water yield varies among different land use types due to differences in soil water
content, evapotranspiration capacity, litter water holding capacity, and canopy
interception. Unused land had the largest water yield because a greater pro-
portion of precipitation directly penetrated the ground or formed surface runoff
(Lang et al., 2017). Increased construction land in the basin has not only in-
creased water resource demand but also changed underlying surface conditions.
Construction practices transform the ground surface into an impermeable layer
by removing vegetation, leading to decreased evapotranspiration and higher
water yield capacity (Sterling et al., 2013; Anache et al., 2017). Water yield
capacity of water bodies is weak due to strong surface evaporation. Forestland
generated relatively lower water yield because of high transpiration and water
interception by deep root systems, litter layers, and dense canopies (Vose et al.,
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2011; Li et al., 2021). Grassland and farmland effects on precipitation redistribu-
tion were similar to forestland, but their regulation effects were relatively weak
due to lower canopy coverage and shallower root depth. Additionally, the wide
distribution of these two land types resulted in their dominant contributions to
water yield. Previous studies have shown that grassland was the optimal land
use pattern for maintaining hydrology (Li et al., 2021). Although considerable
land use changes occurred in the basin during the study period, these had no
significant effect on water yield, likely because mutual transformations among
various land types offset any dominant trend in water yield change due to land
use changes (Nie et al., 2011).

Land use is the product of human activities, emphasizing human use of natural
lands (Lambin et al., 2003; Goldewijk and Ramankutty, 2004; Liu et al., 2013),
which can affect ecosystem processes and components. A series of soil and wa-
ter conservation projects have been conducted in the basin since the 1950s (Mu
et al., 2007), including terrace and sediment dam construction, afforestation,
plant restoration, pasture improvement, and returning farmland to forestland
or grassland. These projects have significantly improved the ecological environ-
ment and water supply functions of the basin (Wang et al., 2017; He et al.,
2021). The water balance principle indicates that the difference between water
yield and measured runoff represents water consumed by agricultural, urban,
and industrial activities, plus changes in reservoir storage (Li et al., 2020). The
current study calculated WRB runoff as the sum of measured runoff at Huaxian
and Zhuangtou hydrological stations (Fig. 1) over years. Results showed an
upward trend in annual water consumption (𝑍 = 1.56, 𝑃 < 0.01), which has
increased pressure on water resources.

4.2 Limitations of the InVEST Model
The InVEST model has been broadly used to evaluate ecosystem service func-
tions and has achieved good results (Lang et al., 2017; Kim and Jung, 2020;
Daneshi et al., 2021). However, some uncertainties exist related to model setup
and simplified algorithms (Sharp et al., 2020). For example, the model does not
consider complex terrain factors and cannot rigorously describe the water bal-
ance process under complex underlying surface conditions (Jiang et al., 2016).
Topography affects climate by changing regional hydrothermal conditions, which
influence vegetation growth and structure, litter accumulation, and soil physico-
chemical properties, consequently affecting water yield (Jia et al., 2014; Maurya
et al., 2016).

Additionally, the present study obtained root depth and soil data from the global
soil database. The low spatial resolution of these data affected model simulation
accuracy to some extent. Moreover, the seasonal parameter 𝑍 value used in this
study differed slightly from those applied in similar watersheds, indicating that
differences in natural conditions can lead to large variations in 𝑍, even between

chinarxiv.org/items/chinaxiv-202205.00019 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00019


similar basins. Therefore, verifying the 𝑍 value is important before applying
the InVEST model.

5 Conclusions
The Weihe River is the largest tributary of the Yellow River and holds strategic
significance for ecological environment protection and water resources manage-
ment in Northwest China. The present study applied the InVEST model to
quantitatively evaluate water yield in the WRB from 1985 to 2019 and explored
the response of water yield to climate factors and land use types.

The average annual water yield was 83.14 mm, with a slight increasing trend
over the study period. The Weihe River mainstream and southern region were
the primary water-producing areas. Water yield was comprehensively affected
by climate and land use factors. Precipitation was the most direct influencing
factor, with its spatial distribution corresponding to that of water yield. In
contrast, land use did not significantly affect water yield amount, though varia-
tion existed among different land use types. Unused land had the highest water
yield capacity, but farmland and grassland contributed most to total basin water
yield due to their extensive distribution.

These results can serve as a reference for formulating reasonable and efficient
water resources allocation schemes. Additionally, the successful InVEST model
application in this study can guide its use in related research under similar
natural conditions.
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