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Abstract
In self-service baggage check-in and sorting for civil aviation, automatically de-
tecting whether pallets are added to self-dropped baggage is an essential func-
tion; however, the pallets are largely obscured by the embedded baggage, which
poses a challenging problem. To address this issue, a fast detection method for
embedded baggage pallets based on multi-layer skeleton model registration is
proposed. To describe the characteristics of the pallet, a point cloud skeleton
model and a point-line model are constructed from the 3D point cloud model.
During online detection, the designed banded feature description and extraction
method is used to capture the border point cloud, and the proposed point-line
potential energy iterative algorithm is employed to register the point-line model
with the horizontal border points. Subsequently, point cloud iterative closest
point registration based on random sample consensus is utilized to achieve ac-
curate registration and pose estimation. Consequently, the possibility of the
pallet’s existence is determined. The effectiveness of the algorithm is verified
through various actual pallet detection experiments. A variety of typical com-
parative experimental results demonstrate that when up to 70% of the pallet
point cloud is missing, the algorithm can still maintain 94% accuracy, and its
speed exceeds that of typical algorithms by more than six times.
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Abstract
In civil aviation baggage consignment and sorting, automatically detecting
whether a pallet is present beneath passenger baggage is a necessary function.
However, pallets are largely obscured by the baggage placed on top, making
pallet detection a challenging problem. To address this issue, we propose a fast
detection algorithm for embedded baggage pallets based on multi-layer skeleton
model registration. To describe the characteristics of pallets, we construct both
point cloud skeleton models and point-line models from 3D point cloud data.
During online detection, we first employ our designed feature description and
banded point extraction method to capture border point clouds, then use the
proposed point-line potential energy adaptive iterative algorithm to register
the point-line model with the horizontal border point set. Next, point cloud
iterative nearest point registration based on random sampling consistency is
used to achieve accurate registration and pose calculation, thereby determining
the likelihood of pallet existence. The effectiveness of the algorithm is verified
through various actual pallet detection experiments. Comparative experimental
results demonstrate that the algorithm maintains 94% accuracy even when up
to 70% of the pallet point cloud is missing, while achieving speeds more than
six times faster than typical algorithms.

Keywords: 3D object detection, baggage pallet, multi-layer skeleton model,
point clouds registration

1. Introduction
The self-service baggage check-in system frees airport attendants from heavy-
duty service tasks and significantly improves the efficiency and quality of airport
operations. The system must automatically detect the shape of baggage deliv-
ered by passengers, including the number, size, shape, and type of items, as
well as whether soft baggage is placed on pallets and the number of baggage
pieces on each pallet. Automatic detection of whether passenger-delivered soft
baggage is equipped with pallets is key to ensuring the safety of both passenger
baggage and the baggage sorting system.

Detection of objects such as baggage pallets typically uses industrial cameras
or LiDAR to obtain surface images or three-dimensional point clouds, with
object recognition performed by extracting and matching color, texture, and
structural characteristics [1]. In the open baggage drop area, the reliability of
pallet detection methods based on image analysis is reduced due to complex
ambient lighting, interference from luggage surface textures, and uncertainty in
drop positions. In contrast, object detection methods based on point clouds
are less affected by environmental factors. Therefore, using a three-dimensional
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(3D) object detection method based on point cloud analysis is a more reliable
solution for pallet detection in embedded baggage scenarios.

3D object detection based on point clouds generally first extracts local or global
features of the object from the point cloud to match scene features, then judges
whether the object exists in the scene according to matching evaluation results.
The precise pose of the target is estimated through point cloud registration [2,
3, 4] or pose clustering [5, 6, 7]. However, air baggage pallets are embedded
and occluded by baggage during self-service shipment, with only the border or
partial border exposed, making it difficult for traditional 3D object detection
methods to work effectively.

To address this issue, this paper investigates a 3D detection method for embed-
ded occluded objects with partially missing point clouds. Based on the known
structure of the pallet and considering its rectangular characteristics and hori-
zontal upward placement orientation, we design a specific three-layer skeleton
model and adopt a step-by-step refinement registration approach to achieve fast
and accurate detection of baggage pallets. The main contributions of this study
are:

1. The established multi-layer skeleton model can effectively describe the
morphological characteristics of baggage pallets.

2. The designed banded point cloud description and extraction method can
effectively extract banded borders from the target scene, enabling separa-
tion of pallets and baggage.

3. The proposed point-line model registration algorithm based on iterative
gravitational potential energy can map and match horizontal point sets
to rectangles, completing registration between the pallet point-line model
and horizontal banded point sets.

4. The proposed point cloud registration algorithm based on multi-layer skele-
ton model enables fast and accurate detection of baggage pallets under
conditions of large-area missing point clouds.

The main structure of this paper is as follows: Section 2 briefly introduces
related work. Section 3 presents the principle of the multi-layer skeleton model
registration method. Section 4 provides analysis and experiments. Section 5
concludes the work of this paper.

2. Related Work
Many different methods have been proposed for 3D object detection and recogni-
tion based on point clouds [8, 9], including 3D feature descriptor-based methods,
graph matching-based methods, and machine learning-based methods. Typi-
cally, 3D feature descriptor-based methods extract local keypoint neighborhood
features or global statistical features of objects and scenes, completing object
discrimination through feature matching [10, 11, 12, 13]. Graph matching-based
methods [14] decompose point cloud data into basic shapes, use adjacency rela-
tionships between shapes to represent three-dimensional objects, and obtain ob-
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ject positions through matching. Machine learning-based methods [15] use sam-
ples to train classifiers to complete object detection and classification. Among
these, 3D object detection methods based on deep learning [16, 17], through
large numbers of labeled samples and training of multi-layer deep neural net-
works, can achieve good generalization performance and high detection accuracy,
such as PointNet [18] and LiDAR R-CNN [19].

However, when objects are occluded, the accuracy of traditional methods de-
creases significantly. Registration with local descriptors such as Fast Point
Feature Histograms (FPFH) [10] and Signature of Histogram of Orientation
(SHOT) [11] can overcome the influence of small occlusion and background in-
terference. Point Pair Feature (PPF) [7] and its improvements [20] perform
object recognition and pose estimation through correspondence between point
pairs, remaining effective when the target is partially occluded. Detection meth-
ods based on three-dimensional Hough voting [21], Rotational Subgroup Voting
[22], and clutter-oriented detection methods [23] further solved the problem of
target occlusion and achieved good results on various datasets. When object
occlusion is severe and the proportion of incomplete point cloud exceeds 50%,
3D object detection becomes more difficult, requiring more target feature infor-
mation or multi-sensor information fusion to complete detection.

In summary, to overcome the impact of incomplete point clouds on 3D object
detection, many scholars have conducted extensive research. Pallets loaded with
baggage only show their borders, sometimes with occlusion reaching over 70%.
Additionally, due to cost limitations, the accuracy of 3D target point clouds
obtained by sensors is not high, resulting in traditional 3D target detection
methods failing to meet practical requirements. In contrast, this paper proposes
a multi-layer skeleton model description and registration method to effectively
overcome baggage occlusion of pallets, meeting the actual needs of self-service
luggage check-in systems.

3. Methods
The fundamental reason why traditional point cloud target detection methods
are prone to mismatch under occlusion conditions is that features of occluded
targets are not obvious. If the object model is known, establishing a specific
model based on the object’s structure or local characteristics and adopting model
registration can improve target detection success rates [24]. Point cloud skeleton
models have simple and obvious topological structures, and using skeleton model
registration can effectively utilize object structural features, helping to overcome
misregistration caused by occlusion. The algorithm flow is shown in Fig. 1.

3.1. Pallet Modeling

The shape and size of air baggage pallets across airports are not significantly
different, and the specifications of baggage pallets at the same terminal are
always identical. Therefore, a three-layer skeleton model of the pallet can be
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established offline.

In the same airport application scenario, Fig. 2(a) shows one type of baggage
pallet in the airport. First, the empty pallet is scanned by a 3D laser scanner,
ignoring the bottom, to obtain the point cloud model M_L, as shown in Fig.
2(b).

Direct use of point cloud model registration and detection can easily lead to
mismatches and errors when pallets are obscured by loaded luggage. The pallet
border, especially the upper surface of the border, is basically visible in the scene
cloud, and the border can fully demonstrate the morphological characteristics
of the pallet. Therefore, the L1 center skeleton extraction algorithm [25] is used
to establish the border skeleton model. The skeleton modeling process is as
follows:

1. Manually select the upper surface points from the point cloud model.
2. Randomly select a certain number of sampling points to determine the

appropriate neighborhood and construct the initial skeleton model.
3. Expand the neighborhood scope, use local L1 median to shrink sampling

points, and iteratively construct different regional skeletons.
4. After skeleton smoothing and concentration, the border-skeleton model

M_S of the pallet is obtained, as shown in Fig. 2(c).

It is difficult to extract the complete pallet border when the baggage frame
shields parts of it, and the skeleton model is also prone to matching errors. The
horizontal projection of the pallet frame is a rectangle, which can well describe
the geometric information of the pallet. Therefore, the border skeleton model
is mapped to a horizontal plane, forming a plane point-line model M_L, which
is composed of four corner points and can be expressed as M_L = {(x_i, y_i)
| i = 1, 2, 3, 4}, as shown in Fig. 2(d).

3.2. Banded Feature Description and Pallet Border Point Cloud Ex-
traction

During online detection, due to the small number of occluded pallet points, it is
difficult to maintain a high success rate by directly registering the scene point
cloud with the pallet point cloud model. If baggage and pallet point clouds can
be separated, the misregistration problem caused by embedded baggage can
be effectively overcome by using only pallet point cloud to register with pal-
let model. Combined with the strip distribution characteristics and horizontal
placement characteristics of the pallet, a strip feature description and extrac-
tion method is designed to capture the upper surface border points and realize
separation of baggage and pallet point clouds.

(1) Banded Feature Description According to the relative position distri-
bution of point clouds, three-dimensional scanning point clouds can be divided
into two categories: non-banded points and banded points, as shown in Fig. 3.
Non-banded points are located at edges and inside large-scale point cloud areas,
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generally representing point clouds on the upper surface of baggage. Banded
points are distributed in linear bands, generally representing point clouds of the
pallet border.

To distinguish between non-banded points and banded points, the covariance
matrix of neighborhood points is defined to describe the relative position distri-
bution characteristics within the point cloud. For a point q = (x, y, z)^T, the
X-Y coordinate plane is horizontal, and the Z coordinate axis direction is verti-
cal upward. In the k-neighborhood point set of q, Q_k contains n neighboring
points, so the covariance matrix of Q_k can be defined by Formula (1):

𝐶(𝑞) =
𝑛

∑
𝑖=1

(𝑞𝑖 − 𝑞)(𝑞𝑖 − 𝑞)𝑇

The eigenvalues of C(q) are 𝜆i, i = 1, 2, with maximum eigenvalue 𝜆{max}. For
point q, if 𝜆_{max} » 𝜆_i, then q is a banded point. For non-banded points,
there is little difference between the eigenvalues.

(2) Pallet Border Point Cloud Extraction The pallet is horizontally
placed in the baggage channel without suspension or inversion. The height
range of point clouds in the border is known, so the banded point cloud extrac-
tion process for pallet border is as follows:

1. According to the known height range of the pallet border, select the pallet
border candidate point cloud Q_{Sec} from the scene cloud Q_P.

2. For a planar mapping point q = {x, y} of any point q in Q_{Sec}, obtain
a set of n neighborhood points by searching points in the k-neighborhood,
denoted by: Q_{Mat} = {(x_i, y_i) | i = 1, 2, ⋯, n}

3. The covariance matrix C of Q_{Mat} is calculated by Formula (2), which
is a two-dimensional square matrix yielding two eigenvalues 𝜆_1, 𝜆_2.
Coefficient l is introduced, calculated by Formula (3):

𝑙 = max(|𝜆1/𝜆2|, |𝜆2/𝜆1|)

Set a threshold � (determined empirically). When l > �, the corresponding
point is a banded point. 4. Repeat the above steps, traverse Q_{Sec}, and
obtain pallet banded border point cloud Q_S. After horizontal projection, the
horizontal border point set Q_L is obtained.

3.3. Three-Layer Skeleton Model Registration

After obtaining the three-layer skeleton model and the banded points on the
pallet border of the scene, online matching is needed to evaluate whether the
scene contains the pallet and determine its exact pose. Therefore, according to
the different structures of the three-layer skeleton model, a multi-level model
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registration method is designed to complete pallet model registration at the
plane, border skeleton, and three-dimensional point cloud levels.

(1) Registration of Planar Point-Line Model The horizontal border
point set Q_L is a discrete lattice, and the planar point-line model M_L is the
fitted rectangular boundary. The registration process is essentially a mapping
transformation from the point set to the rectangle. Therefore, an evaluation
index called “point-line gravitational potential energy”is defined to measure
the correctness of the mapping from point set to rectangle, and an adaptive
iterative registration algorithm is designed based on this.

As shown in Fig. 4, a_i is a point in Q_L, b_i is the nearest point to a_i on
M_L, O is the rotation center of M_L, and c_i is the foot of perpendicular
from a_i to the line through O. M_L is continuously rotated and shifted by
the traction of point a_i, and the gravity T_i and torque R_i are calculated
by Formulas (4) and (5):

𝑇𝑖 = 𝐺 ⋅
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑎𝑖𝑏𝑖

| ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑎𝑖𝑏𝑖|

𝑅𝑖 = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑂𝑎𝑖 × 𝑇𝑖

where G is a constant. The average traction T_S and torque R_S of the planar
point-line model M_L for all points in Q_L are obtained by Formulas (6) and
(7):

𝑇𝑆 = 1
𝑛

𝑛
∑
𝑖=1

𝑇𝑖

𝑅𝑆 = 1
𝑛

𝑛
∑
𝑖=1

𝑅𝑖

where n is the number of points in Q_L. Under the traction of horizontal frame
banded lattice Q_L, M_L gradually approaches Q_L. During this transforma-
tion process, the coincidence degree of the two can be evaluated by potential
energy E, defined by Formula (8):

𝐸 = −min{𝑙𝑖𝑗|𝑗 = 1, 2, 3, 4}

where l_{ij} is the distance from any point in Q_L to the four edges of the
rectangle in the planar point-line model. The purpose of registration is to
find a suitable transformation that minimizes the potential energy between the
transformed plane point-line model and the horizontal border point set, with
the objective function expressed as Formula (9):
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𝑓(𝑅, 𝑇 ) = argmin𝐸(𝑄𝐿, 𝑀𝐿(𝑅, 𝑇 ))

where R is a rotation matrix and T is a translation vector.

In the registration process, under the constraints of potential energy E and the
objective function, M_L is iteratively transformed. During iteration, the step
length of transformation is adaptively adjusted by gravity. The relationship
between translation T_i and rotation angle �_i of the i-th transformation and
the gravitation and torque is shown in Formulas (10) and (11):

𝑇𝑖 = 𝑠𝑡𝑒𝑝𝑇 ⋅ 𝑇𝑆𝑖

𝜃𝑖 = 𝑠𝑡𝑒𝑝𝜃 ⋅ 𝑅𝑆𝑖

where step_T and step_� are constants, T_{S_i} and R_{S_i} are the av-
erage traction and torque of the i-th transformation, and the corresponding
transformation relationship R and T are solved by Formula (12):

𝑀𝐿𝑖+1
= 𝑅 ⋅ 𝑀𝐿𝑖

+ 𝑇 = ⎡⎢
⎣

cos 𝜃𝑖 − sin 𝜃𝑖 0
sin 𝜃𝑖 cos 𝜃𝑖 0

0 0 1
⎤⎥
⎦

𝑀𝐿𝑖
+ ⎡⎢

⎣

𝑡𝑥𝑖
𝑡𝑦𝑖
0

⎤⎥
⎦

where M_{L_i} and M_{L_{i+1}} are the plane point-line models before and
after the i-th transformation, and tx_i and ty_i are the components of R_{S_i}
in x and y directions respectively. The potential energy is recalculated after
each transformation to guide the next iteration. Iteration terminates when the
number of iterations reaches the upper limit or the potential energy stabilizes.

In the registration process, the absolute value of potential energy |E| can reflect
the coincidence degree between the horizontal border point set and the pallet
point-line model. The higher the coincidence degree, the greater the probability
of containing a pallet. Set a threshold E_{min} (E_{min} > 0, empirically set
to 150). After iteration completes, if |E| > E_{min}, the existence of a pallet
can be determined.

(2) Registration of Border-Skeleton Model The horizontal border point
set loses some three-dimensional spatial characteristics, and the vertical position
and orientation of the pallet need to be corrected at the border skeleton level.
There are differences between the position and orientation of the pallet banded
border point cloud Q_S and the border-skeleton model M_S, and their shapes
also differ. RANSAC can be used to select corresponding point pairs to complete
registration.
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First, select the nearest neighbor points as corresponding point pairs from the
pallet banded border point cloud and skeleton model after initial transformation
by applying point-line model registration. The process is as follows:

For point m_i in M_S, search for the nearest point q_i from Q_S. Simultane-
ously, for point q_j in Q_S, search for the nearest point m_j from M_S. If m_i
and q_j are the closest corresponding points to each other and the distance is
less than the set threshold, then (m_i, q_j) is a pair of corresponding points.

After selecting corresponding points, randomly select n groups of corresponding
points to estimate the transformation and calculate the distance d = ||R’�m +
T’- q|| after transformation for remaining points. If d is less than the given
threshold, the point pair is called a pair of inliers.

Set the maximum number of iterations N, and count the number of interior
points corresponding to each transformation until the maximum number of iter-
ations is reached. After iteration, the transformation with the largest number of
inliers is the best transformation of the model, representing the coarse position
of the pallet.

(3) Registration of Point Clouds Model The point-line model registration
and border-skeleton model registration match the extracted banded border at
the plane and border-skeleton levels. The above registration only uses the point
cloud of the pallet border, without involving point clouds of other pallet parts.
To calculate the pallet pose more accurately and detect and extract all pallet
point clouds, it is necessary to register the 3D point cloud model of the pallet
with the field point cloud.

ICP [2] is a classical algorithm for point cloud registration. Its principle is to
find the nearest points in target and source point clouds according to certain
constraints, and calculate optimal transformation parameters R and T through
iterative matching. However, civil aviation baggage pallets are embedded and
occluded, with low weight in point clouds. Moreover, the characteristics of
baggage surface and pallet side are similar, making direct ICP registration prone
to mismatch. To prevent ICP from falling into local optimum, a certain distance
threshold is set under the constraint of initial pose from skeleton registration.
By extracting the nearest points, the overlapping area of two point clouds is
obtained. The ICP algorithm is applied to the overlapping area to obtain the
accurate pose of the pallet.

4. Experimental Results of Pallet Detection
The experimental hardware platform uses an Intel Core i5-7300HQ CPU with 8
GB memory. Under the Windows 10 operating system, the algorithm is imple-
mented based on OpenCV and PCL development libraries using Visual Studio
2019. The experimental platform is shown in Fig. 5. A Hokuyo URG-04LX-
UG01 is used as the 3D laser scanner. The scanning area of the sensor is 20–5600
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mm, with accuracy of $±$30 mm. The experimental data consists of 490 sam-
ple data randomly selected from 5 million data points collected at a Guangzhou
airport from 2019 to 2021.

Typical samples under various conditions are selected, as shown in Table 1.
Sample 1 is a typical pallet sample embedded in baggage without border cover,
sample 2 is an empty pallet, and samples 3 to 6 are pallet samples with different
levels of completeness. In the experiment, to show the registration effect of
point clouds more clearly, the point cloud is used to represent the pallet model,
and the reconstructed mesh model is used to represent the scene point cloud of
the test field.

4.1. Pallet Border Point Cloud Extraction

The effectiveness of the border point cloud extraction algorithm is verified using
typical sample 1 with unshielded pallet border. The banded boundary of sample
1 is extracted using the banded point cloud extraction algorithm, with results
shown in Fig. 6(a), which are projected onto the horizontal plane to obtain the
horizontal boundary points of the pallet, as shown in Fig. 6(b). It can be seen
that the banded point cloud mainly includes side points of the pallet border,
but corner points and adjacent baggage points cannot be correctly extracted.
The reason is that the distribution of corner points and luggage-adjacent points
is relatively concentrated, causing them to be mistaken for non-banded points.
In general, the proposed banded point cloud extraction algorithm can extract
the pallet border point cloud from the scene point cloud and realize separation
of baggage and pallet point clouds.

4.2. Three-Layer Skeleton Model Registration

The effectiveness of the three-layer skeleton model registration algorithm is ver-
ified using typical sample 1 with unshielded pallet border.

(1) Registration of Planar Point-Line Model To verify the effectiveness
of the point-line gravitational potential energy registration algorithm, registra-
tion experiments are carried out using the pallet plane point-line model and the
horizontal boundary point set extracted from sample 1. Before registration, the
position of the pallet plane point-line model is quite different from the horizon-
tal boundary point set of the scene to be tested, as shown in Fig. 7(a). After
registration, the two are aligned, as shown in Fig. 7(b).

The process of potential energy change is shown in Fig. 8. Before registration,
the absolute value of potential energy is relatively small. With increasing it-
erations, the point-line model of the pallet plane is continuously transformed
under traction from the horizontal boundary point set, and the absolute value
of potential energy gradually increases. When the two coincide, the absolute
value of potential energy tends to be maximized and stabilizes. After registra-
tion, the absolute value of potential energy is greater than the set threshold,
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confirming pallet existence. It can be seen that the proposed adaptive iterative
registration algorithm of point-line gravitational potential energy can effectively
evaluate the possibility of pallet existence in the scene to be tested and com-
plete matching at the horizontal plane, providing the initial pose for subsequent
registration.

(2) Registration of Border-Skeleton Model To verify the effectiveness
of the border-skeleton model registration algorithm, the pallet border skeleton
model and sample 1 banded border point cloud are used for registration. Be-
fore registration, under the constraint of initial pose, the pallet border-skeleton
model and the banded border point cloud overlap on the horizontal plane, but
there are still deviations in the vertical direction, as shown in Fig. 9(a). Af-
ter registration, the two also overlap in the vertical direction, as shown in Fig.
9(b). It can be seen that registration of the border-skeleton model can complete
coarse registration of the pallet border-skeleton model and the banded border
point cloud in the vertical direction.

(3) Registration of Point Clouds Model After border-skeleton model reg-
istration, the accurate pose of the pallet is determined through point cloud
registration. The initial pose from point-line model registration and border
skeleton model registration is used to transform the pallet point cloud model
coarsely. After extracting the overlapping area, the ICP algorithm is used to
fine-tune the registration. Before transformation, the position relationship be-
tween the pallet point cloud model and the scene point cloud to be measured is
shown in Fig. 10(a), and the position relationship after registration is shown in
Fig. 10(b). It can be seen that after multi-layer transformation and registration,
the pallet point cloud model is basically at the same position as the pallet point
cloud in the scene to be tested, though there are still slight differences. The
reason is that the point cloud model established offline differs from the actual
pallet point cloud in the scene to be tested, resulting in incomplete overlap.
The overall experimental results show that the proposed three-layer skeleton
model registration method can effectively detect the baggage pallet and mark
its precise pose.

4.3. Results of Pallet Detection

Typical samples 1 to 6 were selected for pallet detection experiments to evaluate
the influence of pallet point cloud defect ratio on the proposed method, and
compared with other typical point cloud registration algorithms: ICP, SHOT-
ICP, and FPFH. As shown in Table 2, experimental results demonstrate that
each method can achieve good registration effects for samples 1 and 2 without
pallet point missing. However, when the pallet point cloud is incomplete, typical
algorithms become unsuitable. In sample 3, ICP and FPFH fail when a small
part of the pallet point cloud is incomplete. When SHOT provides a good initial
position for ICP, successful registration can be achieved. When pallet defects
exceed 40%, SHOT-ICP cannot detect effectively, while the proposed method’
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s detection results remain stable. Under conditions of large-scale point cloud
missing, registration can still succeed.

To quantitatively analyze registration accuracy, RMSE [26] is used as the eval-
uation index, as shown in Formula (13):

𝑅𝑀𝑆𝐸 = √ 1
𝑛

𝑛
∑
𝑖=1

‖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) − (𝑥𝑀𝑃𝑖
, 𝑦𝑀𝑃𝑖

, 𝑧𝑀𝑃𝑖
)‖2

where n is the number of pallet points in the scene to be tested and m is the
number of pallet point cloud model points. The registration accuracy is shown
in Table 3. It can be seen that when the pallet is complete, the typical algo-
rithm SHOT-ICP has the best registration effect, with the proposed algorithm’s
accuracy not significantly different. When the pallet point cloud is missing, the
proposed method’s accuracy is significantly better than other methods. These
results show that the proposed method ensures detection accuracy when the
pallet is complete and has obvious advantages for incomplete point clouds.

The practicability of the algorithm is verified through statistical analysis of point
cloud samples with different integrity levels and without pallets. The results
are shown in Table 4. All 268 groups of pallet-free samples were tested correctly.
Among 222 groups of pallet-containing samples, all samples with pallet defect
ratio less than 50% were tested correctly. In 17 groups of samples with pallet
defect ratio of 50%–70%, only one group had detection errors, achieving 94.1%
accuracy. When the incomplete ratio of pallet point cloud exceeds 70%, detec-
tion accuracy decreases significantly, with only one correct detection among 13
samples with high pallet integrity. The reason is that the banded point cloud
of the pallet border becomes too sparse, resulting in a small absolute value of
point-line model potential energy, causing misjudgment as no pallet. Overall,
the detection accuracy of the proposed algorithm exceeds 94%, demonstrating
obvious practical value.

4.4. Time Complexity Analysis

To verify the rapidity of the method, the registration time for a single typical
point cloud sample is compared with other algorithms. The results are shown
in Table 5. The average time for ICP registration is about 2.41 s, the average
time for SHOT-ICP is about 23.97 s, and the average time for FPFH is about
42.67 s. The average time required for the proposed algorithm is less than
0.4 s, which is obviously faster than other algorithms. The reason is that the
proposed three-layer skeleton model registration method only needs to calculate
the distribution of neighborhood positions of the point cloud when extracting
pallet features, reducing computational consumption, and greatly decreasing
calculation amount through multi-level local point registration.
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5. Conclusion
This paper studies a 3D object detection method based on a three-layer skeleton
model to solve the problem of fast and accurate pallet detection when baggage
causes large-area occlusion in self-service baggage consignment.

The constructed skeleton model can better describe the three-dimensional char-
acteristics of baggage pallets. Through gradual refinement registration of the
three-layer skeleton model at plane, skeleton, and point cloud levels, pallet detec-
tion accuracy can exceed 94% under conditions of 70% point cloud incomplete-
ness. The banded point cloud feature description and extraction method and
the adaptive iterative registration algorithm based on point-line gravitational
potential energy can accurately extract the pallet border point cloud, avoid in-
fluence from baggage point clouds on pallet model registration, and effectively
improve detection speed, which is more than six times faster than typical 3D
target detection algorithms.

The method detects pallets based on the registration degree of a known three-
dimensional structural skeleton model. When pallet types are known and limited
in variety, it can be applied in civil aviation airports. However, for occlusion
detection of other unknown structures, it has limitations and requires further
improvement and optimization.
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