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Abstract

A detailed analysis of RFI mitigation strategies employed by radio observato-
ries both domestically and internationally is presented, specifically addressing
the problem of radio frequency interference (RFI) in radio astronomy obser-
vations. Based on the RFI issues encountered during actual observations at
various astronomical observatories, prevention strategies and mitigation meth-
ods for RFT are investigated from the perspectives of proactive prevention stage,
pre-correlation stage, post-correlation stage, machine learning, and deep learn-
ing. The methods that can be adopted during the proactive prevention stage are
analyzed in detail, along with adaptive filtering and spatial filtering methods
for the pre-correlation stage; and VarThreshold, SumThreshold, and singular
value decomposition methods for the post-correlation stage. The application
of related techniques and methods based on machine learning—including prin-
cipal component analysis, support vector machines, fully convolutional neural
networks, convolutional neural networks, and U-Net—in RFI signal processing
is also discussed.
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Abstract

This paper provides a comprehensive analysis of radio frequency interference
(RFI) mitigation strategies employed at radio observatories worldwide, address-
ing the persistent challenge of RFI in radio astronomical observations. We
systematically examine prevention and mitigation approaches across three dis-
tinct stages: active prevention, pre-correlation processing, and post-correlation
processing, as well as emerging techniques based on machine learning and deep
learning. For the active prevention stage, we detail practical shielding methods.
In the pre-correlation stage, we analyze adaptive filtering and spatial filtering
techniques. For post-correlation processing, we evaluate threshold-based meth-
ods including VarThreshold, SumThreshold, and singular value decomposition.
Furthermore, we explore the application of machine learning techniques such as
principal component analysis, support vector machines, fully convolutional neu-
ral networks, convolutional neural networks, and U-Net architectures for RFI
signal processing and identification.

Keywords: RFI; filtering; thresholding; machine learning

1. Introduction

In radio astronomy, radio frequency interference (RFI) is defined as any un-
desirable signal that may affect astronomical observations. Throughout the
development of radio astronomy, RFI suppression has remained a focal point
of research for astronomers. The rapid advancement of information technology
and the expansion of human activities have led to deteriorating electromagnetic
environments around observatories, significantly impacting normal telescope op-
erations.

RFI originates from diverse sources, both external and internal. External
sources primarily consist of equipment outside the observatory site, such as arti-
ficial satellites (including BeiDou and GPS navigation satellites), aircraft, base
station signals near the site, and television broadcast signals. Internal sources
arise from electronic devices used within the observatory, including computers,
video surveillance systems, network switching equipment, and wireless input
devices. Astronomical signals are typically broadband and vary smoothly over
time, whereas RFT exhibits high amplitude intensity in both time and frequency
domains, with most RFI showing clear distinctions from astronomical signals.
Unlike thermal noise, RFI generally consists of interference generated by com-
munication systems, artificial radars, or electronic devices, and often possesses
complex temporal and frequency structures. Common communication signals
have power levels many orders of magnitude higher than astronomical signals
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and vary with time, making it impossible to reduce their intensity through long-
term integration (accumulation), thereby severely compromising data quality.

Astronomers have proposed numerous RFI mitigation methods, yet these ap-
proaches remain constrained by several factors. First, the rapid development of
wireless technology and the expansion of human activity have led to year-over-
year increases in anthropogenic interference from both ground-based and space-
based sources. Second, advances in manufacturing and information technology
have driven radio telescopes toward larger apertures and massive arrays, while
the deployment of multi-beam or phased array feed (PAF) receiving systems
has significantly enhanced observation sensitivity and data collection capabili-
ties, simultaneously complicating RFI mitigation.

Different RFI mitigation strategies must be implemented at various stages of
radio astronomical observation and data processing. This paper categorizes
RFI mitigation strategies into three phases: active prevention, pre-correlation
processing, and post-correlation processing, each employing distinct methods
tailored to specific challenges. Effective shielding during the active preven-
tion stage can prevent most RFI from communication base stations and tele-
vision broadcasts from entering the system. In the pre-correlation stage, meth-
ods based on reference antennas and spatial filtering can address specific RFI
sources. During post-correlation processing, threshold-based methods can ef-
fectively handle RFI with amplitudes far exceeding astronomical signals, while
machine learning techniques enable automated RFI flagging in data. The fol-
lowing sections provide detailed analysis of RFI mitigation strategies applicable
at each stage.

2. Active Prevention Stage
2.1 Radio Quiet Zone

Radio telescopes observe extremely faint signals from distant celestial objects,
necessitating stringent requirements for electromagnetic interference in their
vicinity. Selecting geographically favorable sites and establishing radio quiet
protection zones represent crucial first steps in RFI mitigation, fundamentally
eliminating most interference at its source.

The Five-hundred-meter Aperture Spherical radio Telescope (FAST), the world’
s largest single-dish radio telescope, is located in Dawodang, Kedu Town,
Pingtang County, Qiannan Buyi and Miao Autonomous Prefecture, Guizhou
Province. Centered on the FAST site, a 30 km radius radio quiet zone has been
established, divided into three regions with different protection requirements.
The core protection zone extends 5 km from the site center, the intermediate
zone covers a 5-10 km annulus, and the remote zone spans 10-30 km, as
illustrated in Fig. 1. This zoning effectively shields the telescope from the vast
majority of external interference sources.
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The Xinjiang Qitai 110 m Radio Telescope (QTT), situated in Qitai County,
Changji Prefecture, Xinjiang, similarly employs a 30 km radio quiet zone tai-
lored to local topography and conditions. This zone comprises three regions: a
core zone, a restricted zone, and a coordination zone. The core zone forms a 2.5
km x 4 km rectangular area, while the restricted zone covers a 10 km x 15 km
rectangular region, as shown in Fig. 2.

2.2 Reserved Frequency Bands

The International Telecommunication Union (ITU) coordinates radio spectrum
allocation between 8.3 MHz and 300 GHz, dividing it into several bands des-
ignated for specific services. Among these allocated bands, approximately 70
to 80 correspond to radio astronomy (the exact number varies by region and
local regulations). Radio astronomy bands fall into two categories: dedicated
bands (or those shared with passive services) where radio emissions are strictly
prohibited, and bands shared with active services where only partial protection
can be enforced. Band selection for radio astronomy typically correlates with
scientific objectives. For example, the hydrogen line (emitted due to changes in
neutral hydrogen atom states) lies near 1420 MHz, prompting the reservation
of the 1400-1427 MHz band for radio astronomy.

Even within dedicated radio astronomy bands, interference may persist due to
harmonics and power leakage from active components. For such cases, the ITU
defines maximum acceptable interference in its ITU-R RA.769 recommendation
as interference that introduces no more than 10% error in measured power—a
threshold widely accepted by astronomers. This report also provides a recom-
mended threshold list for typical astronomical bands using common telescope
and observation parameters.

2.3 Limitations of Active Prevention Strategies

The most direct approach in active RFI prevention involves selecting remote ob-
servatory locations far from interference sources. Natural terrain features such
as mountains can effectively block external interference, though multipath prop-
agation through reflection and diffraction increases mitigation difficulty. Some
observatories have found that planting coniferous trees like pines around tele-
scope sites effectively suppresses RFI, as moisture in the needles absorbs signals
above 1 GHz. Partial observatories are constructed at high altitudes to reduce
atmospheric effects and distance from human activity while minimizing multi-
path propagation. For internal interference, common practice involves shielding
interfering electronic equipment (computers, microwave and RF components)
with conductive foil or concentrating equipment in shielded rooms to contain
interference within enclosed spaces without affecting device performance.

While active prevention represents the most effective interference mitigation
method and serves as the first line of defense, significant limitations remain.
First, it can only protect a small portion of the electromagnetic spectrum. Sec-
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ond, electromagnetic shielding materials cannot completely block interference
for highly sensitive equipment. Third, interference from satellite communica-
tions and aircraft cannot be mitigated through active prevention methods due
to relative position constraints.

3. Pre-correlation Stage

We define the pre-correlation stage as the phase during which raw observa-
tion data is processed before being written to disk for scientific analysis. For
single-dish observations, adaptive filtering using reference antennas can remove
specific interference, while array antennas can employ spatial filtering methods
to suppress RFL.

3.1 Adaptive Filtering

Adaptive filtering algorithms were first introduced to radio astronomy by Barn-
baum and Bradley in 1998 to address RFI problems. In 2005, Kesteven et
al. conducted field tests demonstrating that adaptive filtering could substan-
tially improve pulsar observations in RFI-contaminated environments.

The signal received by the reference antenna can be expressed as:

r(t) = n,(t) + rfi.(t) + 5,.(t)

where r(t) represents the signal received by the reference antenna, n,.(t) denotes
the system noise of the reference antenna, rfi.(t) indicates RFI received by
the reference antenna, and s,.(t) represents astronomical signals received by
the reference antenna. Astronomical signals are received through the reference
antenna’ s sidelobes and are sufficiently weak to be negligible. Similarly, the
signal received by the main telescope can be expressed as:

m(t) = 1, (8) + 7 iy (£) + 5, ()

The system noise received by the main telescope and reference antenna are
uncorrelated, while the received RFI exhibits correlation. To eliminate RFI
in the main antenna, the reference antenna is aligned with the RFI source,
and continuously optimizing the reference antenna’ s pointing and polarization
direction can improve the RFI signal-to-noise ratio in the reference channel.

The specific implementation steps of adaptive filtering are:

1. In the adaptive correlation loop, determine the complex gain coefficient g
(which is continuously iteratively optimized), multiply it with the signal
received by the reference antenna r(t), and iteratively adjust g to approxi-
mate the RFT signal in the main antenna, thereby maximizing elimination
of RFI from a specific direction.
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2. When g reaches its optimal value, g - r(t) closely approximates rfi,,(t),
and the difference between the astronomical signal and the reference signal
yields the astronomical signal with specific interference removed.

3. Fig. 3 shows the basic design diagram of an adaptive filter. When the
correlation coefficient between the original reference signal and the filter
output becomes zero, optimal gain is achieved.

The correlation term is calculated as shown in equation (3):

When (m(t) - r*(¢)) = 0, RFI in the main antenna can be eliminated. Substitut-
ing the components received by each antenna:

(m(t)-17(8)) = (1 (8) 13 (8)) 4 (0, ()7 F157.(0)) A+ (0 (8)- 7 ()) (7 F i, (8) 10 (8)) 4 Fiy (8) - F7.(8)) 4 (1 fi (8)-57.(2)

Since the system noise, astronomical signals, and other signals from the two
antennas are all uncorrelated with RFI, and the astronomical signal in the refer-
ence antenna is extremely weak and can be neglected (s,.(t) ~ 0), the expression
simplifies to:

(m(t) - r*(t)) = (rfip(t) - 7 fir(t)) — g - (rfi () - rfir(t))

(rfim, (t)rfiy(t)

Letting g = R TROES A the residual RFT in the output signal is:
1
€= —+—-
1+ INR

where INR (Interference-to-Noise Ratio) is the interference-to-noise ratio in the
reference antenna. It is evident that larger INR values yield smaller €, indicating
better adaptive filter performance. The residual RFI in the output signal is
inversely proportional to INR; thus, improving the RFI signal-to-noise ratio in
the reference antenna enhances RFI suppression capability in the main antenna.

Several factors affect adaptive filtering performance:

(1) Mixed RFI Sources

Adaptive filtering performs well in eliminating single-source RFI, but its per-
formance degrades significantly in complex RFI environments. For mixed RFI,
when two interfering signals occupy the same frequency domain, the interference
with larger amplitude will be suppressed.

(2) Multipath Propagation Effects
Multipath propagation refers to the phenomenon where multiple copies of the
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same signal arrive at the receiving antenna via different paths, typically caused
by large terrestrial objects (mountains, buildings), large water bodies (lakes, la-
goons), and ionospheric reflections. Fig. 4 illustrates a multipath interference
propagation scenario. Because multiple copies arriving at the telescope and ref-
erence antenna have different time delays, if the delay is sufficiently large, the
added signals may be considered completely uncorrelated by the telescope. In
this case, multipath propagation is equivalent to multiple RFI sources, making
it difficult to obtain a general expression for multipath propagation in filters.
The best measure to prevent multipath propagation is to place the telescope
and reference antenna as close as possible to minimize propagation distance dif-
ferences, and to increase FFT points to improve frequency resolution or reduce
system bandwidth while keeping FFT points constant.

(3) Violation of Linear Time-Invariant (LTI) Conditions

The interference propagation path is assumed to satisfy LTI conditions at least
during filter convergence time. If LTI conditions are not met, the RFI path
exhibits nonlinear or time-varying propagation characteristics somewhere. How-
ever, no natural medium exhibits sufficiently strong nonlinearity or rapidly
changing propagation characteristics to affect filter performance, particularly
considering that final algorithm convergence occurs on millisecond timescales.
When the telescope tracks celestial objects, the sidelobe capturing RFI moves
with the telescope, and the measured RFI path characteristics change gradually
over time. Adaptive filtering methods must possess sufficient computational ca-
pability to avoid being significantly affected by the telescope’ s slow movement.

Some analog components in the receiver front-end, such as amplifiers and fre-
quency mixers, exhibit signal saturation. When a component reaches saturation,
the amplitude of the input signal is clipped, generating harmonic distortion that
affects the system’ s LTI conditions. This distortion is treated as an additional
corrupted signal with frequencies several times the original input signal’ s cen-
ter frequency. Moreover, harmonic signals are often aliased into the baseband
after digitization, corrupting astronomical data. Harmonic distortion from RFI
in the main channel can severely degrade filter performance, as the additional
harmonic signals do not appear in the reference channel, making such RFI more
difficult to suppress.

3.2 Spatial Filtering

Spatial filtering methods primarily address RFI mitigation in multi-channel ra-
dio astronomy observations and are applicable to interferometric radio telescope
arrays such as the Westerbork Synthesis Radio Telescope (WSRT) in the Nether-
lands, the Very Large Array (VLA) in the United States, or single-dish tele-
scopes equipped with phased array receiving systems. Fig. 5 illustrates the
application of spatial filtering techniques in antenna array systems at different
processing stages.

The signals received by radio telescopes consist of three components: radio
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source signals (the intended observation targets), system noise, and RFI. System
noise comprises cosmic background noise, atmospheric noise, receiver noise, and
other noise components. According to the central limit theorem, system noise
is temporally independent and Gaussian-distributed, short-term stationary over
brief intervals, with all radio sources assumed to be statistically independent of
one another.

RFI characteristics in radio astronomy are highly diverse. We select three
distinct signal properties for RFI modeling: narrowband Gaussian stationary,
second-order aperiodic, and cyclostationary signals.

Consider an antenna array with N antennas, where x(t) = [z (), 25(t), ..., 2 5 ()]
represents the array outputs, with x,(¢) denoting the output of the i-th antenna
at time ¢. Then x(t) can be expressed as:

x(t) = A s(t) + Ai(t) + n(t)

where: 1. s(t) = [s1(t),85(t),...,5,(t)]T represents the signal char-
acteristics of K radio sources at time f, with dimension K x 1. 2.
A, = [a,(6,),a,(0,),...,a,(0)] is the spatial signature matrix of the radio

sources, with dimension N x K, where a_(0;,) = [a,1(0;), a,5(0}), ..., ag 5y (0,)]"
is the spatial signature vector of the k-th radio source. 3. A, and i(¢) represent
the spatial signature matrix of RFI and the RFT signal characteristics at time
t, respectively. 4. n(t) = [ny(t),ny(t), ... ,nx(t)]T is the system noise vector at
time ¢, with dimension N x 1.

The temporal correlation of radio sources is described through the covariance
matrix:

R,, = E{s(t)s" (1)}

where R, describes the correlation of radio source signals over time range 7 at
time ¢, and ¥ denotes conjugate transpose. Assuming RFI, radio sources, and
system noise are mutually independent and uncorrelated:

E{s(t)i" (t)} = E{s(t)n" ()} = E{i(t)n" ()} = 0

From a linear algebra perspective, the covariance matrix of phased array radio
telescope data can be viewed as a linear transformation matrix that generates a
data vector space composed of RFI subspace, radio source subspace, and system
noise subspace. Fig. 5 shows an example of a two-dimensional data vector space
in a noise-free scenario, where red and black vectors represent signals associated
with radio sources and RFI sources, respectively.

Using orthogonal projection techniques to reduce interference, the data vector
space is projected onto a subspace orthogonal to the RFI subspace. The pro-
jected RFI subspace becomes completely zero, yielding data containing only
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radio sources. As clearly shown in Fig. 6, the recovered radio source energy
after projection depends on the angle between the two vectors:

P

recovered —

P

source

-sin’()
where P, ... represents the power of the radio source and 6 is the angle between
the RFI vector and the radio source vector. Larger 6 values result in greater
recovered radio source power. However, the angle between the radio source
subspace and interference subspace is difficult to measure directly and requires
indirect calculation via projection matrices.

Let the projection matrix be P, whose eigenvalues are either 0 or 1. Eigenvectors
with eigenvalue 0 generate the projection null space, while eigenvectors with
eigenvalue 1 generate the range subspace. The rank of the projection matrix
equals the dimension of its range subspace. If U is the basis of the projection
range subspace and V is the basis of the projection null space, then:

The projection matrix generated by basis matrix U is defined as:

P, = U(UHU)1UH

The orthogonal projection whose range is orthogonal to the subspace of V is:

Py =1-V(VIv)lvH

In multi-interference scenarios, the interference subspace is multidimensional,
generated by the set of independent RFI vectors stored in matrix A,;. Therefore,
the projection matrix can be expressed as:

Prp=1—A;(ATA;)'A]

In the pre-correlation stage, the available data is the antenna array output vector
x(t). Projecting this onto the orthogonal space of the RFI subspace yields the
corrected data vector X ;,,neq(t):

Xcleaned(t> = PJRFIX(t)

As evident from the above, spatial filtering requires prior knowledge of interfer-
ence sources to determine the projection matrix. In complex interference envi-
ronments, accurately determining the specific locations of interference sources
is extremely difficult.
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4. Post-correlation Stage

Since RFT signals are typically several orders of magnitude stronger than
astronomical signals, thresholding methods provide effective RFI suppression.
Threshold levels are usually determined based on statistical measures such
as the mean or root-mean-square of a data segment, with values exceeding
these ranges flagged as RFI. The primary limitation of thresholding methods
is the potential misidentification of astronomical signals as RFI, making the
reduction of false positive rates a critical research direction in post-correlation
RFI mitigation.

4.1 VarThreshold Algorithm

In both frequency and time domains, RFI data often affects neighboring data
points. Due to their relatively low intensity, these affected points may not be
flagged as RFI, increasing detection error rates. VarThreshold is a combined
threshold algorithm based on the principle that a combination of samples is
flagged as RFI when a certain statistical property of the combined samples
exceeds a specified limit. Assuming z; and z,,, are adjacent sample points,
conventional thresholding examines whether each sample individually exceeds
the set threshold level. In contrast, combined thresholding only flags the combi-
nation when both samples exceed the threshold. If samples z; and z;,; are not
flagged, they are combined with the next adjacent sampling point z;,, for con-
tinued threshold comparison, iterating multiple times to complete RFI flagging,
as shown in equation (18):

RFI if |2, 4| > Ty, for all j € [0, L — 1]

VarThreshold(z;, ... ,z;, ;1) = {Not RFL otherwise

This expression indicates that if all sampling points within a range of L points
starting from time ¢ have absolute values greater than 77, then all L points are
flagged as RFI.

The VarThreshold algorithm uses a strictly decreasing threshold sequence
(T}, Ty, ..., T;) to determine whether a sampling point should be flagged as
RFI, as shown in equation (19):

TL = Tl . aLil

where T} is the single-sample threshold, and optimal performance is achieved
when a = 0.5. The value of 7] is determined based on the statistical level of the
data, specifically selecting the threshold that minimizes the false positive rate
for RFI detection.
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4.2 SumThreshold Algorithm

The SumThreshold algorithm is another combined thresholding method simi-
lar to VarThreshold in its approach to determining threshold sequences, but
with different L values. Optimal performance occurs when L = 8. A thresh-
old set (T},T,,...,T}) is calculated and compared iteratively with samples: T}
compares with single samples, 7, compares with the mean of two samples,
and T; compares with the mean of L samples. When the sample mean ex-
ceeds the threshold, the samples are flagged as RFI and excluded from subse-
quent iterations. For a one-dimensional sequence [z, Z, ... , 5] with thresholds
Ty, Ty, ..., Tp].

Figs. 7, 8, and 9 illustrate the SumThreshold algorithm process. From an algo-
rithmic perspective, the time complexity is O(N - L). To reduce computational
cost, when threshold L takes values of 1, 2, 4, 8, 16, 32, 64, 128, 256, etc., the
time complexity reduces to O(N log L).

4.3 Singular Value Decomposition

Singular Value Decomposition (SVD) is an important matrix factorization tech-
nique in linear algebra capable of extracting information, reducing data dimen-
sionality, and removing noise by mapping data to a lower-dimensional space.
SVD decomposes a matrix as:

X=UVT

where U and V are orthogonal matrices, and is a diagonal matrix with singular
values on its diagonal. The vast majority of RFI signals exhibit large amplitudes
in either the time or frequency domain.

Let X represent the received astronomical signal. After performing SVD, X =
U VT, the largest singular values are set to zero. Upon inverse reconstruction,
a new matrix X is obtained, where signals with large amplitudes (RFI) in the
original matrix X are suppressed.

This algorithm achieves optimal performance when RFI signals are sufficiently
strong and SNR > 1. However, the method is only applicable to broadband RFI
signals and is not suitable for RFI signals that follow a Gaussian distribution.

5. Machine Learning-Based RFI Mitigation Methods

The rapid development of machine learning and deep learning technologies, com-
bined with the exponential growth of astronomical data, has made their integra-
tion inevitable. Through learning and training on large datasets, these methods
can effectively flag RFT in astronomical signals.
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5.1 Principal Component Analysis

Principal Component Analysis (PCA) is a method for dimensionality reduction
in data features, commonly used to reduce dataset dimensionality while preserv-
ing features that contribute most to variance. Lower-order components often
retain important information, facilitating feature extraction and classification.

Reference [19] conducted classification tests on nine common transient RFI
sources from daily life, evaluating both standard PCA and kernel PCA in the
time domain. Using a clustering separation method to compare the clustering
accuracy of both approaches (Figs. 10 and 11), the study found that kernel
PCA outperformed standard PCA in distinguishing source types, effectively
differentiating transient RFT origins.

5.2 Support Vector Machine

In machine learning, Support Vector Machine (SVM) is a supervised learning
model and associated algorithm used for classification and regression analysis.

Reference [21] selected training data with time length 7', including both non-RFI
and RFI signals, extracting features such as root-mean-square, mean, variance,
mean-to-variance ratio, skewness, kurtosis, maximum amplitude, minimum am-
plitude, and peak count. These features were imported into an SVM training
model, which then classified test data into RFI and non-RFT categories, as illus-
trated in Fig. 12. Results demonstrated that this method accurately detected
RFT even at very low INR and small RFI duty cycles, showing excellent perfor-
mance.

5.3 Neural Networks

The basic structure of neural networks comprises an input layer, hidden layers,
and an output layer, consisting of numerous interconnected nodes. As a nonlin-
ear statistical data modeling tool, neural networks are commonly used to model
complex relationships between inputs and outputs or to explore data patterns.

Reference [23] proposed Deep Fully Convolutional Neural Networks (DFCN)
for image segmentation, addressing pixel-level image classification. Reference
[24] utilized DFCN (Fig. 13) with 7" and F corresponding to input time and
frequency visibility dimensions, C' representing the number of filter layers, and
L representing the total number of layers between input and fully convolutional
layers. Using amplitude and phase as features, waterfall plots were processed
for feature extraction and RFI flagging.

Reference [25] introduced the U-Net neural network, which adds upsampling
convolutional expansion paths to convolutional neural networks, enabling fast
and effective image segmentation for small datasets. Originally applied to med-
ical cell image segmentation, reference [3] successfully applied the U-Net deep
neural network model to identify RFI in single-dish radio telescope data, with
its structure shown in Fig. 14.
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Reference [26] found that Convolutional Neural Networks (CNN) often produced
mislabeled RFI in FAST data, requiring significant manual review and creating
substantial additional workload. To overcome this limitation, they proposed a
neural network model called RFI-Net (Fig. 15), with results demonstrating that
RFI-Net outperformed U-Net, K-Nearest Neighbor (KNN), and SumThreshold
algorithms.

Recurrent Neural Networks (RNN) are a class of neural networks designed for
processing sequential data, demonstrating excellent performance in handling
context-dependent speech data. Astronomical signals are also time-series data,
making them highly suitable for RNN processing. Burd et al. utilized RNN
for RFI detection in radio telescope interferometric array data, distinguishing
RFI from non-RFI data based on 610 MHz RFI amplitude information from the
Giant Metrewave Radio Telescope (GMRT).

6. Summary

This paper systematically elaborates on algorithms and techniques for suppress-
ing and flagging RFI in radio astronomy, analyzing the advantages and lim-
itations of RFI mitigation methods across active prevention, pre-correlation,
and post-correlation stages. Effective shielding measures during the active pre-
vention stage can prevent most RFI from entering the system. Pre-correlation
methods exploit the correlated nature of astronomical signals across antennas to
suppress RFI. Post-correlation algorithms primarily rely on threshold-based RFI
flagging. Machine learning techniques for RFI flagging and identification repre-
sent current research hotspots, as training on massive astronomical datasets can
substantially improve RFI flagging accuracy. However, a notable drawback is
the time-consuming manual labeling of RFI and astronomical signals in training
samples. Currently available training samples remain limited.

RFI mitigation requires collaborative solutions employing multiple methods
across different stages, with RFI considerations necessary from radio environ-
ment protection around telescope sites to final astronomical data processing.
Each observatory must select appropriate RFI mitigation methods based on
actual requirements and the electromagnetic interference conditions of its envi-
ronment.
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