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Abstract

Taking the rain-fed farming areas in northern Kazakhstan as the study target
area, based on spring wheat yield statistical data and remote sensing spectral
indices, we conducted analysis on the optimal prediction period for spring wheat
yield estimation and vegetation indices. Using regression analysis, random for-
est, support vector machine, and bidirectional recurrent neural network models
to estimate spring wheat yield, we comparatively analyzed the simulation accu-
racy of different models. The results show that: for North Kazakhstan Oblast,
Akmola Oblast, and Kostanay Oblast, the optimal prediction period for spring
wheat yield estimation from 2007 to 2016 was June 26 to August 5, which is the
critical period for spring wheat yield formation. The optimal vegetation index
for spring wheat yield estimation in North Kazakhstan Oblast was the Green
Chlorophyll Index (ClIgreen) on July 12; in Akmola Oblast, it was the Green
Wide Dynamic Range Vegetation Index (WDRVIgreen) on August 5; and in
Kostanay Oblast, it was WDRVIgreen on July 12. Comparative analysis of the
accuracy of the four models in simulating spring wheat yield revealed that, under
conditions of limited sample points, the bidirectional recurrent neural network
model achieved higher accuracy compared to other models in estimating spring
wheat yield in the three northern oblasts of Kazakhstan. Correlation analy-
sis results between spring wheat yield and Net Primary Productivity (NPP)
show that the area proportions with coefficient of determination R? above 0.50
in North Kazakhstan Oblast, Akmola Oblast, and Kostanay Oblast were 44%,
94%, and 77%, respectively, indicating that the above yield estimation models
can be applied to spring wheat yield estimation in the three northern oblasts of
Kazakhstan, especially in Akmola Oblast and Kostanay Oblast.
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Abstract: Kazakhstan ranks as the world’s leading flour exporter and serves as
the granary of Central Asia. Its northern regions—North Kazakhstan, Aqmola,
and Qostanay—are globally important wheat and flour production areas, with
wheat comprising 86% of the cropping structure. Since 2010, Kazakhstan has
ranked 12th worldwide in wheat and barley production and 5th in export volume.
However, the rain-fed agricultural system in this region, combined with frequent
drought stress in the monsoon climate zone, often leads to large-scale yield re-
ductions that severely impact food security in import-dependent nations. This
study targets the rain-fed farming zone of northern Kazakhstan to analyze opti-
mal prediction timing and vegetation indices for spring wheat yield estimation
using statistical yield data and remote sensing spectral indices. We employed
regression analysis, random forest, support vector machine, and bidirectional re-
current neural network models to estimate spring wheat yields, comparing their
simulation accuracy. Results indicate that for North Kazakhstan, Aqmola, and
Qostanay, the optimal prediction period falls between July 12 and August 5,
coinciding with the critical yield formation stage. The optimal vegetation index
is the green chlorophyll index (Clgreen) for North Kazakhstan, the green wide
dynamic range vegetation index (WDRVIgreen) for Aqmola, and WDRVIgreen
for Qostanay. Comparative analysis reveals that, with limited sample points,
the bidirectional recurrent neural network achieves higher accuracy than other
models for estimating spring wheat yields across the three northern states of
Kazakhstan. Correlation analysis with net primary productivity shows determi-
nation coefficients (R?) of 0.44, 0.94, and 0.77 for North Kazakhstan, Aqmola,
and Qostanay respectively, demonstrating that these models can be applied to
spring wheat yield estimation in northern Kazakhstan, particularly in Aqmola
and Qostanay.

Keywords: rain-fed wheat farming area; remote sensing yield estimation; veg-
etation index; regression model; machine learning; northern Kazakhstan
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1. Introduction

Kazakhstan’ s flour export volume ranks first globally, earning it the designation
as Central Asia’ s granary. The northern region—including North Kazakhstan,
Agmola, and Qostanay—represents a major global wheat and flour export zone,
with wheat accounting for 86% of the cropping structure. Since 2010, Kaza-
khstan has ranked 12th in world wheat and barley production and 5th in export
volume. In contrast, other Central Asian countries, constrained by large eco-
nomic crop proportions, irrational planting structures, and limited arable land,
face severe restrictions on grain production capacity, requiring substantial an-
nual wheat imports from Kazakhstan to meet domestic demand.

Crop yield estimation methods can be categorized into traditional and remote
sensing approaches. Traditional methods typically involve regional manual sur-
veys combined with agronomic and meteorological statistics to establish yield
models. However, these approaches are time-consuming, labor-intensive, and
unsuitable for dynamic spatiotemporal monitoring. Modern remote sensing
technology provides effective tools for regional grain estimation and dynamic
monitoring. Remote sensing-based methods FE®IE three categories: empiri-
cal models, machine learning, and mechanistic models. Empirical models uti-
lize electromagnetic wave information reflected from crop canopies to calculate
vegetation indices that characterize crop conditions, establishing statistical re-
lationships with actual yields to identify optimal indices for yield estimation.
Machine learning models excel at handling high-dimensional variables and cap-
turing complex linear and nonlinear relationships, making them increasingly
valuable in geographical research. Mechanistic models simulate crop growth
processes based on physiological characteristics, considering photosynthesis, res-
piration, and environmental factors such as temperature, precipitation, and soil
fertility, then integrate remote sensing data with crop models for yield predic-
tion.

Recent studies demonstrate the effectiveness of these approaches. Bolton and
Friedl employed the two-band enhanced vegetation index (EVI2) and normalized
difference water index (NDWI) to estimate corn and soybean yields in the cen-
tral United States, finding highest correlations 65-75 days after crop green-up.
Leroux combined MODIS NDVT, land surface temperature (LST), and SARRA
crop model simulations to develop empirical statistical models for yield esti-
mation in Africa’ s Sahel region, showing that combined indices outperformed
NDVI alone. Guo Rui used EVI to estimate winter wheat yields across various
scales in Shandong Province, achieving accuracies no lower than 89.41%. An
Qin compared multiple models in Changchun and found neural networks supe-
rior in stability and accuracy. Zeng Yan employed VT'CI and LAI with support
vector regression to estimate winter wheat yields in Guanzhong Plain, achieving
R? values of 0.94. Huang Jianxi assimilated LAI and evapotranspiration data
into the DSSAT crop model, improving accuracy by 8.2%.

Despite these advances, few studies compare multiple machine learning mod-
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els with conventional methods for spring wheat yield estimation in northern
Kazakhstan. This research addresses this gap by analyzing optimal prediction
timing and vegetation indices using MODIS MOD09A1 and MOD16A2 products
to calculate EVI and crop water stress index (CWSI). We employ linear regres-
sion, random forest, neural networks, and support vector machines to compare
the yield estimation capabilities of eight vegetation indices, aiming to provide
management guidance for local spring wheat production.

2. Study Area and Methods

2.1 Study Area Overview

Northern Kazakhstan includes North Kazakhstan, Qostanay, and Aqmola (Fig-
ure 1). Located between 49°09 -55°45 N and 61°30 -79°30 E, the region fea-
tures a temperate continental climate with concentrated summer precipitation
and long, cold winters. Winter average temperatures range from -15 to -20°C,
dropping to -30°C, while summer averages reach 18-25°C. Annual precipitation
varies by state: 353 mm in North Kazakhstan, 381 mm in Aqmola, and 407
mm in Qostanay. The Ishim and Tobol rivers flow through the region, which
contains numerous freshwater lakes. Dominant land cover types include grass-
land ( 40%), cropland ( 35%), built-up areas, forest, bare land, and water bodies.
The fertile chernozem and brown soils support flat terrain, making this a criti-
cal global wheat export region. However, rain-fed agriculture makes production
highly vulnerable to precipitation variability.

2.2 Data Sources and Processing

Northern Kazakhstan lacks comprehensive meteorological and detailed soil data,
limiting the application of crop growth models. Therefore, we employed empir-
ical models based on remote sensing data. Cropland vector data for northern
Kazakhstan were provided by the CASEarth project (http://data.casearth.cn/),
produced by the remote sensing research team at the Xinjiang Institute of Ecol-
ogy and Geography, Chinese Academy of Sciences. This dataset, derived from
Landsat imagery using object-oriented classification with segmentation, deci-
sion tree classification, and change detection, achieves classification accuracies
exceeding 90%.

We utilized MODIS MODO09A1 surface reflectance data (500 m resolution) to cal-
culate vegetation indices. Yield estimation employed MOD15A2H LAI products
for indirect validation. All MODIS data were processed on the Google Earth
Engine platform, with quality control to extract clear pixels and minimize cloud
contamination effects.
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2.3 Vegetation Index Calculation

Eight frequently used vegetation indices for crop yield and biomass estimation
were selected for analysis (Table 1). Spring wheat in northern Kazakhstan is
sown in early May and harvested in early September. MODO09A1 data were
downloaded for the critical growth period (May-September), and MOD15A2H
LAT products were used for dynamic monitoring. The indices include: Normal-
ized Difference Vegetation Index (NDVT), Two-band Enhanced Vegetation Index
(EVI2), Wide Dynamic Range Vegetation Index (WDRVI), Saturation-adjusted
NDVI (SANDVI), Green Wide Dynamic Range Vegetation Index (WDRVI-
green), Green Chlorophyll Index (Clgreen), Difference Vegetation Index (DVI),
Optimized Soil-Adjusted Vegetation Index (OSAVI), and Normalized Multi-
band Drought Index (NMDI).

2.4 Model Development and Validation

To determine optimal vegetation indices and prediction timing, we calculated
indices for the three states and fitted them to actual spring wheat yields using
univariate linear regression. The coefficient of determination (R?) and root
mean square error (RMSE) evaluated model performance:

N ~
R2 —1_ Zizl(yi - yi>2

1 N
RMSE = J S -
i—1

where y,; and g, are observed and predicted yields, and N is the number of years.

Given limited sample sizes, we employed Bootstrap resampling—randomly se-
lecting N samples with replacement to create training sets, using unsampled
data for validation. This process was repeated 1000 times to optimize model
parameters. The selected optimal indices and timing served as inputs for four
models: linear regression, random forest, support vector machine (linear kernel),
and bidirectional recurrent neural network. For random forest, we optimized
the number of regression trees rather than variable count (single variable input).
For SVM, we trained the cost function. For the neural network, we adjusted
neuron numbers using validation dataset RMSE to determine optimal parame-
ters.
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3. Results
3.1 Optimal Vegetation Indices and Prediction Timing

Figure 2 shows temporal variation in R? between vegetation indices and spring
wheat yield. The normalized multi-band drought index (NMDI) performed
poorly across all three states. In North Kazakhstan, R? values initially in-
creased then decreased, peaking on July 12 with Clgreen (R? = 0.51, P < 0.05).
In Aqmola, R? increased rapidly after July 12, peaking on August 5 with OSAVI
(R? = 0.56, P < 0.05). In Qostanay, most indices showed strong correlations
(R? > 0.5, P < 0.05) around July 12, with WDRVIgreen performing best (R?
= 0.53, P < 0.05).

Table 2 summarizes the optimal indices and dates: North Kazakhstan—Clgreen
on July 12 (R? = 0.51, RMSE = 131.8 kg - hm2); Aqmola—WDRVIgreen on
August 5 (R? = 0.56, RMSE = 143.0 kg - hm~2); Qostanay—WDRVIgreen on
July 12 (R? = 0.53, RMSE = 135.5 kg - hm~2). These periods correspond to
the critical yield formation stage from heading to maturity.

3.2 Model Performance and Spatial Distribution

Using the optimal indices and timing, we estimated spring wheat yields across
the three states (Figure 3). Natural breaks classification in ArcGIS revealed
similar spatial patterns among models. In North Kazakhstan, linear regression,
SVM, and neural networks produced comparable distributions, while random
forest showed more dispersed high-yield areas and weaker clustering. All models
indicated lower yields in the southeast and higher yields in the north-central
region.

In Agmola, SVM exhibited fragmented patterns in southern areas with minimal
regional yield differences. The other three models showed similar distributions,
with higher yields in the north and lower yields in the east and south. In
Qostanay, all four models demonstrated high similarity in spatial distribution,
with higher yields in the north and lower yields in the south. SVM again showed
smaller regional differences.

Overall, despite performance variations, all models consistently identified high-
and low-yield zones. Random forest and SVM exhibited limitations: random
forest tended to overestimate or underestimate yield ranges, while SVM pro-
duced smaller spatial yield variations due to its reliance on support vectors for
hyperplane construction.

3.3 Yield Estimation Accuracy Assessment

We validated results using MOD17A3HGF NPP products, which serve as im-
portant biomass indicators. Correlation analysis between estimated yields and
NPP (Figure 4) showed varying performance (Figure 5). In North Kazakhstan,
regression, SVM, and neural networks performed better than random forest,
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which showed only 29% significant correlation (R? > 0.5) and 18% high cor-
relation (R? > 0.8). Significant correlations were concentrated in western and
southeastern areas, while low correlations dominated the north—a high-yield re-
gion where MODIS data quality may be compromised by high rainfall or mixed
cropping patterns (wheat accounts for only 35% of crops in North Kazakhstan
versus >50% in other states).

In Agmola, all models except SVM showed strong validation results, with neu-
ral networks performing best (94% significant/high correlation), followed by
regression (90%) and random forest (78%). SVM’ s smaller yield differences re-
duced correlation strength. In Qostanay, regression, SVM, and neural networks
achieved high accuracy, while random forest performed poorly (31% weak cor-
relation), particularly in southern areas.

These results demonstrate that with limited sample sizes, bidirectional recurrent
neural networks and regression models offer greater reliability. While regression
saves parameter optimization time and maintains robustness, its transferability
is limited. Neural networks slightly outperform other machine learning models
overall.

4. Discussion

Remote sensing yield estimation establishes model systems linking crop factors
to production. While multi-factor models incorporating temperature, precipi-
tation, and soil fertility can improve accuracy, they require large samples and
risk multicollinearity issues. With small samples, multi-factor combinations
may reduce precision and increase bias. Our single-index approach identifies
optimal vegetation indices and timing for each state, revealing that correlations
strengthen during the heading-to-maturity period (July 12-August 5), the crit-
ical yield formation stage.

Model comparisons show consistent spatial patterns for high- and low-yield
zones across methods. However, random forest tends to overestimate yield
ranges due to bootstrap sampling limitations with small datasets, where similar
regression trees emerge and extreme yields may be undersampled. SVM’ s struc-
tural risk minimization and reliance on support vectors can create hyperplanes
that reduce spatial yield variability. Neural networks and regression models
prove more stable and reliable under data constraints.

Validation using NPP products reveals data quality issues in high-rainfall north-
ern areas of North Kazakhstan and Qostanay, where MODIS products may
contain errors. Additionally, North Kazakhstan’ s diverse cropping structure
(only 35% wheat) complicates pure wheat yield estimation, unlike Aqmola and
Qostanay where wheat exceeds 50% of plantings. This explains lower validation
accuracies in North Kazakhstan.
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5. Conclusion

This study analyzed optimal vegetation indices and prediction timing for spring
wheat yield estimation in northern Kazakhstan. Except for NMDI, vegetation
indices showed strong correlations with yield primarily between July 12 and
August 5, coinciding with the critical yield formation period from heading to
maturity. The optimal indices are Clgreen for North Kazakhstan, and WDRVI-
green for both Agmola and Qostanay.

Model comparisons indicate high spatial consistency in identifying yield zones.
In North Kazakhstan, regression, SVM, and neural networks outperform ran-
dom forest, though all models show relatively lower accuracy due to mixed crop-
ping patterns and potential MODIS data quality issues in high-rainfall northern
regions. In Agmola and Qostanay, neural networks perform best, followed by
regression models, while SVM and random forest show lower precision.

Overall, the bidirectional recurrent neural network provides the most accurate
spring wheat yield estimation for northern Kazakhstan, particularly in Aqmola
and Qostanay, offering valuable support for regional food security management.
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