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Abstract

Heat wave disaster risk information serves as an important reference for the
prevention and control of extreme disaster events under conditions of global
climate warming and rapid urbanization. To address the problem of incomplete
assessment of heat wave hazard factors, based on multi-source satellite remote
sensing data and socioeconomic statistical data, and by incorporating land sur-
face temperature and meteorological data as heat hazard factors, the spatial
distribution map of heat wave risk levels in Ningxia for July-August from 2014
to 2019 was calculated using an assessment model based on the Analytic Hierar-
chy Process (AHP) and map overlay method. The results demonstrate that: the
overall heat wave risk in Ningxia is at a medium-high level, with the area pro-
portion of moderate-high and high-risk regions increasing from 39.52% in 2014
to 62.65% in 2019; influenced by geographical latitude, topography, and climate,
the heat risk distribution exhibits significant spatial variation, with overall risk
in the north being higher than in the south (by approximately 13.27%), and risk
in the west being higher than in the east (by approximately 12.30%); high-risk
areas are concentrated in Zhongwei City and Shizuishan City, which is primar-
ily the result of the combined effects of urban high temperatures and relatively
low healthcare levels. The research findings can help inform the prevention of
urban heat disasters and the formulation of emergency response plans for heat
waves.
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Abstract

Disaster risk information for heat waves provides critical reference value for
preventing and controlling extreme disaster events under conditions of global
warming and rapid urbanization. To address the problem of incomplete assess-
ment of heat wave hazard factors, this study evaluates the spatial distribution
of heat wave risk levels in Ningxia from July to August between 2014 and
2019. The assessment integrates multi-source satellite remote sensing data and
socio-economic statistical data, combining land surface temperature and meteo-
rological data as hazard factors. An analytic hierarchy process and layer overlay
method were employed to calculate risk indices. The results indicate that the
overall heat wave risk in Ningxia is at an upper-medium level, with the propor-
tion of high and higher-risk areas increasing from 39.52% to 62.65% during the
study period. Influenced by geographic latitude, topography, and climate, the
spatial distribution of heat risk shows significant regional differences, with north-
ern regions exhibiting higher risk than southern regions (approximately 13.27%
higher) and western regions showing slightly higher risk than eastern regions
(approximately 12.30% higher). High-risk areas are concentrated in Zhongwei
City and Shizuishan City, primarily due to the combined effects of urban heat
islands and relatively lower medical service levels. These findings can inform
urban heat disaster prevention and emergency response planning for heat wave
events.

Keywords: heat wave; human settlement index; risk assessment; remote sens-
ing; Ningxia

1. Introduction

The Fifth Assessment Report of the IPCC provides overwhelming evidence that
global warming is an undeniable reality. The World Health Organization warns
that if warming continues unabated, climate-related deaths worldwide are pro-
jected to increase dramatically by 2050. The synergistic effects of climate warm-
ing and urbanization have further intensified the scope and severity of heat wave
events. Studies have shown that for every 1°C increase in average temperature,
heat-related morbidity rates increase significantly across various regions. Heat
waves not only cause direct mortality but also trigger surges in respiratory and
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cardiovascular diseases, severely impacting public health and daily life while
causing substantial damage to industrial and agricultural production, tourism,
and transportation systems.

Consequently, heat waves have attracted increasing attention from governments
and academia. Researchers have made substantial progress in understanding
heat wave mechanisms, characteristics, risk assessment, epidemiology, and fore-
casting. For instance, Kuglitsch et al. analyzed heat wave trends in the eastern
Mediterranean using intensity, duration, and frequency metrics, while Inostroza
developed a heat wave risk assessment model for Santiago, Chile, incorporating
daily morbidity rates, electricity demand, and water supply impacts. Zhang
Xiaoyan et al. examined spatiotemporal variations in heat wave risk within the
Dongting Lake basin, and Phung et al. investigated heat-related morbidity in
the Mekong Delta using hierarchical Bayesian analysis.

In recent decades, under the backdrop of global climate change, Ningxia has ex-
perienced increasing frequency and intensity of high-temperature weather events.
Previous studies have assessed spatial distributions of high-temperature days in
Ningxia using meteorological data, analyzed spatiotemporal characteristics of
heat waves in the Loess Plateau region, and examined temperature variation
cycles. While these studies effectively reflect regional heat risk conditions and
provide valuable disaster prevention insights, they have primarily focused on
meteorological data analysis of heat wave intensity and frequency, with limited
attention to socio-economic statistical data. Furthermore, spatial analysis preci-
sion has been constrained by the limited number and location of meteorological
stations.

To address these limitations, this study employs multi-source remote sensing
data and socio-economic statistics to conduct a kilometer-scale heat wave risk
assessment for Ningxia during July-August 2014-2019. By extracting hazard
factors, socio-economic vulnerability factors, and adaptation capacity indica-
tors, and utilizing the analytic hierarchy process (AHP), we construct a compre-
hensive heat wave risk assessment model to explore spatial distribution charac-
teristics and provide scientific support for urban heat disaster prevention and
emergency response.

1.1 Study Area Overview

Ningxia is located in the upper and middle reaches of the Yellow River in
northwestern China, bordering Shaanxi to the east, Inner Mongolia to the west
and north, and Gansu to the south (Figure 1). Geographically positioned be-
tween 35°14 -39°23 N and 104°17 -107°39 E, the region covers a total area of
6.64$x107{4}$ km?. Characterized by a temperate continental arid and semi-
arid climate with distinct seasons, the hottest month is July with average tem-
peratures ranging from 16.9°C to 24.7°C. Annual precipitation varies signifi-
cantly from south to north, ranging between 166.9-647.3 mm. As urbanization
progresses, continuous urban expansion and population growth have intensified
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the urban heat island effect, with cities and populations facing increasing heat-
related risks.

Note: This figure was produced based on the standard map GS(2017)1267 down-
loaded from the National Surveying and Mapping Geographic Information Bu-
reaw’ s standard map service website, with no modifications to the base map
boundaries. The same applies below.

Figure 1. Location and elevation of the study area

1.2 Data Sources and Preprocessing

The selected datasets include land surface temperature (LST), air temperature,
atmospheric pressure, wind speed, precipitation, normalized difference vege-
tation index (NDVI), nighttime light data (DMSP/OLS), and socio-economic
statistics such as permanent population, construction workers, air conditioner
ownership per 100 households, hospital beds, and medical technicians for each
district and county in Ningxia. For raster calculation convenience, all selected
data were projected, resampled to 1 km resolution, and normalized. To mini-
mize noise interference and ensure data quality, multi-temporal MODIS NDVI
data were processed using the annual maximum value composite method, which
effectively captures peak vegetation conditions:

NDVI

max

= Max(NDVI,,NDVI,,..,NDVI,,)

where NDVI .. represents the annual maximum NDVI composite, and

NDVI,,NDVI,, ... NDVI,, are the 16-day NDVI values throughout the year.
Table 1. Detailed description of the data

Data Type Time Resolution Spatial Resolution Source
MODIS LST 8 days 1 km https://modis.gsfc.nasa.gov/
MODIS 16 days 1 km https://modis.gsfc.nasa.gov/
NDVI
DMSP/OLS Annual 1 km http://ngdc.noaa.gov/eog/
Nighttime
Light
DEM - 30 m http://www.gscloud.cn/search
Meteorological Daily - http://data.cma.cn
Data
Socio- Annual - Ningxia
economic Statistical
Statistics Yearbook

2019
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Note: LST = Land Surface Temperature; NDVI = Normalized Difference Veg-
etation Index; DEM = Digital Elevation Model. The same applies below.

2. Research Methods

Following the U.S. Environmental Protection Agency’ s ecological risk assess-
ment guidelines and the IPCC Fifth Assessment Report, and building upon
previous research, this study constructs a heat wave risk assessment framework
for Ningxia based on “heat hazard—socioeconomic vulnerability—heat wave risk
adaptation” (Figure 2).

Figure 2. Frame of heat wave risk assessment

2.1 Heat Hazard Factors

Heat hazard refers to external threats to the system, with temperature and pre-
cipitation being critical indicators. While meteorological stations provide air
temperature data, their limited number and spatial distribution constrain large-
scale analysis precision. Remote sensing has proven effective for monitoring en-
vironmental dynamics, and numerous studies have confirmed significant linear
relationships between land surface temperature and air temperature. Therefore,
this study uses both LST and meteorological data (temperature, precipitation,
wind speed, and pressure) as remote sensing indicators for heat hazard assess-
ment in Ningxia.

2.2 Socioeconomic Vulnerability Factors

Vulnerability factors represent the system’ s capacity to withstand risks. The
human settlement index (HSI) serves as the primary vulnerability assessment
indicator, supplemented by construction workers, population aged 65 and above,
and permanent population as secondary indicators.

2.2.1 Human Settlement Index Factor To improve the spatial distribution
accuracy of population conditions, this study integrates DMSP/OLS nighttime
light data and NDVI to construct the human settlement index:

1-DMSP,,.+ DMSP,, x NDVI

HSI = nor nor ez NDVI,,,.,—0.003DEM
1-DMSP,,+NDVI, . +DMSP, xNDVI, . x mas
where DM SP, . is normalized nighttime light data, NDVI . is the annual

maximum NDVI composite, and DEM is elevation data.
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2.2.2 Other Vulnerability Factors Disaster impacts are closely related to
economic levels and population characteristics. Research indicates that higher
per capita GDP correlates with greater economic vulnerability. Sensitive pop-
ulations—including infants, elderly individuals, and outdoor workers—are more
susceptible to high temperatures. Due to the lack of spatially explicit data for
construction workers, elderly population proportion, and permanent population,
we assume uniform values within each district and convert vector data to raster
format using ArcGIS.

2.3 Heat Wave Risk Adaptation Factors

Adaptation factors represent societal responses to heat disasters, primarily re-
flected in resource allocation. Cities with better living conditions and advanced
medical systems face reduced socioeconomic threats during heat waves. This
study selects per capita GDP, air conditioner ownership per 100 households,
urban hospital beds, and medical technicians as adaptation indicators. Similar
to vulnerability data, these were processed using the same rasterization method
due to limited spatialization approaches.

2.4 Assessment Methods

2.4.1 Analytic Hierarchy Process First, the heat wave risk components
were structured into target (A), criterion (B), and indicator (C) layers. Indica-
tors were pairwise compared based on relative importance to construct judgment
matrices. After consistency verification, indicator weights were determined (Ta-
ble 2). To ensure additivity, all indicator layer data were normalized to a
uniform range of [0,1] using Matlab.

Table 2. Evaluation indexes and weight values of heat waves risk

Target Layer (A) Criterion Layer (B) Indicator Layer (C) Weight

Heat Wave Risk Heat Hazard Bl Land Surface +0.46
Temperature C1
Precipitation C2 +0.24
Socioeconomic Human Settlement +0.31
Vulnerability B2 Index C3
Permanent +0.06

Population C4
Population Aged 65+ 40.06

C5
Construction +0.06
Workers C6

Risk Adaptation B3 Per Capita GDP C7 -0.23
Air Conditioner -0.23
Ownership C8
Hospital Beds C9 -0.23
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Target Layer (A) Criterion Layer (B) Indicator Layer (C) Weight

Medical Technicians -0.23
C10

2.4.2 Layer Overlay Method Using ArcGIS 10.3 spatial overlay tools, cri-
terion layer indicators were calculated as:

B, = i o, C;
i=1

where B, represents criterion layer indicators, C; are indicator layer factors, and
a; are their respective weights. After calculating criterion layer indicators, the
spatial overlay tool was applied again to obtain the Ningxia heat wave risk index

A:

A =0.46B, + 0.31B, — 0.23B,

where B, is the heat hazard indicator, B, is the socioeconomic vulnerability
indicator, and Bs is the risk adaptation indicator.

3. Results
3.1 Heat Wave Hazard Assessment

Based on the selected hazard indicators, rasterized data were loaded into ArcGIS
10.3 spatial overlay tools to calculate the weighted criterion layer indicator B,
producing the spatial distribution of heat hazard for July-August 2014-2019
(Figure 3). High and higher hazard areas are primarily distributed in Shizuishan
City, western Yinchuan City, western Wuzhong City, and northern Zhongwei
City—regions characterized by high population pressure, dense urban buildings,
and extensive bare land and cultivated areas. In contrast, low and lower hazard
areas are concentrated in Guyuan City, primarily due to its higher elevation
(temperature decreases with altitude) and smaller proportion of built-up land,
resulting in relatively weaker urban heat island effects.

Figure 3. Spatial distributions of hazard factors of heat wave

3.2 Socioeconomic Vulnerability Assessment

Using the selected vulnerability indicators, rasterized data were processed
through ArcGIS 10.3 spatial overlay tools to calculate criterion layer indicator
B,, generating the vulnerability spatial distribution (Figure 4). High and
higher vulnerability areas are mainly found in western Wuzhong City, Zhongwei
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City, and northwestern Guyuan City, where population densities are relatively
high compared to surrounding areas. In 2018, some areas of Yinchuan City and
Shizuishan City showed higher vulnerability due to accelerated urbanization
and increased construction activities. Lower vulnerability areas are located in
southern Yinchuan City and surrounding Shizuishan City, primarily comprising
agricultural land and bare land with low population density.

Figure 4. Spatial distributions of vulnerability factors of heat wave

3.3 Heat Wave Risk Adaptation Assessment

Based on selected adaptation indicators, rasterized data were processed using
ArcGIS 10.3 spatial overlay tools to calculate criterion layer indicator Bs, pro-
ducing the spatial distribution of heat wave risk adaptation (Figure 5). High
adaptation areas are concentrated in central Yinchuan City, where superior
medical services and higher air conditioner coverage enhance adaptive capacity.
With continuous socioeconomic development, average risk adaptation across
Ningxia has increased annually.

Figure 5. Spatial distributions of adaptation factors of heat wave

3.4 Risk Assessment and Spatial Analysis

The integrated assessment system was applied using AHP and spatial overlay of
normalized indicators to obtain the Ningxia heat wave risk index. The natural
breaks method classified risk levels into five categories: low (0.037-0.273), lower
(0.273-0.350), medium (0.350-0.405), higher (0.405-0.465), and high (0.465-
0.737) risk zones.

The results reveal that heat wave risk in Ningxia generally increases from north-
east to southwest (Figure 6). High and higher-risk areas account for 62.65%
of the total area, concentrated in central Ningxia at relatively low elevations.
These regions feature high population density, extensive built-up areas, strong
urban heat island effects, low vegetation coverage, and soils dominated by
sierozem with low heat capacity. Combined with long sunshine hours and in-
tense radiation, these factors cause rapid temperature increases. Additionally,
relatively lagging economic development and high vulnerability contribute to
elevated heat risks. The lowest risk areas are concentrated in southern and
north-central Ningxia, where higher precipitation, greater humidity, and denser
vegetation reduce hazard and vulnerability, while higher economic development
and better living conditions enhance adaptation capacity.

Figure 6. Spatial distributions of the heat wave risk of Ningxia

Using Hongsipu District Government as the center, risk levels were analyzed
along north-south and east-west transects (Figure 7). Central Ningxia shows
substantially higher risk than other areas, with northern risk exceeding southern
risk by an average of 12.30% annually. This pattern reflects decreasing precip-
itation and increasing evaporation from south to north, coupled with higher
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elevations and vegetation coverage in the south that reduce heat hazard. West-
ern risk is 13.27% higher than eastern risk, with both regions located in the
central arid zone characterized by dry conditions, low vegetation coverage, and
soils dominated by sierozem and aeolian sandy soil. However, denser popula-
tion in the west results in slightly higher overall risk. The western profile shows
smaller fluctuations, indicating less spatial variation in risk intensity.

Figure 7. Variations of heat risk index in different directions

Significant spatial variation exists among cities and counties (Figure 8). Zhong-
wei City exhibits the highest risk, with high and higher-risk areas comprising
92.16% of its territory, followed by Shizuishan City (74.58%) and Wuzhong City
(61.56%). Yinchuan City and Guyuan City show relatively lower risk, with high
and higher-risk areas accounting for 36.68% and 33.66%, respectively.

Figure 8. Area proportions of different heat risk levels of each district
in Ningxia

4. Discussion and Conclusions
4.1 Discussion

This study evaluated heat wave disaster risk in Ningxia using 10 indicators
selected according to regional climate characteristics and risk formation mecha-
nisms. The results demonstrate increasing heat wave risk in Ningxia from 2014
to 2019, consistent with research showing rapidly increasing regional heat wave
risks in China and particularly in northwestern regions. Studies indicate that
northern Ningxia is among the fastest warming areas in China, with tempera-
ture increases of 0.36-0.42°C per decade, aligning with our findings.

Heat wave formation in Ningxia results from combined climatic, topographic,
and anthropogenic factors. Compared with previous studies, our research in-
corporates population spatial distribution and socioeconomic factors, which are
closely related to heat risk in Ningxia, thereby improving evaluation accuracy.
However, heat wave occurrence is also influenced by land use patterns, urban
air pollution, and individual health conditions, which should be considered in
future research.

4.2 Conclusions

This study establishes a comprehensive heat wave risk assessment framework
integrating remote sensing and socio-economic data. Key findings include:

1. Ningxia’ s heat wave risk is at an upper-medium level overall, with high
and higher-risk areas increasing from 39.52% in 2014 to 62.65% in 2019,
showing an expanding trend.
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2. Significant spatial heterogeneity exists: northern risk exceeds southern
risk by approximately 13.27%, western risk exceeds eastern risk by about
12.30%, and central regions show the highest risk.

3. High-risk areas are concentrated in Zhongwei and Shizuishan cities due to
urban heat islands and relatively lower medical service levels.

4. Among cities, Zhongwei shows the highest risk (92.16% high/higher-risk
area), followed by Shizuishan (74.58%) and Wuzhong (61.56%), while
Yinchuan and Guyuan exhibit relatively lower risk.

These results provide scientific support for urban heat disaster prevention and
emergency response planning in Ningxia.
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