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Abstract
Most existing algorithms utilizing Graph Neural Networks for text classification
have overlooked the over-smoothing problem inherent in GNNs and the discrep-
ancies arising from text graph topological differences, leading to suboptimal
performance in text classification. To address this issue, we propose WACD, a
method to measure the smoothness of multiple text graph representations, and
RWACD, a regularization term to mitigate over-smoothing. Subsequently, we
introduce ARS, an attention- and residual-based network architecture to com-
pensate for the loss of text information caused by graph topological differences.
Finally, we propose RA-GCN, a Graph Convolutional Neural Network-based
text classification algorithm. RA-GCN employs ARS to fuse text representa-
tions in the graph representation learning layer and uses RWACD to mitigate
over-smoothing in the readout layer. Experimental results on six Chinese and
English datasets demonstrate the classification performance of RA-GCN, and
multiple comparative experiments validate the effectiveness of RWACD and
ARS.
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Abstract: Most existing text classification algorithms based on graph neu-
ral networks overlook the over-smoothing problem inherent in GNNs and the
errors introduced by variations in text graph topology, resulting in subopti-
mal classification performance. To address these issues, we propose WACD, a
method for measuring the smoothness of multiple text graph representations,
and RWACD, a regularization term designed to suppress over-smoothing. We
then introduce ARS, an attention-based residual network structure that com-
pensates for text information loss caused by graph topology differences. Finally,
we present RA-GCN, a graph convolutional neural network text classification
algorithm. RA-GCN employs ARS to fuse text representations in the graph rep-
resentation learning layer and utilizes RWACD in the readout layer to suppress
over-smoothing. Experiments on six Chinese and English datasets demonstrate
the classification performance of RA-GCN, with multiple comparative experi-
ments validating the effectiveness of RWACD and ARS.

Keywords: text classification; graph convolutional neural network; over-
smoothing; attention mechanism

0 Introduction
Text classification serves as a fundamental problem in natural language pro-
cessing and has been applied to numerous real-world scenarios such as spam
detection, news categorization, and sentiment recognition. The performance of
text classification models largely depends on the quality of text representations.
Deep learning-based methods avoid manual rule and feature engineering by auto-
matically learning semantically meaningful representations [?]. While CNN and
RNN-based deep learning approaches effectively capture semantic and syntactic
features in local contiguous sequences, they still face limitations in extracting
non-contiguous words and long-distance semantic information [?].

In recent years, graph neural networks have mitigated these limitations. Yao [?]
constructed a single corpus-wide text-word heterogeneous graph and employed
GCN [?] to learn word co-occurrence information, updating text and word rep-
resentations for classification. Wu [?] simplified GCN into SGC by removing
nonlinear activation functions and collapsing weight matrices between consec-
utive layers, achieving promising results on single heterogeneous graph-based
data. However, single heterogeneous graph methods are unsuitable for testing
new texts and consume substantial memory space. Consequently, Huang [?]
constructed individual graph data for each text while sharing global word repre-
sentations and edge weights to better capture local features and reduce memory
consumption. Zhang [?] built unique graph data for each text to improve the
inductive learning capability of graph methods, using GGNN [?] to update word
features and obtain text representations and categories. Nevertheless, these ap-
proaches ignore the over-smoothing problem in GNNs. This paper focuses on the
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graph classification direction based on per-text graph representations [?, ?, ?]
to mitigate over-smoothing and enhance text classification performance.

During GNN development, Li [?] first drew attention to over-smoothing [?],
demonstrating that graph convolution is a special form of Laplacian smooth-
ing and concluding that smoothing operations are the key mechanism enabling
GCN to work. However, after multiple rounds of Laplacian smoothing, node fea-
tures converge to similar values—a phenomenon known as over-smoothing. Over-
smoothing renders nodes indistinguishable and degrades network performance.
Chen [?] verified that smoothing is essential to GNNs, proposed MAD (Mean Av-
erage Distance) to measure smoothness, analyzed over-smoothing causes from a
graph topology perspective, identified excessive mixing of information and noise
as a key factor, and introduced the MADreg regularization term and AdaGraph
iterative training algorithm. Other researchers have proposed optimizing artifi-
cially constructed graph topology through model refinement to improve perfor-
mance and suppress over-smoothing. Wang [?] expanded node receptive fields
through multi-hop attention mechanisms, enabling remote interactions between
nodes not directly connected but within multiple hops, thereby filtering high-
frequency noise information. Yang [?] utilized pointer networks [?] to identify
relevant nodes in multi-order neighborhoods and employed one-dimensional con-
volutions to extract high-level features, filtering noise information to alleviate
over-smoothing. From a network structure perspective, literature [?] stacked
deep GCNs using residual connections, dense connections, and dilated convo-
lutions, significantly improving GCN performance on point cloud semantic seg-
mentation tasks while mitigating over-smoothing. From a data perspective,
Rong [?] randomly dropped a certain proportion of edges during each train-
ing period to serve as both a data augmenter and message passing decelerator,
reducing the convergence speed of over-smoothing.

Based on literature [?, ?] and our experimental observations, when using GCN
for text graph representation learning, smoothing causes word features to con-
verge to similar values, inevitably making word representations alike and dam-
aging text classification performance. Therefore, to better measure and ana-
lyze the smoothness of word nodes for text classification, we propose WACD
(Weighted Average Cosine Distance), a method for measuring the smoothness
of multiple text graph representations. Unlike MAD [?], which applies to single
graphs, WACD operates on multiple graphs, making it more suitable for our
focused graph classification direction. Drawing from over-smoothing suppres-
sion methods in node classification, we propose RWACD (Regularization based
on Weighted Average Cosine Distance) as a regularization term to suppress
over-smoothing. Subsequently, we introduce ARS (Attention-based Residual
Network Structure) to compensate for text information loss caused by graph
topology differences. Unlike [?], ARS requires neither iterative training nor
searching for important relevant nodes, using only attention mechanisms and
residual structures to accelerate training speed. Finally, we present RA-GCN
(RWACD-ARS based Graph Convolutional Neural Network Text Classification
Algorithm). RA-GCN employs ARS to fuse text representations in the graph
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representation learning layer and utilizes RWACD in the readout layer to sup-
press over-smoothing. Experiments on six Chinese and English datasets demon-
strate RA-GCN’s performance, with multiple comparative experiments validat-
ing the roles of RWACD and ARS.

Overall, this paper makes the following contributions:

a) We propose WACD for measuring the smoothness of multiple text graph
representations and introduce RWACD to suppress over-smoothing.

b) We propose ARS, an attention and residual-based network structure that
compensates for text information loss caused by graph topology differences
while suppressing over-smoothing.

c) We present RA-GCN, a graph convolutional neural network text classifica-
tion algorithm based on RWACD and ARS, whose performance is demon-
strated on six Chinese and English datasets.

d) We conduct comprehensive comparative experiments validating that both
RWACD and ARS can suppress over-smoothing and improve model per-
formance, confirm the correctness of compensating for text information
loss from a graph topology perspective, and analyze and discuss the over-
smoothing phenomenon in the per-text graph representation-based graph
classification direction.

1 Related Research
Our proposed algorithm addresses the over-smoothing problem in text graph
classification, representing an improvement and refinement of the method in
literature [?]. Therefore, this section focuses on introducing literature [?], which
primarily targets over-smoothing in node classification by proposing MAD for
measuring graph representation smoothness, the MADreg regularization term
for suppressing over-smoothing, and the AdaGraph iterative training algorithm.

1.1 MAD and MADreg

MAD measures graph representation smoothness based on cosine distance.
Given a graph representation matrix 𝐻 ∈ ℝ𝑛×𝑑, where 𝑛 is the number of nodes
and 𝑑 is the feature dimension, the distance matrix 𝐷 is calculated through
cosine distance. The distance between each node pair is computed as:

𝐷𝑖,𝑘 = 1 − 𝐻𝑖,∶ ⋅ 𝐻𝑘,∶
‖𝐻𝑖,∶‖‖𝐻𝑘,∶‖

, 𝑖, 𝑘 ∈ [1, 2, ..., 𝑛]

where 𝐻𝑖,∶ represents the 𝑖-th row of graph representation 𝐻. Cosine distance
is used because it is unaffected by the absolute values of node vectors, better
reflecting graph representation smoothness [?].
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To obtain cosine distances between target node pairs, a target mask matrix
𝑀𝑡𝑔𝑡 ∈ {0, 1}𝑛×𝑛 is constructed to derive the distance matrix for target node
pairs:

𝐷𝑡𝑔𝑡 = 𝑀𝑡𝑔𝑡 ⊙ 𝐷

where ⊙ denotes element-wise multiplication. The average of non-zero values
per row is then calculated:

𝐷𝑡𝑔𝑡,𝑖 = 1
∑𝑛

𝑘=1 𝑀𝑡𝑔𝑡,𝑖𝑘

𝑛
∑
𝑘=1

𝐷𝑡𝑔𝑡,𝑖𝑘

where 𝑥 = 0 if 𝑥 = 0, and 𝑥 = 1 otherwise. By averaging non-zero values in
𝐷𝑡𝑔𝑡, MAD is obtained for given target nodes:

𝑀𝐴𝐷 = 1
𝑛

𝑛
∑
𝑖=1

𝐷𝑡𝑔𝑡,𝑖

Literature [?] observed that in node classification, two nodes with small topo-
logical distances are more likely to belong to the same category. Therefore, they
proposed using graph topology to approximate node categories and calculated
the difference between remote and neighbor node MAD values to estimate graph
representation over-smoothing, termed MADGap:

𝑀𝐴𝐷𝐺𝑎𝑝 = 𝑀𝐴𝐷𝑟𝑚𝑡 − 𝑀𝐴𝐷𝑛𝑒𝑏

where 𝑀𝐴𝐷𝑟𝑚𝑡 is the MAD value for remote nodes and 𝑀𝐴𝐷𝑛𝑒𝑏 is the MAD
value for neighbor nodes in the graph topology. Introducing coefficient 𝜆 yields
the over-smoothing suppression regularization term MADreg:

𝑀𝐴𝐷𝑟𝑒𝑔 = 𝜆 × 𝑀𝐴𝐷𝐺𝑎𝑝

1.2 AdaGraph

Literature [?] observed that optimizing graph topology using true labels mit-
igated over-smoothing and improved node classification performance, leading
to the proposed iterative training algorithm AdaGraph for optimizing graph
topology. The process involves first training a GNN, then optimizing the graph
topology by deleting inter-class edges and adding intra-class edges based on pre-
diction results. Repeating this process multiple times reduces graph topology
differences, suppresses over-smoothing, and enhances node classification perfor-
mance.
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2 Proposed Algorithm
MAD, MADreg, and AdaGraph are suitable for single graph representation
learning, whereas our focus is on graph classification based on multiple text
graph representations. Consequently, literature [?] cannot be directly applied
to our direction. Moreover, MADreg requires finding optimal orders to calculate
MADGap, and AdaGraph needs iterative training to optimize graph topology,
increasing training time and differing significantly from our focus.

Therefore, we propose WACD (Weighted Average Cosine Distance) for mea-
suring smoothness across multiple text graph representations and RWACD
for suppressing over-smoothing. We also introduce ARS, an attention and
residual-based network structure that compensates for information loss caused
by text graph topology differences while suppressing over-smoothing. Finally,
we present RA-GCN, a graph convolutional neural network text classification
algorithm.

2.1 WACD and RWACD

For a single text graph representation 𝐻 ∈ ℝ𝑚×𝑑, where 𝑚 is the number of word
nodes and 𝑑 is the word embedding dimension, WACD measures smoothness
across multiple text graphs. Higher values indicate lower smoothness and lower
over-smoothing probability, while lower values indicate higher smoothness and
greater over-smoothing probability.

Treating all word pairs as target nodes, we calculate the Average Cosine Distance
(ACD) for each text graph using equations (1)-(5). Weighted coefficients 𝜇𝑖
for each text’s ACD are computed based on text length to better estimate
smoothness across multiple text graph representations:

𝜇𝑖 = 𝑙𝑖
∑𝑏

𝑖=1 𝑙𝑖

where 𝑏 represents the number of texts and 𝑙𝑖 is the length of the 𝑖-th text. The
WACD calculation process is:

𝑊𝐴𝐶𝐷 =
𝑏

∑
𝑖=1

𝜇𝑖 × 𝐴𝐶𝐷𝑖

The regularization term RWACD is calculated as:

𝑅𝑊𝐴𝐶𝐷 = 1 − 𝑊𝐴𝐶𝐷

WACD better measures smoothness across multiple text graphs through text
length-weighted averaging of ACD. RWACD reduces over-smoothing probability
by decreasing text graph representation smoothness. Compared to MADreg [?],
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RWACD requires no optimal order search and is more suitable for our focused
text graph classification direction.

2.2 ARS

Drawing from graph topology discussions in node classification [?], we argue
that artificially constructed text graph topology deviates from the underlying
true text topology, causing text information loss in graph representation learn-
ing. Therefore, we propose ARS, an attention and residual network structure
for each network layer to mitigate this phenomenon while suppressing over-
smoothing. Unlike [?], ARS requires neither iterative training nor searching
for important relevant nodes, using only attention and residual mechanisms to
accelerate training speed, making it more suitable for our focus. ARS will be
detailed in Section 2.3.2.

2.3 RA-GCN

Figure 1 illustrates the RA-GCN algorithm framework. To enhance clarity, the
framework uses red, blue, and green colors to highlight computational flows:
red indicates GCN forward computation, blue shows ARS forward computa-
tion, and green represents RWACD forward computation. Overall, RA-GCN
comprises three components: a text processing layer, a graph representation
learning layer, and a readout layer. The text processing layer converts texts
into inputs for graph representation learning. The graph representation learn-
ing layer learns text representations, primarily consisting of GCN and ARS
components—GCN learns graph-level text representations while ARS compen-
sates for information loss due to text graph topology differences. The readout
layer obtains text categories, uses cross-entropy loss, and employs RWACD to
suppress over-smoothing.

Below we detail each component and process.

2.3.1 Text Processing Layer As shown in Figure 1, for text 𝑇 =
{𝑤1, 𝑤2, ..., 𝑤𝑛} where 𝑛 is the word count and 𝑤𝑖 is a word, the text graph is
represented as 𝐺 = (𝑉 , 𝐸, 𝑋), where 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑚} is the set of unique
word nodes (|𝑉 | = 𝑚 ≤ 𝑛), 𝐸 is the edge set, and 𝑋 ∈ ℝ𝑚×𝑑 is the initial word
feature matrix. Sliding windows construct the word node set 𝑉 and edge set
𝐸, where 𝐸 indicates connections between nodes 𝑣𝑖 and 𝑣𝑘 (1 if connected, 0
otherwise). The adjacency matrix 𝐴 ∈ ℝ𝑚×𝑚 is constructed, and the degree
matrix 𝐷 = diag(𝑑1, 𝑑2, ..., 𝑑𝑚) is derived, where 𝑑𝑖 is the degree of node 𝑣𝑖.
The normalized adjacency matrix is:

̂𝐴 = 𝐷−1/2𝐴𝐷−1/2

The initial word feature matrix 𝑋 is built using pre-trained word embeddings,
where 𝑑 is the word embedding dimension.
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2.3.2 Graph Representation Learning Layer As shown in Figure 1, the
graph representation learning layer consists of GCN and ARS components.
GCN learns word co-occurrence information to obtain text graph representa-
tions, while ARS uses attention and residual structures to produce the current
layer’s text representation output.

1) GCN: For the 𝑙-th layer’s text graph representation:

𝐻 𝑙+1
𝑔𝑐𝑛 = ̂𝐴𝐻 𝑙𝑊 𝑙+1

𝑔𝑐𝑛

where 𝐻 𝑙 ∈ ℝ𝑚×𝑑 is the 𝑙-th layer’s text representation output, 𝑊 𝑙+1
𝑔𝑐𝑛 is the

learnable parameter matrix, and 𝜌 is the activation function (LeakyReLU).

2) ARS: First, attention scores are assigned to all previous layers’text rep-
resentation outputs and the current layer’s text graph representation:

𝜆𝑖 = 𝜎 ( 1
𝑑𝑚𝑒𝑎𝑛

(𝑊𝜆𝐻𝑡𝑜𝑡𝑎𝑙,𝑖 + 𝑏𝜆)) , 𝑖 ∈ [0, 1, ..., 𝑙]

where 𝐻𝑡𝑜𝑡𝑎𝑙 = [𝐻0, 𝐻1, ..., 𝐻 𝑙, 𝐻 𝑙+1
𝑔𝑐𝑛], 𝐻𝑡𝑜𝑡𝑎𝑙,𝑖 represents different dimensional

text representations, 𝜆𝑖 are attention scores for each representation, 𝑊𝜆 and 𝑏𝜆
are learnable parameters, and 𝜎 is the sigmoid function.

Subsequently, the current layer’s text representation output 𝐻 𝑙+1 is obtained
using attention scores and residual structure:

𝐻 𝑙+1 =
𝑙

∑
𝑖=0

𝜆𝑖𝐻𝑡𝑜𝑡𝑎𝑙,𝑖

2.3.3 Readout Layer As shown in Figure 1, the readout layer aggregates
word features using attention mechanisms to obtain the final text representation
and predict text categories. The final text representation 𝐺 is calculated as:

ℎ𝑖 = tanh(𝑊ℎ𝐻𝐿
𝑖 + 𝑏ℎ)

𝛼𝑖 = 𝜎(𝑊𝛼ℎ𝑖 + 𝑏𝛼)

𝐺 =
𝑚

∑
𝑖=1

𝛼𝑖ℎ𝑖

where 𝜎 is the sigmoid function, 𝛼𝑖 represents importance coefficients assigned to
words, tanh further transforms word features, and 𝑊ℎ, 𝑏ℎ, 𝑊𝛼, 𝑏𝛼 are learnable
parameter matrices. Additionally, to leverage both all words and important
words, average and important features are extracted:
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𝐺𝑎𝑣𝑔 = 1
𝑚

𝑚
∑
𝑖=1

ℎ𝑖

𝐺𝑚𝑎𝑥 = 𝑚max
𝑖=1

ℎ𝑖

𝐺 = [𝐺𝑎𝑣𝑔; 𝐺𝑚𝑎𝑥]

Finally, the softmax function predicts text categories. The objective function is
cross-entropy loss with the RWACD regularization term:

̂𝑦 = softmax(𝑊𝑦𝐺 + 𝑏𝑦)

ℒ = − ∑
𝑖

𝑦𝑖 log( ̂𝑦𝑖) + 𝜉 × 𝑅𝑊𝐴𝐶𝐷

where ̂𝑦 is the predicted text category, 𝑊𝑦 and 𝑏𝑦 are learnable parameters, 𝑦
is the true text category, and 𝜉 is the RWACD coefficient.

3 Experiments
3.1 Experimental Environment

The experimental environment for this algorithm is shown in Table 1.

Table 1. Experimental Environment

Component Configuration
OS Ubuntu 20.04.3
Python 3.7.11
GPU Nvidia GTX 2060S
IDE Pycharm
CUDA Version -
Deep Learning Framework Tensorflow 2.4.1

3.2 Datasets

We evaluate RA-GCN’s performance on six datasets. Table 2 presents dataset
statistics, where * indicates no validation set provided.

Table 2. Dataset Information

Dataset Train Val Test Classes Avg Length
MR - - - 2 -
Tnews - - - 15 -
Ohsumed* - - - 23 -
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Dataset Train Val Test Classes Avg Length
R8 - - - 8 -
SST-5 - - - 5 -
SST-2 - - - 2 -

a) MR Dataset: A 2-class English sentiment dataset with positive/negative
polarity.

b) Tnews Dataset [?]: A Chinese news classification dataset with 15
categories.

c) Ohsumed Dataset: An English medical abstracts classification dataset
for cardiovascular diseases with 23 categories.

d) R8 Dataset: An English Reuters news classification dataset with 8
categories.

e) SST-2 and SST-5 Datasets: English sentiment classification datasets
with 2 and 5 classes, respectively.

3.3 Baselines

Since literature [?] focuses on node classification rather than our targeted text
graph classification direction, we compare only with the following baselines:

a) Traditional deep learning text classification methods: TextCNN [?] and
TextRNN [?].

b) Single text-word heterogeneous graph-based methods: TextGCN [?] and
TextSGC [?].

c) Per-text graph representation-based methods: Huang [?], P-GCN and P-
SGC (RA-GCN without RWACD and ARS), and RA-GCN.

3.4 Parameter Settings

For datasets without validation sets, we randomly split the training set into a 9:1
ratio for actual training and validation. For initial word features, English texts
use 200-dimensional pre-trained GloVe [?] vectors, while Chinese texts use 300-
dimensional vectors trained on Sogou news [?]. Out-of-vocabulary (OOV) words
are randomly sampled from a uniform distribution [-0.01, 0.01]. The algorithm
uses the Adam [?] optimizer with a learning rate of 0.001; other parameters are
adjusted per dataset. Model performance is measured using Accuracy.
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3.5 Experimental Results

Table 3 shows the accuracy of each model across six datasets, with results aver-
aged over five training runs. RA-GCN achieves the best results on all datasets.

Table 3. Experimental Results

Model MR Ohsumed SST-5 SST-2 Tnews R8
TextCNN 0.7775 - - - - -
TextRNN 0.7768 - - - - -
TextGCN 0.7674 - - - - -
TextSGC - - - - - -
Huang - - - - - -
P-GCN - - - - - -
P-SGC - - - - - -
RA-GCN Best Best Best Best Best Best

Compared to traditional methods, CNN and RNN underperform graph-based
methods on most datasets, proving graph models benefit text classification. Per-
text graph classification models (Huang, P-GCN, P-SGC, RA-GCN) outperform
single heterogeneous graph models (TextGCN, TextSGC), particularly on short-
text datasets like MR and SST-2, validating the effectiveness of per-text graph
representation methods.

RA-GCN shows significant improvements on short-text datasets (MR, SST-
2, SST-5, Tnews) but smaller gains on long-text datasets. Since constructed
text graph topology differs from the true underlying topology, short texts have
smaller graph scales where word information propagates extensively and rapidly
under GCN’s message-passing mechanism. RWACD and ARS effectively sup-
press over-smoothing and compensate for topology-induced information loss,
enabling RA-GCN to learn more accurate representations. However, long texts
have larger graph scales where topology differences impede smooth information
propagation, making it harder for models to learn accurate representations and
limiting RWACD and ARS’s effectiveness, resulting in less significant perfor-
mance improvements.

3.6 Comparative Experiments and Over-smoothing Analysis

This subsection uses GCN and SGC as bases to validate RWACD and ARS’s
roles in improving performance and suppressing over-smoothing, analyzing the
over-smoothing phenomenon. Experiments are conducted on MR and SST-5
datasets, with four samples from the MR test set selected for visualization and
analysis (sample descriptions in Table 4).

Table 4. Sample Description
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Sample Class
a magnificent drama well worth tracking
down

1

an awkwardly contrived exercise in
magic realism

0

i’ll put it this way if you’re in the
mood for a melodrama narrated by
talking fish, this is the movie for you

1

children and adults enamored of all
things pokemon won’t be disappointed

0

We construct models containing RWACD or ARS individually (RW-GCN, RW-
SGC, ARS-GCN, ARS-SGC) and models containing both or neither (P-GCN,
P-SGC, RA-GCN, RA-SGC). We examine their performance on MR and SST-
5 to explore RWACD and ARS’s impact. Different symbols denote different
models (Table 5).

Table 5. Model Description

Model Symbol
P-GCN, P-SGC �
RW-GCN, RW-SGC (RW-models) �
ARS-GCN, ARS-SGC (ARS-models) �
RA-GCN, RA-SGC (RA-models) �

3.6.1 Roles of RWACD and ARS 1) Impact of RWACD and ARS on
Classification Performance

Table 6 shows the text classification accuracy of eight models on MR and SST-5
test sets, averaged over three training runs.

Table 6. Comparative Experimental Results

Model MR SST-5
P-GCN - -
P-SGC - -
RW-GCN - -
RW-SGC - -
ARS-GCN - -
ARS-SGC - -
RA-GCN Best Best
RA-SGC - -
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From the text graph construction perspective, all eight GCN/SGC-based mod-
els outperform TextGCN and TextSGC, highlighting the advantages of per-text
graph classification. Regarding RWACD and ARS inclusion, P-models (with-
out both) perform worst. RW-models show slight improvements over P-models,
proving RWACD enhances performance. ARS-models demonstrate superior per-
formance on MR and SST-5, outperforming both P- and RW-models, confirming
the correctness of optimizing performance from a graph topology perspective.
RA-models achieve optimal performance, proving RWACD and ARS jointly im-
prove classification performance.

2) Impact of RWACD and ARS on Different Layer Counts

Figure 2 shows accuracy and WACD curves on the MR test set across layers.
P-models perform worst in both metrics. As layers increase, P-models’WACD
gradually decreases while accuracy first increases then continuously declines, in-
dicating that moderate smoothing benefits performance but excessive smooth-
ing harms it. RW-models show slight improvements, demonstrating RWACD
reduces over-smoothing. ARS-models exhibit significant improvements, show-
ing that compensating for topology-induced information loss substantially en-
hances performance and suppresses over-smoothing. RA-models achieve the
best results, confirming that RWACD and ARS jointly improve performance
and suppress over-smoothing.

3) Analysis of ARS’s Role

ARS-models’outstanding performance stems from compensating for text infor-
mation loss caused by graph topology differences. To further validate ARS, we
designed experiments to test whether models can achieve performance compa-
rable to intact graph data when trained on corrupted graphs. Using 2-layer
P-GCN and ARS-GCN as baselines, we removed the readout layer’s attention
mechanism, randomly deleted edges to corrupt graph topology, and gradually
increased deletion ratios. Unlike [?], we applied this to all texts including the
test set, maintaining topology during training. To highlight results, P-GCN’s
maximum deletion ratio was 20% while ARS-GCN’s was 50%. Results on MR
are shown in Figure 3.

On intact graphs, ARS-GCN significantly outperforms P-GCN, confirming that
artificially constructed topology deviates from true underlying topology, validat-
ing ARS’s motivation. As deletion ratios increase, P-GCN’s performance drops
sharply, while ARS-GCN maintains performance comparable to or exceeding P-
GCN’s even at ~30% deletion, proving ARS compensates for topology-induced
information loss and validating the topology optimization approach.

The ARS-GCN curve alone shows sharp performance decline beyond 20% dele-
tion because high deletion ratios create isolated nodes without connections, pre-
venting information exchange and hindering the model from capturing word
co-occurrence information. However, at 0%-20% deletion, isolated nodes are
rare, and ARS successfully compensates for topology differences, maintaining
performance near the original ARS-GCN level.
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To observe ARS’s behavior more clearly, we examine classification performance
on Table 4 samples. With ARS-GCN using 30% deletion ratio and P-GCN using
intact data, results (averaged over three runs) are shown in Table 7, where √
indicates correct prediction and × indicates incorrect prediction.

Table 7. Model Prediction Results for 4 Samples

Sample Class P-GCN (Intact) ARS-GCN (30% deletion)
1 1 0.000/1.000 (√) 0.996/0.004 (√)
2 0 0.239/0.761 (√) 0.358/0.642 (×)
3 1 0.022/0.978 (√) 0.973/0.027 (√)
4 0 0.384/0.616 (√) 0.810/0.190 (√)

ARS-GCN’s predictions on the first three samples approach P-GCN’s results,
while on the fourth sample, ARS-GCN predicts correctly where P-GCN fails.
This demonstrates that ARS-GCN with 30% deletion performs comparably or
even superiorly to P-GCN on intact data, validating Figure 3’s results from a
real sample perspective.

In summary, artificially constructed text graph topology differs from true un-
derlying topology, and ARS compensates for this difference-induced information
loss, improving model performance.

4) Case Study

Building on Table 4 samples, we visualize average distances between words
within the first two samples (Figure 4), ACD value curves across layers (Fig-
ure 5), and predictions on samples 3-4 by different-layer P-GCN and RA-GCN
models (Table 8).

Table 8. Model Predictions for Sample 3 and Sample 4

Model (Sample) Layer 1 Layer 2 Layer 3 Layer 4
P-GCN (Sample 3) - - - -
ARS-GCN (Sample 3) - - - -
P-GCN (Sample 4) - - - -
ARS-GCN (Sample 4) - - - -

Figure 4 shows RA-GCN significantly increases average distances between words
(e.g.,“worth”rises from 0.12 to 0.61). In Figure 5, P-GCN’s ACD values approach
0 by the third layer, making words similar—consistent with literature [?]’s
over-smoothing description. RA-GCN’s ACD values show clear improvement,
demonstrating RWACD and ARS suppress over-smoothing. In Table 8, P-GCN
predicts correctly 3 times while RA-GCN predicts correctly all times, showing
RWACD and ARS improve sample classification performance.
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In summary, using P-models as baseline, over-smoothing in our focus direc-
tion occurs per-text-graph, emerging in shallow networks and increasing with
network stacking, harming performance. RWACD and ARS both reduce over-
smoothed samples, suppress over-smoothing, and improve classification perfor-
mance.

3.6.2 Over-smoothing Phenomenon Analysis Figure 5 in Section 3.6.1
shows that 3-layer P-GCN already drives sample ACD toward 0, exhibiting
over-smoothing as described in literature [?]. Figure 2 shows P-models’WACD
decreasing with layers while accuracy first rises then falls, indicating moderate
smoothing benefits classification but excessive smoothing harms it. We hypoth-
esize that in per-text graph representation-based classification, over-smoothing
emerges in some samples as layers stack, with over-smoothed texts increasing
and affecting performance.

To verify this, we analyze how the number of texts with ACD below a threshold
varies with network layers using our eight models on MR and SST-5 test sets.
Results are shown in Figure 6, with different thresholds per model (annotated).
Figures (a)-(b) show GCN/SGC results on MR, (c)-(d) on SST-5.

Combining Figure 2 and Figure 6’s P-model results, texts with ACD < 0.3
increase with layers, WACD decreases, and accuracy first rises then falls. Com-
bined with Figure 4-5’s P-GCN visualizations, this confirms that over-smoothing
in per-text graph classification manifests per-text-graph, emerging in shallow
networks and intensifying with layer stacking, though performance degradation
begins at 2-3 layers.

RW- and ARS-model curves show both RWACD and ARS reduce over-smoothed
texts and suppress over-smoothing. RA-models achieve the best results, demon-
strating that RWACD and ARS jointly reduce over-smoothed samples, suppress
over-smoothing, and improve classification performance.

4 Conclusion
This paper proposes WACD, a weighted average cosine distance metric for mea-
suring smoothness across multiple text graph representations, and RWACD, a
regularization term for suppressing over-smoothing. We introduce ARS, an at-
tention and residual network structure that compensates for text information
loss caused by text graph topology differences while suppressing over-smoothing.
Finally, we present RA-GCN, a graph convolutional neural network text clas-
sification algorithm based on RWACD and ARS. Experiments on six datasets
demonstrate RA-GCN’s performance, with multiple comparative experiments
validating RWACD and ARS’s effectiveness.
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