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Abstract
To address the limitation that existing clothing compatibility models predom-
inantly focus on exploring compatibility between paired items, we propose a
clothing compatibility prediction model based on hypergraph representation.
The model first constructs a clothing hypergraph based on the different cat-
egories of fashion items in existing datasets and their matching relationships,
where each node represents a clothing item and each hyperedge represents an
outfit composed of multiple clothing items. To better infer clothing compatibil-
ity from the hypergraph, the model converts the hypergraph into a conventional
graph and utilizes graph neural networks to simulate complex interactions be-
tween nodes. Finally, an attention mechanism is introduced to calculate clothing
compatibility scores, thereby enhancing the model’s predictive capability. Ex-
perimental results demonstrate that on two fashion outfitting tasks—the clothing
fill-in-the-blank task and clothing compatibility prediction—the model achieves
accuracies of 77.29% and 96.23%, respectively, representing significant improve-
ments over other baseline models.
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Abstract: Existing outfit compatibility models primarily focus on pairwise item
compatibility. To address this limitation, this paper proposes an outfit compat-
ibility prediction model based on hypergraph representation. The model first
constructs a fashion hypergraph from existing datasets, where each node rep-
resents a clothing item and each hyperedge represents an outfit composed of
multiple items. To better infer outfit compatibility from the hypergraph, the
model converts hypergraphs into traditional graphs and utilizes graph neural
networks to simulate complex interactions between nodes. Finally, an atten-
tion mechanism is introduced to calculate outfit compatibility scores, enhancing
the model’s predictive capability. Experimental results demonstrate that the
model achieves accuracies of 77.29% and 96.23% on the outfit fill-in-the-blank
task and outfit compatibility prediction task respectively, showing significant
improvement over baseline models.

Keywords: outfit compatibility; hypergraph representation; graph neural net-
work; attention mechanism

0 Introduction
In recent years, with the rapid development of the fashion industry, clothing has
played an increasingly important role in people’s daily lives. A well-coordinated
outfit can enhance one’s charm and fully express personality. According to statis-
tics, during the 2021 Double Eleven shopping festival, Alibaba’s e-commerce
platform Tmall recorded a total transaction volume of 540.3 billion yuan, an
increase of 42.1 billion yuan compared to 498.2 billion yuan in the previous
year. This indicates that this potential market is expected to create substantial
wealth, and clothing research has attracted growing attention due to this vast
market. Consequently, research related to clothing has emerged, including per-
sonalized fashion design, outfit composition, item recommendation, and fashion
trend prediction, with particular emphasis on outfit matching.

However, outfit matching is a complex task that depends on multiple subjec-
tive factors such as fashion style, cultural background, and trend dynamics.
All these factors may vary from person to person and even change over time,
making it difficult for everyone to coordinate appropriate and decent outfits.
Therefore, analyzing massive amounts of clothing data to establish a suitable
outfit matching method holds significant social and economic importance.

Numerous efforts have been dedicated to solving the outfit matching problem.
For instance, Viet et al. used SiameseNet to map individual items from an
image space to a style space, then measured the distance between items to
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predict pairwise clothing compatibility. McAuley et al. proposed using Low-
rank Mahalanobis Transformation to map items into a style space for calculating
similarity. Later, Han et al. represented an outfit as a sequence with a specific
order and utilized bidirectional LSTMs to predict the next item given a set of
clothing items, as well as to compute the compatibility score of the assembled
outfit.

These methods primarily employ two representation approaches: pairwise repre-
sentation and sequential representation. Pairwise representation cannot reflect
the complex relationships among multiple clothing items, while sequential rep-
resentation imposes a fixed order that does not exist in actual outfits. More
importantly, relationships among items in an outfit are not ordered, as each
item relates not only to its immediate predecessor or successor in a sequence.
Both pairwise and sequential representation models consider only compatibil-
ity between item pairs, making the final outfit compatibility prediction depend
solely on pairwise comparisons. However, outfit compatibility depends not only
on pairwise item characteristics but also on the influence of other items within
the same outfit.

Therefore, the key to solving outfit compatibility lies in properly representing re-
lationships among multiple fashion items rather than focusing solely on pairwise
items. Recent studies have addressed complex relationships in outfit matching
through graph neural networks. For example, Cui et al. represented outfits as
graphs where each node denotes a category and each edge represents different
relationships between items, then introduced an attention mechanism to out-
put outfit compatibility scores. Subsequently, Cucurull et al. proposed treating
clothing compatibility as an edge prediction problem using graph autoencoders,
improving prediction performance by incorporating contextual information. Al-
though various graph-based models have achieved successful results on outfit
matching problems, traditional graph edges connect only two nodes, inherently
establishing pairwise relationships and failing to fundamentally solve the prob-
lem of predicting overall outfit compatibility.

To address these issues, this paper proposes using hypergraphs to reflect the
complex and high-order relationships among multiple items in an outfit. A
hypergraph is a generalized concept capable of representing complex networks.
In traditional graphs, the number of nodes connected by an edge is strictly
defined as 2, whereas in hypergraphs, each edge can connect more than two
nodes, enabling each hyperedge to represent a complete outfit. To better predict
outfit compatibility, this paper proposes a novel model OCPCE to simulate
interactions between outfits and fashion items. The framework is shown in
Figure 1. The model first constructs a clothing hypergraph from the dataset
(leftmost in Figure 1), where each hypernode represents a different clothing item
and each hyperedge represents an outfit composed of multiple items (edges with
the same style represent hyperedges). It then randomly selects a hyperedge
for compatibility prediction. To better represent complex relationships between
hyperedges and nodes, the model connects nodes within each hyperedge pairwise
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to form a simple graph, facilitating better propagation of node interactions.
Subsequently, it aggregates neighbor information through the message passing
mechanism of graph convolutional neural networks to iteratively update node
state representations. Finally, when calculating clothing compatibility, unlike
existing work that assumes all items contribute equally to outfit compatibility,
this model introduces an attention mechanism to model the different impacts of
individual items on outfit compatibility, thereby enhancing predictive capability.

1 Methodology
1.1 Problem Definition

Outfit compatibility must consider the coherence of all fashion items combined
in an outfit, not just pairwise compatibility. The research objective is to model
compatibility relationships between outfits and fashion items to predict overall
outfit compatibility. Given an outfit collection 𝒪 = {𝑜1, 𝑜2, ..., 𝑜𝑚}, where 𝑜𝑖
represents the 𝑖-th outfit, we randomly select an outfit composed of multiple
items from the collection. By modeling relationships between outfits and fashion
items, we compute an overall compatibility score for the outfit and predict
whether it is compatible.

1.2 Feature Extraction and Hypergraph Construction

a) Visual Feature Extraction
Fashion item images contain rich information such as color, pattern, and stripes,
which greatly assist in predicting outfit compatibility. This paper utilizes con-
volutional neural networks to extract visual information from fashion item im-
ages. Compared to traditional feature extraction methods like SIFT, SURF,
and PCA, convolutional neural networks have proven to be advanced models
for image feature extraction. We select the pre-trained Inception-V3 deep neural
network provided by Google for visual feature extraction. Fashion item images
are input into the Inception-V3 network, and the output of its linear layer is
used as the visual feature for each item. The visual feature dimension for each
clothing item is 2048.

b) Text Feature Extraction
Text information for fashion items primarily comes from their titles, which
mostly consist of words or short phrases. Therefore, this paper employs word
embedding models to extract text features, a method proven effective in text
feature extraction. First, a vocabulary is built based on words from fashion item
titles in the dataset. Since titles lack standardized formatting, many meaning-
less words appear, such as‘a’,‘an’,‘de’, etc. Therefore, words with fewer than
three characters are filtered out to ensure vocabulary validity. After statistical
processing, a vocabulary of 2757 dimensions is obtained.

c) Hypergraph Construction
This paper constructs a fashion hypergraph 𝒢 = {𝒱, ℰ} based on category infor-
mation and collocation relationships between fashion items in existing datasets
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to simulate complex relationships between outfits and items. In the hypergraph,
each node represents the category of different fashion items, and each hyperedge
(edges with the same style) represents collocation relationships among multiple
categories. However, not any nodes can form a hyperedge. Only nodes be-
longing to categories of fashion items appearing in outfits from the dataset can
constitute a hyperedge. For example, nodes representing categories such as tops,
bottoms, shoes, bags, and accessories can form a hyperedge. By inputting each
clothing item into its corresponding node in the hypergraph, each hyperedge
represents a complete outfit.

1.3 Model Design

This section first introduces notation used in the model. For each fashion item 𝑖,
its visual feature is 𝑣𝑖, text feature is 𝑡𝑖, category is 𝑐𝑖, corresponding hypernode
in the hypergraph is 𝑢𝑖, and the state representation of hypernode 𝑢𝑖 in the
model is ℎ𝑖.

a) Node Initialization
The model’s input consists of visual features 𝑣𝑖 and text features 𝑡𝑖 of each
fashion item, which are used to initialize the feature representation of their
corresponding nodes. For each item, its visual and text features are first mapped
to a space of size 𝑑. Since each item belongs to a different category, a different
linear mapping matrix is required for each category when mapping to the style
space. The visual and text features in the style space are then concatenated as
the feature representation for each item. Finally, this feature representation is
initialized as the initial feature representation of the hypernode corresponding
to each fashion item in the hypergraph, as shown below:

ℎ0
𝑖 = tanh(𝑊 𝑐

𝑖 [𝑊 𝑣
𝑖 𝑣𝑖, 𝑊 𝑡

𝑖 𝑡𝑖] + 𝑏𝑖)

b) Hyperedge-to-Graph Conversion
In the proposed OCPCE model, each hyperedge in the hypergraph represents
a complete outfit. To better simulate complex and high-order relationships
between outfits and clothing items, the model converts each hyperedge into a
traditional graph. Currently, there are two methods for hyperedge-to-graph
conversion: clique expansion, which connects all vertices in a hyperedge (e.g., a
hyperedge with three vertices becomes a simple graph with three edges connect-
ing all pairs), and star expansion, which adds a new node to each hyperedge and
connects all original nodes to this new node. The second approach introduces
new nodes that may propagate invalid information, causing erroneous infor-
mation propagation. Therefore, this paper adopts clique expansion to convert
hyperedges into simple graphs.

c) Node Interaction
Following the GGNN method, this paper utilizes graph neural networks to model
node interactions on traditional graphs. Node interaction refers to each node
aggregating state information from its neighbors and its own state to update its
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representation. After each interaction, the node state is updated as:

ℎ𝑘+1
𝑖 = 𝑓 ⎛⎜

⎝
∑

𝑢∈𝒩(𝑖)
𝐴𝑖𝑢𝑊1ℎ𝑘

𝑢 + 𝑊2ℎ𝑘
𝑖 + 𝑏⎞⎟

⎠

where ℎ𝑘+1
𝑖 represents the state of node 𝑖 after the (𝑘 + 1)-th interaction, 𝑊1

and 𝑊2 are trainable weight matrices for information propagation, and 𝐴 is the
adjacency matrix representing connectivity between nodes, where 𝐴𝑖𝑢 = 1 if
nodes 𝑖 and 𝑢 are connected.

After aggregating neighbor state information, each node updates its final repre-
sentation through Gated Recurrent Units (GRU):

ℎ𝑘+1
𝑖 = GRU(ℎ𝑘

𝑖 , 𝑓𝑘+1
𝑖 )

where ℎ𝑘+1
𝑖 represents the final representation of node 𝑖 after (𝑘+1) propagation

steps.

d) Compatibility Score Calculation
To evaluate whether multiple clothing items form a highly compatible outfit, the
OCPCE model computes the compatibility score for each outfit based on the
final state representations of nodes contained in its hyperedge. Unlike existing
work that simply aggregates pairwise compatibility scores, this paper argues that
different fashion items have varying importance to overall outfit compatibility.
Therefore, an attention mechanism is proposed to distinguish the importance of
each item in an outfit. The attention mechanism is calculated as:

̂𝑦𝑢 = 𝜎(𝑊1ℎ𝑘
𝑢 + 𝑏1)

̂𝑥𝑢 = 𝛿(𝑊2ℎ𝑘
𝑢 + 𝑏2)

where 𝑊1 and 𝑊2 are trainable weight matrices, 𝜎 and 𝛿 are LeakyReLU and
Sigmoid activation functions respectively. ̂𝑦𝑢 represents the importance of dif-
ferent items’impact on outfit compatibility, and ̂𝑥𝑢 represents compatibility
scores of individual items in the outfit.

Thus, the compatibility score for outfit 𝑜 is:

𝑠𝑜 = 1
𝑚 ∑

𝑢∈𝑜
̂𝑦𝑢 ⋅ ̂𝑥𝑢

where |𝑚| indicates outfit 𝑜 consists of 𝑚 fashion items.

1.4 Objective Function

To better predict outfit compatibility, this paper adopts the Bayesian Personal-
ized Ranking (BPR) algorithm for this task. BPR assumes that positive sample
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outfits have higher compatibility scores than negative samples. The specific
objective function is:

ℒ = − ∑
(𝑜,𝑜−)∈𝒟

ln(𝜂(𝑠𝑜 − 𝑠𝑜−)) + 𝜆‖Θ‖2
2

where 𝒟 is the compatibility modeling dataset, each pair (𝑜, 𝑜−) represents
an existing outfit 𝑜 (positive sample) and a non-existing outfit 𝑜− (randomly
generated negative sample), 𝜂 is the Sigmoid function, Θ represents all trainable
model parameters, and 𝜆 denotes regularization to prevent overfitting.

2 Experiments
2.1 Dataset

The existing Polyvore dataset originates from the popular fashion website
Polyvore.com, which allows members to create fashion outfits using different
clothing items or like and save others’creations. The dataset contains 164,379
individual items forming 21,899 different outfits. Graph partitioning techniques
are used to split the dataset into training, validation, and test sets, with 17,316
outfits for training, 1,497 for validation, and 3,076 for testing. The split ensures
no overlap between sets, meaning items appearing in the test set do not appear
in the training set. Each item in the dataset contains rich information such as
images, text descriptions, and categories (e.g., jeans, shirts, shoes, etc.).

If an outfit in the original dataset contains more than 8 items, it indicates
duplicate items; if fewer than 3 items, the outfit is incomplete. Therefore, this
paper generates a new dataset Polyvore-N by removing outfits with more than
8 items or fewer than 3 items to maintain outfit uniqueness and completeness.

2.2 Experimental Settings

All experiments select hyperparameters using the validation set, and perfor-
mance comparisons are conducted on the test set. Stochastic Gradient Descent
is adopted to optimize the objective function, proven effective in neural network
optimization. Additionally, a grid search strategy adjusts model hyperparame-
ters: batch size is searched in {8, 12, 16, 20, 24}, regularization rate and learning
rate are fine-tuned in {10−2, 10−3, 10−4, 10−5}, and propagation layers 𝑘 are
searched in {0, 1, 2, 3} to achieve optimal performance. The Adam optimizer
is used to optimize the entire prediction model and update parameters. All
experiments are conducted on a server with a Quadro M4000 GPU. Training
stops when the objective function converges or reaches the maximum number
of iterations.

2.3 Comparison Methods

• Random: A model based on random guessing.
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• SiameseNet: SiameseNet feeds pairs of fashion items into a Siamese
network, maps them to a style space, and compares their distances. Over-
all outfit compatibility is computed by averaging pairwise compatibility
scores.

• Bi-LSTM: Bi-LSTM employs bidirectional LSTM to mine sequential re-
lationships between fashion items in an outfit for compatibility modeling
and score calculation.

• VCP: VCP introduces graph autoencoders to compute compatibility
scores between two fashion items based on their visual features and
contextual information.

• GGNN: GGNN utilizes graph neural networks to model relationships
between outfits and clothing items for compatibility score calculation.

2.4 Outfit Fill-in-the-Blank Task

The Outfit Fill-in-the-Blank (FITB) task is a standard benchmark widely used
in fashion compatibility research. Given a well-coordinated outfit, one item is
randomly replaced with a blank, while three other items are arbitrarily selected
from the dataset as distractors to form a candidate set along with the ground-
truth item. The ground-truth item is assumed to be more compatible with the
original outfit than other candidates. The task aims to identify the correct item
from the candidate set to fill the blank. Performance is evaluated by accuracy
in selecting the correct answer from four candidates.

Table 1 compares the proposed model with alternative models on the FITB
task. Key conclusions include: (1) Random performs poorly, indicating random
guessing insufficiently reflects overall outfit compatibility; (2) Bi-LSTM outper-
forms Random, likely because it learns latent compatibility knowledge better
by representing outfits as sequences and capturing high-order relationships be-
yond pairwise comparisons; (3) VCP, which also averages pairwise compatibility,
outperforms Bi-LSTM, with improvements attributed to contextual information
that better reflects item relationships, proving contextual information’s effective-
ness; (4) Graph-based GGNN achieves better performance, demonstrating that
graph structures can effectively infer compatibility information, validating that
graph representation better models fashion item interactions than sequential or
pairwise representations; (5) The proposed model achieves the best performance,
benefiting from hypergraph representation that effectively simulates complex
and high-order relationships between outfits and items, with self-attention fur-
ther capturing latent compatibility knowledge.

Figure 2 visualizes example outfits randomly selected to demonstrate the model’
s FITB task performance.

Table 1: Experiment Results of Different Models in Outfit Fill-in-
the-Blank Task

chinarxiv.org/items/chinaxiv-202204.00085 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00085


Model Accuracy (FITB)
Random 24.92%
Bi-LSTM 46.24%
VCP 58.28%
GGNN 74.19%
OCPCE 77.29%

For more intuitive analysis of OCPCE versus NGNN and Bi-LSTM, Figure 3
visualizes specific sample cases from the dataset. Boxes indicate correct answers
selected by models, while unboxed items indicate incorrect selections. In Ex-
ample 1, all models correctly inferred the outfit needed shoes. In Example 2,
OCPCE and NGNN selected correctly, while Bi-LSTM chose incorrectly due
to its sequential nature—the adjacent top position heavily influenced the blank
item selection, leading to pants being chosen. In Example 3, only OCPCE se-
lected the correct fashion item. Although NGNN inferred the missing category,
its selection was not the most compatible item. Bi-LSTM again chose incor-
rectly due to its sequential representation. OCPCE’s correct selections across
all examples demonstrate that hypergraph representation effectively simulates
interactions between outfits and items.

2.5 Outfit Compatibility Prediction Task

The Outfit Compatibility Prediction (CP) task aims to generate a compatibility
score for a given outfit, where scores closer to 1 indicate higher compatibility
and scores near 0 indicate incompatibility. This reflects real-world scenarios
where users want to coordinate outfits and determine item compatibility. For
evaluation, a compatible outfit set is constructed from the dataset (all outfits
are compatible). An incompatible outfit set is generated by randomly selecting
items from compatible outfits. By scoring both sets and comparing results,
model performance is assessed using the AUC (Area Under Curve) metric from
ROC curves.

Table 2 shows experimental results on the CP task. Similar to FITB, the pro-
posed model achieves the best performance, demonstrating that hypergraphs
effectively reveal high-order relationships among fashion items, enhancing pre-
dictive performance. Graph-based GGNN also shows strong performance, con-
firming graph structures’effectiveness. VCP with contextual information out-
performs Bi-LSTM and Random but remains less competitive, indicating that
modeling only pairwise compatibility or representing outfits as sequences cannot
effectively predict outfit compatibility. These observations support the FITB
task analysis.

Table 2: Experiment Results of Different Models in Outfit Compati-
bility Prediction Task
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Model AUC(CP)
Random 50.12%
Bi-LSTM 77.11%
VCP 90.13%
GGNN 94.77%
OCPCE 96.23%

2.6 Impact of Different Components

To verify each component’s contribution, an ablation study disables individual
modules and compares performance. Table 3 shows results where OCPCE(-h)
denotes the variant without the hypergraph module, OCPCE(-w) without atten-
tion, and OCPCE(-h-w) without both modules. Observations include: (1) The
full model outperforms all ablated variants, proving the importance of both hy-
pergraph and attention modules; (2) Disabling the hypergraph module degrades
performance, confirming that hypergraphs effectively model high-order relation-
ships between outfits and items; (3) The model without attention performs
second-best, validating the necessity of the attention mechanism.

Table 3: The Effect of Different Components on Model Performance

Model Accuracy (FITB) AUC(CP)
OCPCE(-h-w) 75.28% 94.89%
OCPCE(-h) 75.94% 95.63%
OCPCE(-w) 76.07% 95.84%
OCPCE 77.29% 96.23%

2.8 Impact of Different Modalities

To comprehensively validate the model’s effectiveness, experiments are con-
ducted under different modality combinations: OCPCE(VI) for visual modality
only, OCPCE(TE) for text modality only, and OCPCE(VI+TE) for combined
modalities. Table 4 shows performance comparisons. Findings indicate: (1)
Multi-modal models outperform single-modal models, showing both text and
visual modalities improve compatibility modeling; (2) Visual-only models out-
perform text-only models, suggesting fashion item modeling relies more on visual
information (color, pattern) than text information (material, category).

Table 4: Effects of Different Modality on Model Performance

Model Accuracy (FITB) AUC(CP)
OCPCE(TE) 75.78% 95.28%
OCPCE(VI) 76.34% 95.63%
OCPCE(TE+VI) 77.29% 96.23%
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Model Accuracy (FITB) AUC(CP)

3 Conclusion
To better predict outfit compatibility, this paper proposes using hypergraphs
to represent relationships between outfits and items, as hyperedges can connect
multiple nodes to represent a complete outfit. To better infer compatibility
from hypergraphs, hyperedges are converted to traditional graphs to capture
complex relationships among items. Experiments on real datasets across differ-
ent fashion matching tasks demonstrate the proposed model’s effectiveness in
learning fashion compatibility. However, since each user has unique aesthetic
and style preferences, future research could incorporate personal preferences
into outfit matching technology by quantifying user body type, skin tone, and
other information to achieve personalized recommendations.
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