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Abstract

To address issues such as poor car-following stability, ineffective tracking, or
unsafe conditions caused by significant speed fluctuations of vehicles in con-
gested environments, a multi-objective optimization car-following scheme based
on vehicle models and deep reinforcement learning is proposed. First, a vehicle
car-following model is established based on the vehicle’s lateral and longitudinal
dynamics. Then, according to inter-vehicle spacing error, velocity error, lateral
deviation, relative yaw angle, and other variables, the Deep Deterministic Policy
Gradient algorithm is utilized to obtain the acceleration and steering angle of
the following vehicle, thereby enabling smoother and safer control of the follow-
ing vehicle. Tested and validated on the NGSIM public driving dataset, this
scheme can effectively enhance the stability, comfort, and safety of the follow-
ing vehicle, which is of significant importance for ensuring traffic safety and
improving road capacity.
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Abstract: To address issues of poor following stability, ineffective tracking,
and safety concerns caused by large speed fluctuations in congested traffic, this
paper proposes a multi-objective optimal car-following scheme based on vehicle
dynamics and deep reinforcement learning. First, a car-following model is es-
tablished based on vehicle lateral and longitudinal dynamics. Then, using the
Deep Deterministic Policy Gradient (DDPG) algorithm, the following vehicle’
s acceleration and steering angle are determined according to inter-vehicle dis-
tance error, speed error, lateral deviation, and relative yaw angle to control the
following vehicle more smoothly and safely. Tested and validated on the NGSIM
public driving dataset, this scheme effectively improves the stability, comfort,
and safety of car-following, which is significant for ensuring traffic safety and
enhancing road capacity.

Keywords: car following; lateral and longitudinal control; deep deterministic
policy gradient; NGSIM

0 Introduction

Vehicle car-following is an important autonomous driving assistance technology
that can reduce driver burden, improve driving comfort, and decrease traffic
accidents. However, in congested traffic conditions, frequent acceleration and
deceleration lead to poor following performance, making low-speed car-following
research a focus of attention [1].

Traditional autonomous car-following models are primarily theory-driven, ex-
pressing various states during the following process through mathematical and
physical models based on vehicle following behavior to establish models consis-
tent with driving experience. The first car-following model was proposed by
Pipes [2], which assumed that the following vehicle’ s speed is proportional to
the inter-vehicle distance and determined the following vehicle’ s speed based
on headway. Subsequently, based on traffic flow heterogeneity, human factors,
and road conditions, various car-following models have been proposed, includ-
ing safety distance-based, psycho-physiological, stimulus-response, and cellular
automata models. However, theory-driven car-following models struggle to com-
prehensively consider these influencing factors, resulting in poor prediction ac-
curacy and insufficient accuracy in describing complex car-following behaviors.

Benefiting from the development of intelligent transportation, large-scale high-
precision vehicle trajectory data provides a research foundation for data-driven
car-following. By statistically analyzing vehicle trajectory data and mining driv-
ing behavior patterns, corresponding fitting relationships can be established to
achieve effective vehicle following [3]. Current data-driven car-following models
include those based on fuzzy logic, support vector regression, artificial neural net-
works, and deep reinforcement learning. Among them, deep reinforcement learn-
ing car-following models [4] have become a research hotspot in recent years, with
methods such as convolutional neural networks, recurrent neural networks, and
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long short-term memory networks gradually applied to car-following research.
Zhu Meixin et al. [5] used deep reinforcement learning to obtain car-following
strategies, establishing a human-imitating mapping model from following speed,
relative speed, and inter-vehicle distance to following acceleration. Pan Feng
et al. [6] analyzed real driving data based on inverse reinforcement learning to
obtain human driver characteristics, designed a reward function, and obtained
more natural car-following behavior. Zhu Bing [7] established a car-following
control strategy based on the proximal policy optimization algorithm and a lon-
gitudinal control architecture based on a dual-predecessor following structure
to achieve vehicle following control. Model Predictive Control (MPC) [8] is
widely applied in car-following scenarios. Hu Xiaosong et al. from Chongqing
University [9] developed an MPC-based controller to optimize vehicle speed and
engine torque, achieving better fuel economy and fewer emissions while ensur-
ing following safety. Mao Jin et al. [10] designed a multi-objective optimization
method with online updated weight coefficients based on the MPC algorithm,
achieving better following tracking performance and stability. Compared with
other models, deep reinforcement learning car-following models can continuously
learn and adapt to different driving environments, offering better generalization
capabilities and helping develop autonomous driving algorithms and traffic flow
models more similar to human driving behavior.

When drivers follow vehicles, they typically reduce speed and increase follow-
ing distance when aware of deviation from the desired trajectory to decrease
lateral control risk and longitudinal accident risk [11]. When vehicles travel on
roads with changing curvature, insufficient lateral control in the model affects
vehicle handling stability. Most car-following research focuses on longitudinal
acceleration decision-making while neglecting lateral path tracking, and primar-
ily concentrates on simulating human driving behavior rather than optimizing
driving behavior.

This paper proposes a vehicle car-following model that simultaneously decides
acceleration and steering angle based on joint lateral and longitudinal control,
considering safety and comfort, using deep reinforcement learning algorithms to
enable effective following of the preceding vehicle.

1 Vehicle Dynamics Model

In the motion control of a following vehicle, a vehicle dynamics model must first
be established. This study simplifies the steering system by directly using the
front wheel angle as the steering wheel angle of the following vehicle. Based on
vehicle lateral motion, yaw motion, and longitudinal motion, a three-degree-of-
freedom vehicle dynamics model is established as follows [12]:

The Actor and Critic networks are used, with the following vehicle that decides
acceleration and steering angle as the agent, whose main objective is to maximize
the reward function. The Actor network is primarily responsible for policy
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generation, i.e., outputting the following vehicle’ s acceleration based on the
speeds, relative speed, and relative distance between the following and preceding
vehicles, and obtaining the steering wheel angle based on lateral deviation and
relative yaw angle. The Critic network is responsible for policy improvement,
outputting Q(s_t, a_t) based on state-action pairs and updating the Actor’ s
policy parameters in the direction of performance improvement.

Figure 1 shows the vehicle dynamics model, where XQOY is the ground reference
coordinate system and xoy is the vehicle coordinate system. v_x and v_y are
the longitudinal and lateral velocities of the vehicle’ s center of gravity, is the
vehicle yaw angle, * is the vehicle yaw rate, and ¢ is the front wheel steering
angle. 1_f is the distance from the vehicle’ s center of gravity to the front axle,
1_r is the distance to the rear axle, and I_z is the vehicle’ s moment of inertia
about the vertical axis. F_{xf} and F_{yf} are the longitudinal and lateral
forces on the front wheels, while F_ {xr} and F_ {yr} are the forces on the rear
wheels.

The lateral forces of the front and rear tires are approximately linearly related
to their slip angles [13]. In equation (2), a_f and a_r are the front and rear
tire slip angles, and C_f and C_r are the front and rear tire cornering stiffness
[12].

2 DDPG-Based Vehicle Car-Following Decision Algorithm

The Deep Deterministic Policy Gradient algorithm possesses both the feature
extraction capability of deep neural networks and the decision-making advan-
tages of reinforcement learning, making it suitable for car-following decision
problems with discrete inputs and continuous outputs. Therefore, this paper
establishes an overall car-following strategy based on the DDPG algorithm, as
shown in Figure 2.

In congested road sections, the following vehicle’ s acceleration a and steering
angle J are typically influenced by the preceding vehicle’ s motion state, neces-
sitating control strategies based on the predecessor’ s state. After collecting
the speed difference, relative distance, lateral deviation, and relative yaw angle
between the vehicles, the DDPG algorithm transforms the car-following prob-
lem into a Markov decision process under a specific reward function. Through
iterative interaction between the deep reinforcement learning agent and the car-
following environment, the lateral and longitudinal control strategy for the fol-
lowing vehicle—namely its acceleration and steering angle—is obtained to adjust
the following vehicle’ s motion state and achieve optimal control [14].

2.1 DDPG Algorithm Principle

Deep reinforcement learning consists of an agent that continuously observes and
receives rewards while interacting with the environment, and an environment
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that changes based on the agent’ s actions. Deep Q-Networks are suitable for
models with few discrete outputs but may fail in continuous action spaces. This
study employs the Deep Deterministic Policy Gradient (DDPG) algorithm [15],
which performs well in continuous control domains, to learn the Actor and Critic
network structures.

The Actor and Critic network architectures shown in Figure 3 consist of input
layers, output layers, and hidden layers containing multiple neurons. DDPG first
initializes the replay buffer, Actor and Critic network parameters =~ and ~Q,
and the target network weight parameters ~’ and ~Q’ for the Actor and Critic.
In each training episode, the following vehicle’ s acceleration and steering angle
are calculated based on the Actor. Next, the reward value r_t and next state
s_{t+1} are observed. After obtaining the reward and state values, the Critic
network evaluates the action a_t taken in the current state s_t, updates the
Critic network parameters ~Q according to the loss function L, and updates
the Actor network parameters ~ wusing policy gradients. Finally, the target
network weights =’ and ~Q are updated based on the update directions of
the Actor and Critic network weights. This process continuously optimizes the
Actor and Critic until convergence.

During this process, the optimization objective of the DDPG algorithm [15] is
to update the Critic network according to loss function (4). The Actor network
is updated using policy gradient (5). After k optimizations, strategy (6) is used
to update the target network parameters of the Actor and Critic.

2.2 Vehicle Car-Following Error

During the following process, the following vehicle needs to plan its control
strategy based on the preceding vehicle’ s motion state and trajectory. To track
the predecessor’ s speed and trajectory, characterize the positional, speed, and
trajectory relationship between the vehicles, maintain a safe distance, and travel
along the desired path, a lateral and longitudinal joint control car-following error
model is established as shown in Figure 4.

In vehicle longitudinal motion, the following vehicle determines its acceleration
based on vehicle speed and distance to the predecessor to follow safely and ef-
fectively. The microscopic driver behavior safety distance model [16] is given by
equation (7). Since the speed difference between leading and following vehicles
is small during car-following, the A(v_{follow} - v_{lead})? term is ignored.
Therefore, based on the fixed time headway algorithm [16], the safety distance
model is designed as equation (8).

According to the relative motion relationship between the two vehicles, com-
bined with relative speed and distance error, the vehicle car-following longitudi-
nal model (9) is defined to intuitively reflect the driving states of both vehicles
in following mode. Here, e_v is the difference between the following vehicle
speed v__{follow} and leading vehicle speed v_ {lead}, and e_d is the difference
between the actual distance d_ {real} and safe following distance d_ {safe}.
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In vehicle lateral motion, the following vehicle needs to obtain lateral velocity
and yaw rate based on its relative position to the trajectory, and adjust the
steering angle to ensure effective lateral tracking, reducing lateral deviation and
relative yaw angle [17].

2.3 Reward Function Design

In reinforcement learning, the reward is the environment’s feedback to the agent’
s actions and a signal for evaluating action quality, typically a scalar. In joint
lateral and longitudinal control of car-following, reward functions determine
both lateral trajectory tracking and longitudinal speed control.

The car-following control problem can be transformed into a multi-objective
optimization problem considering tracking performance, safety, and comfort [5].
To make the following vehicle approach the target path while maintaining better
speed response and stable acceleration behavior, longitudinal speed error e_ v,
distance error e_d, lateral deviation e_y, acceleration a, and steering angle §
are used as reward function features. Additionally, penalties m are applied for
abnormal conditions such as negative relative speed, excessively low following
speed, and large lateral deviation. Therefore, reward function (11) is designed.

For effective tracking, reward function (12) is designed based on longitudinal
speed error and lateral deviation to achieve both longitudinal speed tracking
and lateral path following. Smaller following speed error and lateral deviation
yield larger r_ {follow}, with positive reward H applied when lateral deviation
is less than 0.1m and following speed error is less than 1m/s for more precise
path and speed tracking.

For comfort, reward function (13) is designed based on acceleration and steering
angle. Smaller following acceleration and steering angle result in more stable
lateral and longitudinal following and better comfort.

For safety, reward function (14) is designed based on safety distance error. Ad-
ditionally, termination conditions are set as e_y| > 1, v < 0.5, d < 0, with
penalty m applied when these conditions are triggered to prevent excessive lat-
eral deviation, excessively low following speed, and avoid collisions.

3 Experiments and Analysis
3.1 Model Training

The focus of DDPG-based joint lateral and longitudinal control for car-following
is feature selection and fusion. Since using driver-perspective visual images
as model input suffers from poor interpretability and may prevent the neural
network from learning useful information, this model uses environmental feature
vector X_ {input} as model input.
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The model outputs the following vehicle’ s acceleration a and steering angle &
according to the current policy and updates its position and speed. Simultane-
ously, the environment updates the predecessor’ s state and returns the reward
for the current step and updates the policy.

Network training proceeds as follows: Design deep reinforcement learning el-
ements for the car-following problem based on action space, state space, and
reward function; initialize the Actor-Critic network and reset the environment;
obtain observation s_ 0 from the environment and calculate initial action a_ 0,
then set it as the current action a; apply action a to the environment to obtain
next observation s° and reward r, then learn from the experience set; calculate
next action a’ to update the current action, and update the current observation
with s ; repeat this loop until termination conditions are met.

DDPG algorithm hyperparameters are shown in Table 1.
Table 1. Super parameters of DDPG algorithm

Parameter Value
Actor network learning rate 0.0001
Critic network learning rate 0.001
Memory batch size 64
Experience replay storage pool 100000
Maximum episodes 5000
Maximum steps per episode 500

Figure 5 shows the reward variation trend during car-following model train-
ing. The training used data from 40 car-following events selected from the
car-following dataset. The red curve represents the average reward per training
episode, the blue curve shows the reward for each episode, and the yellow curve
shows the Critic network’ s estimate of discounted long-term reward at the be-
ginning of each episode. Higher average reward indicates better car-following
performance. After 3548 episodes of training, the reward function gradually
converged at approximately 1400 episodes, as clearly shown in Figure 5.

Figure 6 shows the reward values for the last 100 episodes of car-following model
training, demonstrating that the algorithm is stable and effective.

3.2 Model Testing

A car-following control simulation system was built using MATLAB/Simulink
to establish a complete vehicle dynamics model. Vehicle dynamics parameters
are shown in Table 2.

Table 2. Vehicle dynamics parameters
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Parameter Value

Vehicle mass 1600 kg
Moment of inertia about z-axis 2875 kg - m?
Distance from CG to front axle 1.2 m
Distance from CG to rear axle 1.3 m

Front tire cornering stiffness 19000 N/rad
Rear tire cornering stiffness 33000 N/rad

The car-following control strategy was tested and validated using the renowned
NGSIM real driver car-following dataset. 1341 car-following events were ex-
tracted from vehicle trajectory data on the I-80 highway segment, each con-
taining leading vehicle speed, following vehicle speed, relative speed, and inter-
vehicle distance for durations over 15 seconds. Table 3 shows partial data from
one car-following event.

Table 3. Car following data structure

Time Distance Following speed  Relative speed Leading speed
(s) (m) (m/s) (m/s) (m/s)

0 15.02 6.70 0.61 6.09

0.1 14.95 6.71 0.62 6.09

The following vehicle adjusts acceleration and steering angle to follow the prede-
cessor along a road with changing curvature, calculating optimal car-following
actions while satisfying constraints on safety distance, speed, acceleration, and
steering angle. Based on vehicle dynamics physical limitations, the ranges for
following vehicle acceleration a and steering angle § are set as equation (16).

From the 1341 car-following pairs, one set of data was randomly selected to
validate the proposed car-following decision scheme and compare it with the
MPC car-following scheme. Changes in vehicle spacing, speed, and acceleration
are shown in Figures 7-9. The initial distance between leading and following
vehicles was set to 15 m, with following vehicle longitudinal speed at 6.7 m/s
and leading vehicle speed at 6.1 m/s. Figure 7 shows the inter-vehicle distance,
demonstrating that the distance remains relatively stable, with DDPG algo-
rithm maintaining a smaller following distance than human drivers and MPC,
achieving efficient car-following.

Figure 8 shows that the leading vehicle first accelerates, then decelerates, and
finally cruises, while the DDPG algorithm produces more stable speed variations
during following.

Figure 9 shows the following vehicle’s acceleration curve, demonstrating that rea-
sonable acceleration adjustments effectively modulate speed and spacing while
maintaining relatively smooth acceleration.
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To evaluate the algorithm’ s performance, Mean Absolute Error (MAE) from
equation (17) is used as the evaluation metric, where y_ i is an individual obser-
vation and y is the arithmetic mean.

Table 4. Model error

Metric Real driver MPC DDPG
Speed MAE (m/s) 0.52 0.41  0.38
Acceleration MAE (m/s?) 0.31 0.28 0.21
Distance MAE (m) 0.85 0.79 0.73

Table 4 shows that DDPG algorithm achieves the smallest acceleration MAE,
realizing smoother and more comfortable car-following. DDPG also reduces
speed error compared to human drivers and MPC, demonstrating effective fol-
lowing with strong adaptive capability and more stable speed maintenance. The
DDPG algorithm’ s distance MAE is smaller than real drivers, showing more
stable decision-making with smaller headway.

Figure 10 shows the leading vehicle’ s trajectory curvature. Figure 11 presents
lateral control results, where the following vehicle’ s initial lateral deviation
was set to 0.2 m and initial yaw angle to -0.1 rad. By controlling the steering
angle, the yaw angle error rapidly decreases. Due to continuously changing
road curvature, the following vehicle constantly fine-tunes its steering angle
to maintain small lateral deviation and relative yaw angle. DDPG and MPC
algorithms show similar lateral control performance.

To evaluate prediction performance, acceleration change rate (jerk) is selected to
assess following comfort, and time headway (thw) is chosen to evaluate safety
and effectiveness. During car-following, thw typically remains within 1-4 s—
smaller thw indicates tighter tracking and higher efficiency, but thw below 1 s
risks collision, while thw above 4 s generally indicates non-following behavior.

Table 5. Car following model evaluation

Metric Real driver MPC DDPG
jerk (m/s%)  0.85 0.72 0.58
thw (s) 2.8 2.5 2.2

Table 5 shows that DDPG’ s jerk is smaller than human drivers, ensuring follow-
ing comfort and avoiding discomfort from frequent acceleration. Additionally,
DDPG maintains thw within the safe 1-4 s range, with smaller thw than human
drivers and MPC, indicating higher following efficiency.

To validate performance under various conditions, another car-following event
was randomly selected from the NGSIM dataset. Results in Figures 12-15 and
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Tables 6-7 show that DDPG again produces smaller acceleration and jerk, more
stable speed, and maintains thw within 1-4 s, achieving more comfortable, stable,
and safe following.

Table 6. Model error (second event)

Metric Real driver MPC DDPG
Speed MAE (m/s) 0.48 039 0.35
Acceleration MAE (m/s?) 0.29 025 0.19
Distance MAE (m) 0.81 0.76 0.71

Table 7. Car following model evaluation (second event)

Metric Real driver MPC DDPG
jerk (m/s?)  0.79 0.68 0.53
thw (s) 2.7 2.4 2.1

4 Conclusion

This paper develops a vehicle car-following control model based on a three-
degree-of-freedom vehicle dynamics model with joint lateral and longitudinal
control. A decision model is then established using the deep reinforcement
learning DDPG algorithm to determine the following vehicle’ s acceleration
and steering angle, ensuring safe, effective, and comfortable following. The
model is trained, tested, and evaluated using the human driving dataset NGSIM
and compared with MPC car-following control. Results demonstrate that the
proposed method achieves smaller following distance and acceleration change
rate while ensuring safety, outperforming human drivers and holding significant
potential for improving traffic safety and road capacity.

Currently, car-following control functions relatively independently. Integrating
vehicle car-following control with lane keeping assist and lane change assist
systems will enable higher-level autonomous driving control.
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