
AI translation ・View original & related papers at
chinarxiv.org/items/chinaxiv-202204.00074

Postprint: P4-Based Consistency Verification of
SDN Control-Data Plane Flow Rules
Authors: Xia Jiqiang, Cui Pengshuai, Li Ziyong, Lan Julong

Date: 2022-04-07T15:01:56+00:00

Abstract
To address the problem of inconsistency between control-plane and data-plane
flow rules caused by hardware/software failures and misconfigurations in the
SDN data plane, we propose a P4-based consistency verification mechanism
for SDN control-data plane flow rules (P4CV, P4-based Consistency Verifica-
tion mechanism for SDN control-data plane). P4CV first sends specially struc-
tured probes to the data plane, then each P4 switch embeds the actual flow
rule execution information from the data plane into the probes, and finally
P4CV employs a symbolic-execution-based consistency verification algorithm to
complete consistency verification between control-plane flow rule configurations
and data-plane telemetry information. Simulation results demonstrate that the
single-path verification time of P4CV is independent of network topology and
exhibits only linear correlation with the number of switching nodes along the
path. In multi-path forwarding scenarios with equivalent network scale and flow
rule configuration, P4CV, while incurring only approximately 0.06‰ bandwidth
overhead, reduces verification time by approximately 42% on average compared
to existing solutions.

Full Text
Preamble
Vol. 39 No. 8
Application Research of Computers
ChinaXiv Cooperative Journal

P4-based Rules Consistency Verification for SDN Control-Data Plane

Xia Jiqiang, Cui Pengshuai†, Li Ziyong, Lan Julong
(Information Technology Research Institute, People’s Liberation Army Strategic
Support Force Information Engineering University, Zhengzhou 450000, China)

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074
https://chinarxiv.org/items/chinaxiv-202204.00074

Abstract: To address the inconsistency of flow rules between the control plane
and data plane caused by software and hardware faults, misconfigurations, and
other issues in SDN data planes, this paper proposes a P4-based Consistency
Verification mechanism for SDN control-data plane (P4CV). P4CV first sends
probes with a specific structure to the data plane, after which each P4 switch
embeds actual flow rule execution information from the data plane into the
probes. Finally, P4CV employs a symbolic execution-based consistency veri-
fication algorithm to validate the consistency between control plane flow rule
configurations and data plane telemetry information. Simulation results demon-
strate that P4CV’s single-path verification time is unaffected by network topol-
ogy, being only linearly related to the number of switching nodes along the
path. In multipath forwarding scenarios with equivalent network scale and flow
rule configuration, P4CV generates only approximately 0.06‰ bandwidth over-
head while reducing verification time by an average of 42% compared to existing
solutions.

Keywords: SDN; P4; consistency; In-band network telemetry

0 Introduction
In traditional network architectures, the control plane and data plane are tightly
coupled, with software and hardware upgrades constraining each other. Soft-
ware Defined Networking (SDN) decouples the control and data planes by ex-
tracting network management and control logic from devices, creating a new
network architecture that enables efficient control and management. Initially,
SDN programmability was primarily realized at the control layer. However,
with the emergence of data plane domain-specific languages (DSLs) such as P4
and POF, SDN has achieved programmable data planes with line-rate process-
ing performance. Network developers can flexibly design data plane processing
logic using P4’s abstract forwarding model, enabling more efficient deployment
of new protocols in the data plane and facilitating widespread applications in
traffic engineering and network measurement. Nevertheless, while P4 brings
programmability to the data plane, it also exacerbates consistency and security
issues between the SDN control plane and data plane, where the actual for-
warding behavior of the data plane diverges from the expected behavior of the
control plane. On one hand, as a data plane programming language, bugs in
P4 programs themselves can lead to control-data plane inconsistencies. On the
other hand, inconsistencies can also arise during network operation due to hard-
ware/software failures, administrator misconfigurations, or malicious attacks.

Even before the advent of data plane programming languages like P4, the con-
sistency problem between SDN control and data plane flow rules had already
received extensive attention. Monocle addresses this by logically expressing
switch forwarding tables as Boolean satisfiability problems to rapidly gener-
ate probes for specific rules, enabling verification of both loaded flow rules in

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

stable network states and tracking of rule updates during reconfiguration. To
tackle the flow rule priority faults identified in commercial switches, Rulescope
proposes a more precise and efficient consistency verification algorithm. VeriDP
validates the actual transmission paths of real network traffic by collecting probe
path information and comparing it with abstract path tables from the control
plane, though this approach requires pre-constructed path tables, increasing
controller resource consumption. These active probing-based consistency verifi-
cation mechanisms can validate controller-known or synchronized flow rules but
cannot detect faults caused by unknown or misconfigured flow rules in the data
plane. Moreover, such mechanisms are designed for OpenFlow-based SDN flow
rule verification scenarios and are not applicable to current programmable data
planes.

For SDN programmable data plane flow rule consistency verification scenar-
ios, researchers have recently proposed a series of P4 program bug detection
schemes. Similar to traditional program analysis methods, these approaches pri-
marily perform static vulnerability analysis of P4 programs through assertion
checking. Obviously, such methods cannot detect runtime errors and inconsis-
tencies that occur after program compilation. Consequently, recent research
in the programmable data plane domain has attempted to address consistency
issues during actual network operation. One study pioneered research on control-
data plane inconsistencies in P4-enabled smart NICs, analyzing how focusing
solely on P4 program bugs can severely impact network performance metrics
such as latency and throughput. P4RL introduces reinforcement learning-based
fuzzing to achieve automated runtime verification of individual P4 switches,
but this mechanism is not suitable for control-data plane consistency verifica-
tion at SDN network scale. The same team further proposed P4Consist, a
control-data plane consistency verification method for P4-enabled SDNs. Sim-
ilar to traditional SDN data plane measurement methods, P4Consist requires
injecting a large number of probes to inspect all rules or paths, which not only
impacts normal network communication but also increases data plane measure-
ment latency, making test results lack real-time capability. Additionally, since
P4Consist needs to traverse all paths between source and destination nodes, its
verification time grows dramatically with increasing network complexity.

Therefore, achieving rapid flow rule consistency verification for SDN pro-
grammable data planes during runtime has become an urgent security
challenge in the programmable data plane domain. To address this, we
propose P4CV (P4-based rules Consistency Verification mechanism for SDN
control-data plane) and have developed and evaluated a prototype system
based on the BMv2 software switch. The main contributions are: (1) We
propose a P4-based SDN control-data plane flow rule consistency verification
mechanism that enables rapid consistency verification of SDN programmable
data plane forwarding behavior at runtime; (2) We introduce a P4-based
network telemetry mechanism and a symbolic execution-based consistency
verification algorithm that enables rapid collection of flow rule execution
information from programmable data planes and performs efficient, accurate

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

consistency verification; (3) We build a simulation system, and experimental
results show that in single-path verification scenarios, P4CV verification time
is unaffected by network topology complexity, being only linearly related to
the number of switching nodes on the path. In multipath verification scenarios,
P4CV reduces verification time by approximately 42% compared to P4Consist
while generating only about 0.06‰ bandwidth overhead.

1.1 P4 Abstract Forwarding Model
Unlike the traditional OpenFlow model in SDN, the P4 abstract forwarding
model designs programmable parsers and packet processing actions, supports
custom protocol types, and enables flexible handling of data packets. In the
P4 abstract forwarding model presented in the literature, the packet forward-
ing process in switches primarily relies on three components: a programmable
packet parser, multi-stage match-action pipelines, and buffers.

a) Parser. In the P4 forwarding model, the parser first processes data packets
by extracting packet headers from the payload and caching them separately.
Administrators can customize packet header structures and parsing processes,
which are compiled by the compiler into packet header parse graphs configured
on the parser. The extracted header portion is parsed according to this parse
graph.

b) Multi-stage Pipeline. After parsing, packet headers pass through multiple
match-action tables that can be executed sequentially, in parallel, or in combi-
nation. These tables are organized in a pipeline format, divided into ingress and
egress pipelines. The ingress pipeline determines the output port and queue for
packets, while the egress pipeline modifies packet header information. Logically,
P4’s multi-stage pipeline forms a directed acyclic graph composed of a series
of match-action tables. The underlying platform executing the P4 program
processes packets strictly according to this directed acyclic graph logic.

c) Buffer. Buffers temporarily store parsed packet headers that have not yet
entered pipeline processing, as well as the remaining payload after parsing.

From the perspective of P4 program workflow, the P4 abstract forwarding model
includes a configuration phase and a runtime phase. The configuration phase
primarily involves designing parser processes, setting the execution order of
match-action tables, and specifying which header fields each match-action table
processes. These configurations determine which protocols the switch supports
and how it processes packets. During the runtime phase, entries can be added
to or deleted from the match-action tables specified in the configuration phase,
and the runtime control interface (P4Runtime) generated during configuration
can be invoked at specific times to deliver matching rules to the data plane,
thereby applying configuration policies to data packets.

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

1.2 Research Motivation
During SDN network operation, various internal and external disturbances can
cause inconsistent forwarding behavior in programmable data planes, such as
hardware failures or malicious attacks. Figure 1 illustrates a typical exam-
ple of inconsistent forwarding behavior in an SDN programmable data plane.
The control plane configures a forwarding path for the data plane through the
P4Runtime interface (shown as solid lines), along with corresponding P4 pro-
cessing logic and flow rules. Network administrators configure firewall rules in
switch 𝑆3 to protect downstream server resources. If switch 𝑆2 is compromised
by a malicious attack (or experiences unknown hardware failures) causing flow
rules to be tampered with (shown as dashed lines), the actual traffic forwarding
path changes to the alternative path shown. This causes traffic to bypass the
firewall in 𝑆3, potentially damaging downstream server resources.

Additionally, flow rule priority errors can cause similar inconsistent forwarding
behavior. For example, PicOS 2.1.3 implements a mechanism where switches
use software caching for flow tables when hardware tables are full. For a set of
overlapping flow rules 𝑟1 (high priority) and 𝑟2 (low priority), if 𝑟1 is cached in
switch software while 𝑟2 is stored in hardware tables, traffic will violate flow rule
priorities and execute actions specified in 𝑟2’s match-action table. Similarly, HP
5406zl commercial switch chips do not support flow rule priorities and always
process packets according to the most recent rule, ignoring priorities. These
situations prevent the programmable data plane processing logic developed by
network administrators from being executed effectively and consistently.

2.1 Overall Framework
Since the aforementioned inconsistent forwarding behaviors in programmable
data planes occur during network runtime, the control plane cannot obtain
these security-threatening misconfigurations through static analysis of P4 pro-
grams. To address this, we propose P4CV, a consistency verification method
for programmable data planes. The P4CV workflow is shown in Figure 2.
First, a traffic generator injects probe flows into the network data plane. To
minimize bandwidth impact, probes consist of simple five-tuple information
(source/destination IP addresses, source/destination MAC addresses, and trans-
port layer protocol) and necessary source-routed port sequences. The probe
flows then reach the destination node according to data plane flow rule configu-
rations and specified source-routed port sequences, with each switch along the
path adding five-tuple matching flow rule information to the probe. When probe
flows reach the destination node, P4CV samples them using the existing sFlow
method. The telemetry data collected by probes (including actual forwarding
paths and flow rule information) is parsed and delivered to the consistency
verification module. Finally, the consistency verification module completes con-
sistency validation of data plane forwarding behavior by analyzing forwarding
paths and employing symbolic execution based on telemetry data from the data
plane and reachable path graphs returned from the control plane.

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

P4CV consists of four functional modules:

a) Data Plane Module. Designs and implements P4-based packet processing
logic to forward network traffic and embeds telemetry data into probes.

b) Control Plane Module. For given probes and source-destination nodes,
returns reachable path graphs based on network topology and configuration
information.

c) Consistency Verification Module. Validates data plane forwarding be-
havior consistency based on reachable path graphs and telemetry data.

d) Input/Output Module. P4CV’s input is a probe traffic generator, and
its output is all inconsistency information on forwarding paths (or confirmation
of no inconsistent forwarding behavior in the data plane).

The following sections provide detailed descriptions of each functional module.

2.2 Data Plane Module
To reduce the impact of telemetry processes on normal network communication
while improving flow rule consistency verification accuracy, we propose an ef-
ficient P4-based network telemetry mechanism. Traditional In-band Network
Telemetry (INT) is a passive telemetry technique that encapsulates telemetry
instructions and data into normal data packets to probe specific telemetry data
along paths. This approach reduces the effective payload ratio of data pack-
ets, increases data plane overhead, and impacts normal data communication in
the network. In response, we employ probes with specific quantities and struc-
tures to collect flow rule execution information such as flow rule IDs matched
during normal packet forwarding and input/output port numbers. This sim-
plifies probe structure, reduces data plane overhead, and enables collection of
necessary information for consistency verification.

In P4-based programmable data planes, the packet parsing process is abstracted
as a Finite State Machine (FSM), where each state node represents a field in
the packet header and edges represent state transitions. The parser traverses
packet headers sequentially, extracting field values for processing by predefined
match-action tables. P4CV’s probe parsing process is represented by the parser
graph shown in Figure 3. The figure illustrates that each switch node in the
P4CV data plane processes network packets using two logic paths:

a) Normal Packet Processing. Consistent with traditional IP packet pro-
cessing (shown as dashed lines in Figure 3), P4CV forwards normal data packets
based on Layer 3 routing or Layer 2 switching to ensure normal network com-
munication services.

b) Probe Processing. As shown by solid lines in Figure 3, P4CV forwards
probes from specified output ports according to the source-routed port sequence
(SrcRoute field) in the probe header. Before forwarding probes, telemetry data
is embedded into the probe packet. This data is recorded in the SW_{Trace}

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

field, including the current switch ID, probe packet input port number, and
the flow rule ID matched when the probe is forwarded according to Layer 3
routing or Layer 2 switching, along with the corresponding output port number
—essentially the actual flow rule execution information during real data flow
forwarding. The specific format will be detailed in Section 2.5.

2.3 Control Plane Module
In P4CV, the control plane primarily provides reference data (including for-
warding paths and flow rules) for consistency verification. It abstracts network
configuration as a triple 𝐺 = ⟨𝑉 , 𝐸, 𝑅⟩, where 𝑉 represents all nodes in the
network, 𝐸 represents directed edges between nodes in 𝑉 , and 𝑅 represents
forwarding rules. For a directed edge (𝑠, 𝑡) in 𝐺, 𝑅(𝑠, 𝑡) represents the forward-
ing rules existing at node 𝑠. For given probes and source-destination nodes, the
control plane module delivers the reachable path graph between source and desti-
nation switching nodes to the consistency verification module based on network
topology and flow rule configuration information to complete final verification.

Additionally, flow rules issued by the control plane to the data plane in P4
are stored in corresponding configuration files (typically in JSON format), with
each switch node having its own independent configuration file. These files
contain information about all match-action tables (i.e., forwarding rules) for
each switch node, including names and parameters. The control plane module
is responsible for parsing this stored switch configuration file information. When
the consistency verification module receives a probe (five-tuple flow) from the
data plane, the control plane parses the configuration file information, with
results stored as a dictionary where keys are switch IDs and values are lists
of all available rules from that switch’s JSON configuration file. Finally, the
consistency verification module compares the parsed control plane configuration
information with data plane telemetry data using symbolic execution to detect
control-data plane inconsistencies.

Our modular design for control and data planes maintains the fundamental SDN
principle of decoupling control and data planes. Therefore, the control plane’
s method for managing rules on data plane network devices is device-agnostic.
While JSON-based configuration files are specific to the software switch model
(BMv2) used in our experiments, the proposed consistency verification method
is generic. If the control plane uses other file formats to store forwarding rules,
only the parsing method in the control plane module needs adjustment.

2.4 Consistency Verification Module
The consistency verification module compares telemetry data from the data
plane with configuration information from the control plane to validate data
plane forwarding behavior consistency. The module comprises two functional
components: forwarding path analysis and symbolic execution.

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

As shown in Figure 2, upon receiving data plane telemetry data, the consistency
verification module sends probe information to the control plane module and
obtains the corresponding reachable path graph. The sent probe information
includes probe packet structure and given source-destination nodes, formatted
as [𝑝𝑎𝑐𝑘𝑒𝑡, 𝑠𝑟𝑐, 𝑑𝑠𝑡]. The forwarding path analysis component employs a DFS
search algorithm to traverse the reachable path graph starting from 𝑠𝑟𝑐, obtain-
ing all paths between (𝑠𝑟𝑐, 𝑑𝑠𝑡) that conform to network configuration, thereby
determining whether the probe’s telemetry path is a valid forwarding path for
the given source-destination nodes. To accelerate traversal, the search algorithm
uses a pruned DFS where depth equals the length of the probe’s forwarding
path.

To improve P4CV verification accuracy, the consistency verification module
must also validate matched flow rules after completing forwarding path verifi-
cation. The symbolic execution component generates a symbolic packet (SP)
with the same header as the probe based on the probe’s five-tuple information,
then simulates the SP’s forwarding process hop-by-hop along the probe’s for-
warding path. The SP simulation forwarding process uses Boolean functions as
described in Section 2.2. For a directed edge (𝑢, 𝑣) in the forwarding path graph,
if node 𝑢 contains a forwarding rule 𝑟(𝑢, 𝑣) consistent with control plane flow
rules, node 𝑢 is marked as True and SP is updated. The verification algorithm
is as follows:

Algorithm 1: Consistency Verification Algorithm (Symbolic Execu-
tion)

Input: Symbolic packet SP, verification path 𝑝𝑎𝑡ℎ_𝑠𝑝𝑒𝑐, flow rule configuration
information 𝑅𝑢𝑙𝑒𝑠.

Output: Verification result 𝑃𝐴𝑇 𝐻𝑆_𝐶𝐻𝐸𝐶𝐾, inconsistent switch node in-
formation 𝐸𝑟𝑟𝑜𝑟_𝑅𝑒𝑝𝑜𝑟𝑡.

1. for switch ∈ 𝑝𝑎𝑡ℎ_𝑠𝑝𝑒𝑐 do

2. if (last switch) then

3. for rule $\in Rules$ do

4. if check(SP, rule) == TRUE then

5. $PATHS_{CHECK} \leftarrow$ TRUE // No consistency issues on this path

6. elseif (last rule) then

7. $Error_{Report} \leftarrow$ switch

8. $PATHS_{CHECK} \leftarrow$ False // Inconsistent path

9. else

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

10. for rule ∈ 𝑅𝑢𝑙𝑒𝑠 do

11. if check(SP, rule) == TRUE then

12. $SP \leftarrow$ Update(SP)

13. Go to next switch // Continue verifying next node

14. elseif (last rule) then

15. $Error_{Report} \leftarrow$ switch

16. $PATHS_{CHECK} \leftarrow$ False

17. $SP \leftarrow$ Update(SP)

18. Go to next switch // Continue verifying next node

Furthermore, to simulate actual table lookup and forwarding behavior of packets
in switches, symbolic execution employs sequential table lookup (without consid-
ering flow table priority). To ensure verification accuracy, P4CV validates flow
rule information including destination IP, input/output port numbers, and flow
rule IDs. If flow rules match, the switch is marked as True, SP field information
is updated, and verification continues to the next node. If flow rule matching
fails, the node and corresponding forwarding path are marked as False, fault
information is output, and verification similarly continues to the next node to
detect other inconsistent switch nodes on the path.

2.5 Input/Output Module
This section describes P4CV’s input/output module.

1) Input Module
P4CV employs INT to obtain actual forwarding behavior information from the
data plane, requiring probe flows to be injected into the network. Therefore,
this solution’s input module is the probe traffic generator. To avoid probe
flows consuming excessive link bandwidth, each probe contains only basic five-
tuple information and necessary source-routed port sequences. The probe packet
format is shown in Figure 4. The probe’s forwarding path is determined by the
given source-routed port sequence (i.e., specifying the output port at each switch
node), while the five-tuple information determines the flow rule information
matched when real data flows are forwarded based on Layer 3 routing or Layer
2 switching. The information fields are set as follows:

a) SrcRoute (n bytes). Source-routed port sequence, storing output ports (7
bits) at each switch node during probe forwarding and a bottom-of-stack flag
bos (1 bit) in a stack structure, occupying n bytes (where 𝑛 ≤ 𝑁 , and 𝑁 is the
number of switching nodes on the path).

b) IPOption_{INT} (4 bytes). A telemetry data flag field in IP options,
simultaneously recording brief telemetry information.

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

c) SW_{Trace} (4 bytes). Records flow rule information collected during
forwarding, including node ID, flow rule ID, and input/output port numbers.

2) Output Module
During consistency verification, this solution compares each switch traversed by
the probe and marks switches with flow rule inconsistencies. After the consis-
tency verification module completes its work, it outputs verification results for
each forwarding path. If certain paths contain inconsistencies, corresponding
fault node information (including node ID and flow rule information) is also out-
put. Additionally, since P4CV’s consistency verification algorithm continues
verifying downstream switches after discovering inconsistent nodes on a path, all
fault node information on the given path is output when inconsistencies exist.

3.1 Experimental Setup
To verify the feasibility and effectiveness of the proposed programmable data
plane consistency verification mechanism, we designed two experiments: a single-
path verification scenario shown in Figure 5 and a multipath verification scenario
shown in Figure 6. The first experiment uses results from the topology in Figure
5a as baseline values for single-path verification, while the second experiment
employs the fat-tree topology widely deployed in current data centers. Each
experiment uses the average of 10 runs as the final result.

Experimental environment and parameter settings: The experiments use
BMv2 software switches to construct network topologies, tested on a Mininet
emulator in a virtual machine. The virtual machine runs Ubuntu 18.04-LTS with
an Intel Core i7-9700 3.00GHz processor and 8GB RAM. In each experiment,
all network switching nodes are configured with the same number of forwarding
rules (15K, 30K, 60K). To ensure real-time verification results while minimizing
probe flow transmission delay, the source node probe sending rate is set to 100
pps. Additionally, error configuration injection uses the same method as the
example in Figure 1, modifying flow rules through the programmable switch’
s command-line configuration interface. These misconfigurations are randomly
distributed across nodes on forwarding paths.

3.2 Single-Path Verification
To evaluate our solution’s consistency verification performance in single-path
scenarios, we constructed the network topology shown in Figure 5. In Figure
5a, 𝑆1 serves as the source node, with 𝑆3, 𝑆5, 𝑆7, and 𝑆9 as destination nodes.
The source node first pushes the source-routed port sequence corresponding to
a given single path into the probe header (format shown in Figure 4), then
periodically sends a group of probes. The destination node samples, parses,
and completes consistency verification upon receiving probes. The time from
probe transmission to P4CV completing consistency verification is recorded as
the total time 𝑇 for single-path verification, with symbolic execution duration
recorded as 𝑇𝑠𝑒.

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

Experimental results in Figure 7 show that both single-path symbolic execution
time and total verification time are linearly related to the number of switching
nodes on the path. Since symbolic execution employs sequential table lookup
and each switch contains the same number of flow rules, both symbolic execution
time and configuration file parsing delay are linearly related to the number of
switches on the path. Meanwhile, as probe telemetry time is at the microsecond
level (calculated for 1 Gbps links) and negligible, total verification time is also
linearly related to the number of switches on the path. Figure 7a demonstrates
that when nodes on the verification path do not exceed 8 and the flow rule
count per node is 15K, P4CV can precisely locate all error configurations within
30 seconds, providing strong real-time capability and reliability that ensures
verification accuracy.

Furthermore, to verify that P4CV’s control-data plane consistency verification
time is only linearly related to the number of switching nodes on the path and
independent of network topology, we also conducted single-path consistency
verification in the network topology shown in Figure 5b. Table 1 results show
that with the same number of switching nodes on forwarding paths, P4CV’s
single-path verification time across different network topologies is essentially
equal, with error margins not exceeding 3%.

Table 1: Total Verification Time of Single-Path Scenario for Each
Topology

Path Length (switches) 3 4 5 6 7 8
Total Time (s)
baseline
grid_{4sw}
grid_{9sw}
grid_{16sw}

3.3 Multipath Verification
Data center networks represent the most widely deployed scenario for pro-
grammable data planes today. Therefore, we constructed the fat-tree topol-
ogy shown in Figure 6 (pod=4) to verify the feasibility and effectiveness of our
proposed programmable data plane consistency verification mechanism in prac-
tical deployments. This topology consists of core, aggregation, and edge layer
switching nodes, including 4 core nodes, 8 aggregation nodes, and 8 edge nodes,
with each edge node connecting to 2 servers. After pruning DFS calculation
(depth=7), there exist 20 different forwarding paths between any pair of edge
switches in different pods.

As shown in Figure 6, experiments select two servers in pod1 and pod3 as
probe sending and receiving nodes. The figure illustrates one forwarding path
between the two nodes (shown as dashed lines). Each experiment injects 20 error

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

configurations into 𝑛 forwarding paths between source and destination nodes
using bash scripts, recording the time required to detect each error configuration.

Figure 8 presents the cumulative distribution function (CDF) of error configura-
tion detection time for both P4CV and P4Consist verification methods. Results
show that both can detect all error configurations in the network, but P4CV
consistently detects errors on each path earlier than P4Consist. By introducing
source-routed forwarding, P4CV accelerates probe flow traversal of forwarding
paths. Moreover, P4CV’s consistency verification algorithm continues verifying
downstream nodes after discovering error configurations on a path, enabling a
single probe to complete consistency verification for an entire path and signifi-
cantly reducing probe flow detection time for error configurations. Additionally,
Figure 8 shows that the difference in total verification delay between the two
methods increases with more flow rules per node. With 15K, 30K, and 60K
flow rules per switch, P4Consist requires 7 minutes, 18 minutes, and 36 min-
utes respectively to detect all 20 error configurations, while P4CV requires only
4 minutes, 10 minutes, and 20 minutes—improving detection efficiency by an
average of 42%.

3.4 Data Plane Overhead
Unlike traditional schemes that rely on probe packet loss rate and delay metrics
for verification, our solution employs a P4-based network telemetry mechanism
in the data plane to collect actual forwarding behavior information. Since source
routing explicitly defines the telemetry path, a single probe suffices to collect
flow rule information for one path. As shown in Figure 4, the probe format
yields a maximum total length of 46 + 5𝑁 bytes (where 𝑁 is the number of
switches on the path). Using the 4-layer fat-tree topology in Figure 6 as an
example (𝑁 = 7), the maximum probe length is 84 bytes. With probe flows
injected at 100 pps, this consumes at most approximately 0.06‰ of bandwidth
on a 1 Gbps link.

4 Conclusion
This paper proposes P4CV, a P4-based SDN control-data plane flow rule consis-
tency verification mechanism, to address flow rule inconsistencies between SDN
control and data planes. P4CV leverages a P4-based network telemetry mech-
anism that fully exploits the flexible, definable packet processing capabilities
of programmable data planes to rapidly collect flow rule execution information
from the data plane. Additionally, we propose a symbolic execution-based con-
sistency verification algorithm that completes flow rule consistency verification
for both single-path and multipath forwarding scenarios between given source-
destination switching nodes. Simulation results demonstrate that compared
to existing flow rule consistency verification mechanisms, P4CV’s single-path
verification time is only linearly related to the number of switching nodes on
the path and unaffected by network topology changes. For multipath forward-

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

ing scenarios, P4CV significantly improves verification efficiency while further
reducing data plane overhead. Moreover, as our solution is designed for P4-
based SDN networks, its core verification model can be rapidly deployed on all
P4-programmable switching devices, offering excellent scalability. Future work
will focus on optimizing the verification algorithm to further reduce verification
time.

References
[1] McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: enabling in-
novation in campus networks [J]. ACM SIGCOMM Computer Communication
Review, 2008, 38(2): 69-74.

[2] Bosshart P, Daly D, Izzard M, et al. P4: programming protocol-independent
packet processors [J]. ACM SIGCOMM Computer Communication Review,
2013, 44(3): 87-95.

[3] Song Haoyu. Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane [C]// Proc of the 2nd ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking. New York: ACM
Press, 2013: 127-132.

[4] Hauser F, Häberle M, Merling D, et al. A survey on data plane program-
ming with P4: fundamentals, advances, and applied research [J]. arXiv Preprint
arXiv:2101.10632, 2021.

[5] 林耘森箫, 毕军, 周禹, 等. 基于 P4 的可编程数据平面研究及其应用 [J]. 计算机学报,
2019, 42(11): 22. (Lin Yunsenxiao, Bi Jun, Zhou Yu, et al. Researches and
applications of programmable data plane based on P4 [J]. Chinese Journal of
Computers, 2019, 42(11): 22.)

[6] Dumitru M V, Dumitrescu D, Raiciu C. Can we exploit buggy P4 programs?
[C]// Proc of the Symposium on SDN Research. New York: ACM Press, 2020:
62-68.

[7] Perešíni P, Kuźniar M, Kostić D. Monocle: dynamic, fine-grained data plane
monitoring [C]// Proc of the 11th ACM Conference on Emerging Networking
Experiments and Technologies. New York: ACM Press, 2015: 1-13.

[8] Kuźniar M, Perešíni P, Kostić D. What you need to know about SDN flow
tables [C]// International Conference on Passive and Active Network Measure-
ment. Berlin: Springer, 2015: 347-359.

[9] Wen Xitao, Bu Kai, Yang Bo, et al. Rulescope: inspecting forwarding faults
for software-defined networking [J]. IEEE/ACM Trans on Networking, 2017,
25(4): 2347-2360.

[10] Zhao Yu, Wang Huazhe, Lin Xin, et al. Pronto: efficient test packet gen-
eration for dynamic network data planes [C]// IEEE the 37th International

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

Conference on Distributed Computing Systems. Brussels: IEEE Computer So-
ciety, 2017: 13-22.

[11] Zhang Peng, Li Hao, Hu Chengchen, et al. Mind the gap: monitoring the
control-data plane consistency in software defined networks [C]// Proc of the
12th International on Conference on emerging Networking Experiments and
Technologies. New York: Association for Computing Machinery, 2016: 19-33.

[12] 赵会, 吕光宏, 杨洋, 等. SDN 故障分析研究综述 [J/OL]. 计算机应用研究, 2020,
37(10). (2019-10-24) [2021-10-19]. https://www.arocmag.com/article/01-2020-
10-003.html (Zhao Hui, Lyu Guanghong, Yang Yang, et al. SDN fault analysis
research [J/OL]. Application Research of Computers, 2020, 37(10). (2019-10-24)
[2021-10-19]. https://www.arocmag.com/article/01-2020-10-003.html)

[13] Liu J, Hallahan W, Schlesinger C, et al. P4v: practical verification for
programmable data planes [C]// Proc of the 2018 Conference of the ACM Spe-
cial Interest Group on Data Communication. New York: ACM Press, 2018:
490-503.

[14] Freire L, Neves M, Leal L, et al. Uncovering bugs in p4 programs with
assertion-based verification [C]// Proc of the Symposium on SDN Research.
New York: ACM Press, 2018: 1-7.

[15] Stoenescu R, Dumitrescu D, Popovici M, et al. Debugging P4 programs with
Vera [C]// Proc of the 2018 Conference of the ACM Special Interest Group on
Data Communication. New York: ACM Press, 2018: 518-532.

[16] Gray N, Grigorjew A, Hosssfeld T, et al. Highlighting the gap between
expected and actual behavior in p4-enabled networks [C]// IFIP/IEEE Sympo-
sium on Integrated Network and Service Management. Piscataway, NJ: IEEE
Press, 2019: 731-732.

[17] Shukla A, Hudemann K N, Hecker A, et al. Runtime verification of p4
switches with reinforcement learning [C]// Proc of the 2019 Workshop on Net-
work Meets AI & ML. New York: ACM Press, 2019: 1-7.

[18] Shukla A, Fathalli S, Zinner T, et al. P4Consist: toward consistent P4
SDNs [J]. IEEE Journal on Selected Areas in Communications, 2020, 38(7):
1293-1307.

[19] Behavioral Model Repository. P4 Language Consortium [EB/OL]. [2021-
10-11]. https://github.com/p4lang/behavioral-model.

[20] Zhang Peng, Zhang Cheng, Hu Chengchen. Fast data plane testing for
software-defined networks with RuleChecker [J]. IEEE/ACM Trans on Network-
ing, 2018, 27(1): 173-186.

[21] Phaal P, Panchen S, McKee N. InMon corporation’s sFlow: a method for
monitoring traffic in switched and routed networks [S]. RFC3176, 2001.

[22] Zhu Yibo, Kang Nanxi, Cao Jiaxin, et al. Packet-level telemetry in large
datacenter networks [C]// Proc of the 2015 ACM Conference on Special Interest

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

Group on Data Communication. New York: ACM Press, 2015: 479-491.

[23] Pal C, Veena S, Rustagi R P, et al. Implementation of simplified cus-
tom topology framework in Mininet [C]// Asia-Pacific Conference on Computer
Aided System Engineering. Piscataway, NJ: IEEE Press, 2014: 45-50.

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202204.00074 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00074

	Postprint: P4-Based Consistency Verification of SDN Control-Data Plane Flow Rules
	Abstract
	Full Text
	Preamble
	P4-based Rules Consistency Verification for SDN Control-Data Plane

	0 Introduction
	1.1 P4 Abstract Forwarding Model
	1.2 Research Motivation
	2.1 Overall Framework
	2.2 Data Plane Module
	2.3 Control Plane Module
	2.4 Consistency Verification Module
	2.5 Input/Output Module
	3.1 Experimental Setup
	3.2 Single-Path Verification
	3.3 Multipath Verification
	3.4 Data Plane Overhead
	4 Conclusion
	References

