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Abstract
Rain streaks severely degrade the quality of captured images, affecting sub-
sequent computer vision tasks. To improve the quality of rainy images, we
propose a Transformer-based single image deraining algorithm. First, the algo-
rithm obtains a large receptive field through a transformer with a windowing
mechanism, thereby acquiring contextual information of rain streak features
and enhancing the model’s capability to extract rain streak features; second,
the algorithm extracts and fuses different types and levels of features through
a multi-branch module, improving the model’s representation capability for
complex rain streak information; finally, shallow and deep features are fused
through residual connections to complement the missing detail information in
deep features and enhance network expressiveness. Experimental results on the
public datasets Rain100L, Rain100H and the private dataset Rain3000 demon-
strate that compared with existing algorithms, the proposed method can more
effectively remove rain streaks while better recovering the lost background tex-
ture information in images. The Peak Signal-to-Noise Ratio and Structural
Similarity (PSNR/SSIM) reach 38.33/0.9855, 28.42/0.9000, and 34.51/0.9643,
respectively.

Full Text
Abstract
Rain streaks can seriously degrade the quality of captured images and affect
subsequent computer vision tasks. To improve the quality of rainy images,
this paper proposes a single-image deraining algorithm based on Transformer.
First, the algorithm obtains a wide receptive field through a Transformer with
a window mechanism, then acquires contextual information of rain streak fea-
tures to enhance the model’s ability to extract rain streak features. Second,
the algorithm employs a multi-branch module to extract and fuse features of

chinarxiv.org/items/chinaxiv-202204.00073 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00073
https://chinarxiv.org/items/chinaxiv-202204.00073


different types and levels, improving the model’s capacity to characterize com-
plex rain streak information. Finally, residual connections are used to combine
shallow and deep features, completing the missing detail information lost in
deep features and enhancing the network’s expressive capability. Experimen-
tal results on the public datasets Rain100L, Rain100H, and the proprietary
dataset Rain3000 demonstrate that the proposed method outperforms existing
algorithms, more effectively removing rain streaks while better recovering lost
background texture information in images. The Peak Signal-to-Noise Ratio and
Structural Similarity Index (PSNR/SSIM) reach 38.33/0.9855, 28.42/0.9000,
and 34.51/0.9643 respectively.

Keywords: single image deraining; multi-branch; Transformer; feature fusion

0 Introduction
Rainy weather, as a common condition, reduces the quality of captured images
or videos and limits the application scenarios of computer vision tasks such as
image classification, object detection, and image segmentation. Compared with
video, single images lack temporal information, making single-image deraining
more challenging.

The single-image deraining task primarily aims to recover lost background infor-
mation based on rain streaks and their surrounding pixel information. Methods
can be broadly categorized into traditional approaches and deep learning meth-
ods [1,2]. Traditional methods design models based on prior knowledge of rain
streaks. Chen et al. [3] constructed a low-rank representation method for rain
streak removal based on the similarity of rain streak geometric dimensions. Li et
al. [4] approached the problem from the sparsity of rain streak features, using a
sparse discriminative dictionary for deraining. Li et al. [5] proposed a Gaussian
mixture model for similar patch completion to achieve single-image deraining.
Kang et al. [6] first decomposed images into high and low frequencies, then
applied sparse coding to high-frequency information for rain streak removal.

Although these methods achieve certain effects, they suffer from insufficient de-
raining or over-deraining in areas with dense, complex rain streaks and difficult-
to-identify backgrounds. Deep learning methods based on Convolutional Neural
Networks (CNN) possess powerful feature representation capabilities and can
effectively learn the nonlinear mapping from rainy to rain-free images. Fu et
al. [7] proposed the DerainNet model, which first applied CNN to single-image
deraining by separating input images into high-frequency detail layers and low-
frequency base layers, training the deraining network on the high-frequency
layer and performing image enhancement on the low-frequency layer. Du et
al. [8] proposed a conditional variational single-image deraining network based
on the observation that rain streaks differ across spatial positions and channels.
Zhang et al. [9] also considered density and constructed a multi-stream density
estimator for adaptive image deraining. He et al. [10] jointly considered rain
streak density and drop size, proposing a multi-scale rain streak density estima-
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tion module to guide network deraining. Jiang et al. [11] further studied the
effectiveness of multi-scale models for deraining tasks, proposing a multi-scale
progressive fusion model. Wang et al. [12] also noted the importance of multi-
scale information for deraining tasks, proposing to learn features at different
scales through scale aggregation modules and self-attention modules.

Current CNN-based methods achieve certain results, but CNNs’reliance on con-
volutional layers for indirect correlation between local pixels results in limited
receptive fields. Most existing deraining models expand receptive fields by stack-
ing convolutional kernels, which still yields limited receptive fields and weakens
long-term feature dependencies, causing insufficient or excessive deraining.

The recently popular Transformer [13] possesses global computational charac-
teristics that effectively obtain global attention maps and long-range feature
dependencies, and has been applied to image classification [14], image segmen-
tation [15,16], and other fields. However, Transformer’s unrestricted compu-
tational approach is not suitable for single-image deraining tasks. Therefore,
inspired by Swin Transformer [17], this paper combines Transformer, window
mechanisms, and the characteristics of deraining tasks to design a Multi-branch
Window Transformer Network for Single Image Deraining (MBWTNet). The
model’s feature extraction module offers the advantages of large receptive fields
and strong rain streak feature expression capability, while the multi-branch
module can adaptively learn different types and levels of rain streak features,
enriching feature representation. Experimental results demonstrate that the
proposed method can effectively remove complex rain streaks while better recov-
ering background textures obscured by rain, achieving state-of-the-art deraining
performance compared with current mainstream single-image deraining models.

1.1 Transformer Model Introduction
Transformer was proposed by Vaswani et al. [13] to address the inability of Re-
current Neural Networks to process in parallel for Natural Language Processing
(NLP). The standard model, shown in Figure 1, consists of an Encoder (left) and
a Decoder (right). In the Encoder stage, words in a sentence are first converted
into word embeddings; then global self-attention feature maps are obtained
through self-attention modules, residual connections, and layer normalization;
finally, the Encoder output is obtained through feed-forward networks, residual
connections, and layer normalization. Compared with the Encoder, the Decoder
only adds one attention module and normalization layer to receive the Encoder
output.

The Decoder input includes both the Encoder output and the output from
the previous Decoder. The Decoder outputs probability distributions for cor-
responding positions. Since parallel inputs lack word positional relationships,
Transformer uses positional encoding to preserve positional information.

Dosovitskiy et al. [14] proposed the VIT model, which was the first to directly
use the Encoder part of Transformer for image classification, laying the founda-

chinarxiv.org/items/chinaxiv-202204.00073 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00073


tion for subsequent vision Transformers. To adapt to Transformer input, VIT
first splits images into non-overlapping patches, then stretches and embeds po-
sitional encoding to obtain one-dimensional vectors. Most subsequent vision
Transformer research uses this approach for inputting images or feature maps.
For output, VIT processes the Encoder’s output features through a classifier
to obtain predictions. Both VIT and MBWTNet use relative position encoding,
but MBWTNet differs by adding position encoding in the self-attention module.

1.2 Multi-Head Self-Attention Mechanism Introduction
Multi-head self-attention is a crucial component of Transformer, with its struc-
ture shown in Figure 2. First, the Encoder’s input matrix is transformed through
three weight matrices to obtain query matrix Q, key matrix K, and value ma-
trix V. Then dot-product attention, as shown in Equation (1), calculates self-
attention feature maps. Multi-head self-attention obtains multiple independent
attention feature maps through multiple sets of transformation matrices and
Equation (1). Finally, different attention feature maps are concatenated and
fused through a fully connected layer to obtain multi-head attention maps.

In Equation (1), Q, K, V are two-dimensional matrices composed of vectors.
The dot product of Q and the transpose of K yields a correlation matrix that
records correlations between all vectors. Since Q and K are transformed from
the same matrix, the correlation matrix describes correlations between input
vectors. To avoid gradient vanishing caused by using a single coefficient to
equivalently scale the correlation matrix, the activated correlation matrix is
multiplied with V to obtain the global self-attention map. Multi-head self-
attention is the primary source of Transformer’s global receptive field and
long-range feature dependencies.

2 Multi-Branch Window Transformer Deraining Network
Transformer’s global computational approach provides the model with a global
receptive field and long-term feature dependencies but creates certain feature
redundancies, making it unsuitable for direct application to single-image de-
raining. This paper proposes a Multi-Branch Window Transformer Network
(MBWTNet) that obtains a larger receptive field through window-restricted
computation, fully leveraging the advantages of combining Transformer with
multi-branch architecture and residual connections to extract features at dif-
ferent levels. As shown in Figure 3, MBWTNet consists of Transformer-based
Feature Extraction Blocks (TFEB), Multi-Branch Fusion Modules (MBFM),
and residual connections. In CNNs, residual connections address gradient van-
ishing in deep networks; in this paper, they focus more on the role of shallow
features, i.e., completing missing texture information in deep features.

MBWTNet employs three sequentially arranged MBFM modules to extract and
fuse features at different levels. The outputs of the first two MBFM modules are
transmitted to deep network layers through residual connections, achieving full
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fusion of shallow and deep features. The output of the third MBFM module
is fed into three parallel TFEBs, simultaneously extracting different types of
features by increasing network depth and width. The network computation
process is shown in Equation (2).

In Equation (2), 𝑀𝐵𝐹𝑀𝑡 represents the multi-branch feature fusion module,
𝑇 𝐹𝐸𝐵𝑖 represents the feature extraction module, 𝑥𝑡 are intermediate variables
with the same size and channels, where 𝑥0 is the input rainy image and 𝑥𝑝𝑟𝑒 is
the predicted image.

2.1 Feature Extraction Module TFEB
Since convolution operations cannot fully capture pixel-wise feature correla-
tions, some CNN-based methods produce unsatisfactory results in removing
long, streaky rain patterns, exhibiting either insufficient or excessive deraining.
Transformer’s global computational approach can fully capture pixel correlations
but creates feature redundancy. To address this issue, this paper constructs a
feature extraction module based on Swin Transformer [17]. This module adopts
Swin Transformer’s window shifting mechanism to limit computational load
and enable inter-window information exchange. Swin Transformer causes cer-
tain spatial information loss; to address this, this paper proposes a Patch Splic-
ing module to avoid spatial information loss. The feature extraction module is
shown in the TFEB part of Figure 3. Feature maps sequentially pass through a
patch partition module, linear embedding module, sliding window-based Trans-
former block (SWT), and patch splicing module to complete feature extraction.

The patch partition module first splits the input feature map of size 𝐻 ×𝑊 ×𝐶
into non-overlapping patches, as shown in Equation (3), where 𝐻 and 𝑊 are
input image dimensions, and 𝑊𝑝 and 𝐻𝑝 are patch dimensions.

Since Transformer only accepts one-dimensional vectors, Patch Partition then
converts patches into 1D vectors along the channel dimension. This vector can
be viewed as a“token.”Patch size is closely related to position encoding: larger
patch sizes result in smaller position encoding dimensions. Other computer
vision tasks like image classification focus more on semantic information—for
example, the VIT [14] image classification model and image segmentation [16]
models use patch sizes of 16 × 16, yielding position encoding dimensions of
𝐻
16 × 𝑊

16 . However, image deraining tasks focus more on pixel and positional
information. Therefore, this paper uses a patch size of 3×3, meaning that after
Patch Partition, the vector dimension is 3 × 3 × 𝐶.

Mapping to higher dimensions provides greater feature expression capability,
benefiting the self-attention module in learning rain streak features. This paper
uses a fully connected layer in the Linear Embedding module to map vector
dimensions to 𝑍, i.e., in Equation (5), the vector dimension is mapped to (3 ×
3 × 𝐶2).
Standard Transformer offers global attention and long-range feature dependency
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advantages but suffers from high computational cost and deployment difficulties.
Inspired by [17], this paper adopts a sliding window approach to restrict com-
putation. The model structure is shown in Figure 4(a). Each sub-module con-
sists of two LayerNorm (LN) layers, a window-based multi-head self-attention
module (W-MSA), and an MLP, with the number of attention heads set to 3.
Each patch contains 3 × 3 pixels, so a 7 × 7 window yields a receptive field of
21 × 21. Compared with convolutional layers, window-based Transformer can
obtain larger receptive fields and more fully extract features of different sizes
within windows. Since window boundaries lack sufficient texture information for
feature extraction, inspired by Swin Transformer [17], the second sub-module of
this block adopts a shifted multi-head attention module (SW-MSA), where win-
dow positions differ from the first, as shown in Figure 4(b). The sliding window
mechanism enables boundary pixel information to be within the same window,
completing boundary rain streak feature learning and inter-window information
exchange. The sliding window-based Transformer computation process is shown
in Equation (6).

In Equation (6), 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) represents the multi-head attention out-
put, and 𝑀𝐿𝑃 represents the fully connected output. Unlike the multi-head
attention module in standard Transformer, W-MSA uses the attention module
shown in Equation (7).

In Equation (7), 𝑄, 𝐾 ∈ ℝ𝑀×𝑑 represent Query and Key, 𝑉 ∈ ℝ𝑀×𝑑 represents
Value, 𝑀 = 49 is the number of patches involved in computation (for a 7 × 7
window), 𝑑 = 32 is the dimension of Query, Key, or Value, and 𝐵 ∈ ℝ𝑀×𝑀 is
position encoding. W-MSA reduces computational load and avoids computing
redundant features by limiting the number of patches participating in single
self-attention computation.

Consistent input and output dimensions are necessary for feature extraction
modules to be directly stacked and for fusing features at different levels. The
patch splicing module first compresses the high-dimensional vector ̂𝑍𝑙 from
Transformer computation to dimension 𝑍 through a fully connected layer, con-
sidering that the patch splicing module’s input is a high-dimensional vector
that doesn’t meet patch construction requirements, and that fully connected
layers can adaptively preserve important features while suppressing secondary
ones. Then, 𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝑏 converts vectors to 3 × 3 × 𝐶 along the channel dimen-
sion. Finally, these patches are spliced into a feature map 𝐹𝑜𝑢𝑡 with dimensions
𝐻 ×𝑊 ×𝐶, i.e., 𝐹𝑜𝑢𝑡 = 𝐹𝑠𝑝𝑙𝑖𝑐(𝐹𝑟𝑠). The above computation process is shown in
Equation (8), where 𝐹𝑙𝑖𝑛𝑒𝑎𝑟, 𝐹𝑟𝑒𝑠ℎ𝑎𝑝𝑒, and 𝐹𝑠𝑝𝑙𝑖𝑐 represent linear transformation,
reshaping, and splicing operations, respectively.

2.2 Multi-Branch Feature Fusion Module
Rainy images contain different types of features such as rain streak size and
shape, while background images contain features at different levels. Multi-head
self-attention uses different network initializations to learn to extract and fuse
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different types of features, but this method cannot learn to extract and fuse
features at different levels. To better meet the diversity requirements of fea-
tures in deraining tasks, this paper investigates fusing multiple TFEB modules
to improve model performance. Therefore, three multi-branch structures are
designed and discussed, as shown in Figure 5.

Figure 5(a) shows a homogeneous multi-branch structure. Since each branch has
different initial values and operates independently, they learn toward different
feature subspaces during training. Therefore, more branches yield richer features
and better deraining performance, but more branches do not necessarily mean
a better network, as demonstrated by multi-branch experiments in Section 2.4.
Figure 5(b) has the same parameter count as Figure 5(a), with each branch
using the same structure, but only half the number of branches. Figure 5(c)
has the same number of branches and parameter count as Figure 5(b), but each
branch in Figure 5(c) uses a different structure. This structure’s computation
process is shown in Equation (9).

In Equation (9), 𝑇 𝐹𝐸𝐵𝑖 represents the feature extraction module, 𝑓 represents
the multi-branch module input, and 𝑥 is the output. Since each branch has
different initial values and structures, the module can adaptively learn different
types and levels of features, enriching the output features. Feature addition
alone cannot fully fuse features from different branches; this paper adds a feature
extraction module to achieve sufficient feature fusion.

2.3 Loss Function
Most existing image deraining models use Structural Similarity (SSIM) as the
loss function, which has been proven effective by Ren et al. [18]. Although this
loss function achieves good structural similarity, the generated images suffer
from color distortion to some extent, resulting in lower Peak Signal-to-Noise
Ratio (PSNR). In this work, the loss function’s mathematical expression is
shown in Equation (10).

In Equation (10), 𝑂 is the rainy image, 𝐵 is the corresponding background
image, 𝐿𝑜𝑠𝑠𝐿1 is the Sum of Absolute Differences (SAD), 𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 (Structural
Similarity) measures structural similarity between two images, with its negative
commonly used as a loss function, as shown in Equation (10). Identity loss
(𝐿𝑜𝑠𝑠𝑖𝑑𝑒) originates from CycleGAN [19] for constraining color differences in
generated images; this paper uses it to constrain color differences in derained
images, as shown in Equation (10) for 𝐿𝑜𝑠𝑠𝑖𝑑𝑒, using the background image as
model input and calculating identity loss between the generated result and label
through 𝐿𝑜𝑠𝑠𝐿1. This paper minimizes the sum of three loss values to preserve
image structural information while reducing color differences and improving
deraining performance.
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3.1 Datasets
The existing public datasets Rain100L and Rain100H [20] consist of 1,800 train-
ing pairs and 200 test pairs, created by adding rain streaks of different direc-
tions to the same background images. Rain100L is a relatively simple deraining
dataset, with each image containing one rain direction. Rain100H is a more
challenging dataset, with each image containing five rain directions. Rain100L
and Rain100H provide datasets of two difficulty levels for network performance
evaluation.

However, both datasets suffer from similar backgrounds between training and
test sets [18], reducing model credibility. To address this, literature [18] removed
546 similar backgrounds to improve dataset quality, but this reduces sample size
and is unfavorable for model generalization. This paper uses complete Rain100H
and Rain100L datasets for training and testing to fairly compare with existing
mainstream models. Additionally, a new dataset is proposed to improve model
credibility. This dataset first randomly selects 100,000 images from the rich
ImageNet; then randomly selects 1-4 types of rain streaks from Efficientderain
[21] containing 825 rain streak images to add to the selected images; finally
selects the first 3,400 synthesized image pairs from the 100,000 pairs as the
dataset, with 3,000 training pairs and 400 test pairs. This dataset is named
Rain3000, shown in Figure 6. Rain3000 contains both simple and relatively
complex rain streaks, beneficial for fitting real rain image feature distributions.
Dataset parameters are shown in Table 1.

To verify the effectiveness of the proposed dataset for network training, this
paper first trains DCSFN [22], MPRnet [23], and PRENet [24] on datasets
Rain3000, Rain100L, and Rain100H separately, then tests on real rainy images,
with results shown in Figure 7. Training on Rain3000 enables the DCSFN model
to effectively remove rain streaks of different shapes and sizes while preserving
background information. MPRNet and PRENet can remove smaller, more nat-
ural rain streaks, demonstrating that Rain3000 better fits natural rain streak
feature distributions.

3.2 Experimental Settings
The experimental environment uses a Tesla V100 16G GPU, 32GB RAM, and
the PyTorch deep learning framework version 1.7.0. Batch size is set to 5, with
a total of 500 training epochs. The initial learning rate is 10−4, decaying to
10−5 and 10−6 at 3

5 and 4
5 of total iterations, respectively. This paper compares

mainstream algorithms on datasets Rain100L, Rain100H, and Rain3000, and
conducts ablation experiments on Rain3000.

This paper uses PSNR and SSIM, widely employed for evaluating deraining per-
formance. SSIM measures content and texture similarity between two images,
with a maximum value of 1—closer to 1 indicates higher similarity. PSNR is
calculated based on pixel errors between two images; smaller errors yield larger
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values, indicating better similarity and deraining effect, while larger errors indi-
cate poorer deraining performance.

3.3 Comparison Experiments
To verify MBWTNet’s superiority, this paper compares it with six state-of-the-
art deraining methods on datasets Rain100L, Rain100H, and Rain3000:

a) RESCAN: Recurrent Squeeze-and-Excitation Context Aggregation Net
method [25] (ECCV, 2018), using a recursive structure for multi-stage de-
raining, with each stage employing multiple context aggregation networks
with SE modules and dilated convolutions, plus a memory unit to enhance
inter-stage connections.

b) GCANet: Gated Context Aggregation Network [26] (WACV, 2019),
proposing a context aggregation network using smooth dilated con-
volutions for dehazing to solve gridding artifacts caused by dilated
convolutions, also applicable to image deraining.

c) NLEDN: Non-Locally Enhanced Encoder-Decoder Network [27] (ACM
MM, 2018), proposing a non-local enhanced autoencoder using region-level
non-local enhancement to improve long-range spatial context dependency
capture, plus concatenating different-scale regions to enhance inter-region
communication.

d) PREnet: Progressive Image Deraining Network method [24] (CVPR,
2019), proposing a multi-stage deraining baseline where each stage’s input
is the concatenation of the original rainy image and the previous stage’s
output, plus using LSTM to mine deep features across stages.

e) DCSFN: Deep Cross-Scale Fusion Network for Single Image Rain Re-
moval [22] (ACM MM, 2020), proposing a cross-scale fusion method to
learn internal feature relationships across scales, plus using dense connec-
tions to enhance long-range spatial dependencies.

f) MPRnet: Multi-Stage Progressive Image Restoration [23] (CVPR, 2021),
proposing a multi-stage progressive restoration model to balance spatial
details and contextual information during image restoration, with each
stage supervised by labels, plus cross-stage aggregation of multi-scale fea-
tures for inter-stage information exchange.

Table 2 shows the comparison results, with optimal values in bold and sub-
optimal values underlined. Analysis shows that the proposed algorithm achieves
the best performance on all three datasets. On the relatively simple Rain100L
dataset, PSNR reaches 38.33 dB. On the challenging Rain100H dataset, PSNR
reaches 28.42 dB. On the complex Rain3000 dataset, PSNR reaches 34.51 dB.
The algorithm’s advantage is most significant on Rain100H, with PSNR and
SSIM improvements of 4.44 dB and 0.1388 over the 2018 RESCAN network,
and improvements of 1.87 dB and 0.0516 over the recent MPRNet model, and
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improvements of 0.66 dB and 0.014 over the second-best DCSFN. This indicates
that compared with RESCAN and GCANet’s receptive fields obtained through
dilated convolutions, MBWTNet has a broader receptive field and stronger fea-
ture representation capability; compared with PREnet, DCSFN, and MPRnet’s
feature dependency enhancement methods, MBWTNet has stronger long-range
feature dependencies and richer feature expression; compared with NLEDN’s
multi-scale approach for inter-region information exchange, MBWTNet’s sliding
window method is more sufficient and direct.

Figure 8 shows visual deraining effects of each algorithm. RESCAN produces
artifacts in derained images. NLEDN, CGAN, DCSFN, and MPRNet achieve
good deraining effects but still leave some long rain streaks unremoved. PREnet
removes rain streaks but also eliminates some texture details in the background.
All six models have certain limitations in restoration quality, while MBWT-
Net effectively removes rain streaks and satisfactorily recovers texture details,
further proving the proposed method’s superiority.

Model parameter count and inference time are important practicality metrics.
Figure 9 shows each model’s parameter count and real-time performance. Al-
though the proposed model has a larger parameter count, it achieves the fastest
inference speed because the sliding window-based Transformer and fully con-
nected layers use matrix operations, which are more efficient than step-by-step
convolution. Figure 9 further demonstrates the proposed algorithm’s practical-
ity.

3.4.1 Impact of Branch Number and Structure on Deraining
Performance
To prove the impact of branch number and structure on model deraining per-
formance, two controlled experiments are conducted on Rain3000. The first
experiment verifies the effect of branch number on performance with identical
branch structures. The model’s other parts remain unchanged, only replacing
the multi-branch fusion module MBFM with the structure shown in Figure 5(a)
and varying branch numbers to 1, 2, 3, 4, 5, and 6. Results are shown in Fig-
ure 10. Performance improves as branch number increases, but improvement
becomes limited after exceeding 4 branches. This is because more branches
with identical structures produce increasingly similar features, limiting further
expression of feature diversity. To balance model scale and performance, this
paper adopts a three-branch structure.

The second experiment verifies the effect of identical versus different branch
structures on network performance with equal parameter counts. The model’
s other parts remain unchanged, only modifying the MBFM structure to those
shown in Figures 5(a), 5(b), and 5(c). Results are shown in Table 3, where
MBFM-a corresponds to Figure 5(a), and so on.

Analysis of Table 3 shows that modules with different branch structures have
richer feature expression capability when branch number and parameter count
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are equal. Combined with Figure 10 and Table 3, increasing identical branch
numbers improves deraining performance, but this improvement is limited. Dif-
ferent branch structures can greatly adaptively capture correlations between
different types and levels of features. Therefore, avoiding identical branch struc-
tures better facilitates learning the mapping from rainy to rain-free images.

3.4.2 Loss Function Properties
To verify the impact of different loss functions on model deraining performance,
experiments are conducted on each loss function component. The model uses
the same three-branch structure, evaluated by SSIM and PSNR. Table 4 shows
network performance trained with different loss functions. Analysis shows that
using 𝐿𝑜𝑠𝑠𝑠𝑠𝑖𝑚 alone yields the best SSIM metric. Using 𝐿𝑜𝑠𝑠𝑠𝑠𝑖𝑚 and 𝐿𝑜𝑠𝑠𝑖𝑑𝑒
together achieves the same SSIM as 𝐿𝑜𝑠𝑠𝑠𝑠𝑖𝑚 alone while improving PSNR
by 0.03 dB. Adding 𝐿𝑜𝑠𝑠𝑖𝑑𝑒 degrades 𝐿𝑜𝑠𝑠𝐿1 performance because both loss
functions are based on pixel differences, with 𝐿𝑜𝑠𝑠𝑖𝑑𝑒 suppressing 𝐿𝑜𝑠𝑠𝐿1 per-
formance. Additionally, 𝐿𝑜𝑠𝑠𝐿1 limits performance when only 𝐿𝑜𝑠𝑠𝑠𝑠𝑖𝑚 is used.
Only when all three loss functions are included does the network achieve optimal
performance, improving PSNR by 0.07 dB compared with 𝐿𝑜𝑠𝑠𝑠𝑠𝑖𝑚 alone. Since
𝐿𝑜𝑠𝑠𝑠𝑠𝑖𝑚 is calculated based on image content structure and lacks pixel texture
information, 𝐿𝑜𝑠𝑠𝐿1 and 𝐿𝑜𝑠𝑠𝑖𝑑𝑒 effectively supplement pixel information from
different perspectives. This also demonstrates that identity loss, used to con-
strain color differences in image style transfer tasks, can similarly constrain color
differences in image deraining tasks.

4 Conclusion
For image deraining, this paper proposes a Multi-Branch Window Transformer
Deraining Network (MBWTNet). The network first combines Transformer with
a window mechanism to build a feature extraction module with direct local pixel
correlation, large receptive field, and no spatial information loss. Based on
this module, a multi-branch module is constructed to extract and fuse different
types and levels of features. Finally, feed-forward networks and skip connections
build an end-to-end deraining network. Additionally, this paper proposes a new
deraining dataset Rain3000 based on ImageNet, consisting of 3,000 training pairs
and 400 test pairs, with rich background textures and diverse rain streak types.
The proposed model is compared with several deep learning methods on public
datasets Rain100L, Rain100H, and the private dataset Rain3000, achieving the
best results in both visual quality and quantitative metrics. However, there
are limitations, such as the lack of description of channel correlations in the
algorithm. Future research will consider combining global channel attention and
window channel attention to enhance the model’s ability to capture channel
correlations.
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