ChinaRxiv [$X]

AT translation - View original & related papers at
chinarxiv.org/items/chinaxiv-202204.00071

Asymmetric Periodic Inference Cyclic Progres-
sive Face Restoration Algorithm Research Post-
print

Authors: Li Yagian, Zhang Xuyao, Li Qilong

Date: 2022-04-07T15:01:57+00:00

Abstract

To address the issue that inpainting networks in generative adversarial networks
fail to simultaneously preserve global and local consistency of images while incur-
ring substantial computational load, we incorporate the concept of progressive
inpainting into an asymmetric U-Net architecture. First, we propose an asym-
metric cyclic feature reasoning module that enhances the correlation between
inpainted content and surrounding known pixels, thereby improving the global
consistency of restored images. Second, we introduce a novel U-Net-structured
generator network that prevents unknown pixels in the encoder from entering
the decoder, thus averting feature corruption within the decoder. Finally, the
incorporation of perceptual loss and style loss further enhances the inpainting
performance under subjective evaluation. Experimental results on face image
datasets demonstrate that the proposed algorithm achieves significant improve-
ments in both subjective visual quality and objective metrics.
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Abstract: To address the problem that inpainting networks in generative ad-
versarial networks cannot simultaneously maintain global and local consistency
while suffering from high computational load, this paper introduces the concept
of progressive inpainting based on an asymmetric U-Net architecture. First,
we propose an asymmetric periodic feature inference module that enhances the
correlation between inpainted content and surrounding known pixels, thereby
improving global consistency in restored images. Second, we present a novel
U-Net structured generator network that prevents unknown pixels from the
encoder from entering the decoder and corrupting features. Finally, we incor-
porate perceptual loss and style loss to enhance inpainting quality under sub-
jective evaluation. Experiments on face image datasets demonstrate significant
improvements in both subjective visual effects and objective metrics.

Keywords: generative adversarial network; gradual inpainting; asymmetric
periodic feature inference; image inpainting

0 Introduction

Images serve as a crucial information carrier in daily life, and when they be-
come damaged, aged, or partially lost, they can easily lead to misinterpretation.
Since real-world images are captured under unconstrained conditions, they fre-
quently suffer from occlusion, stains, or damage, which negatively impacts image
recognition, detection, and segmentation tasks. Consequently, image inpainting
technology has become urgently needed, particularly as image recognition and
segmentation tasks have entered everyday usage scenarios.

Traditional artisanal photo restoration typically begins with repairing image
lines or object contours, followed by color and texture restoration. Li et al. [1]
first applied GANs to face completion, drawing inspiration from the artisanal
approach of “contour first, texture later.” By incorporating both global and
local loss functions in the discriminator, their method generated images that
were not only semantically valid but also visually harmonious. This pioneered a
class of hierarchical inpainting approaches that decompose the restoration task
into stages.

Nazeri et al. [2] proposed a two-step edge-color inpainting algorithm that first
uses a PatchGAN [3] for edge restoration, followed by another PatchGAN for
color restoration. This tandem GAN architecture enables hierarchical process-
ing of the inpainting network, yielding finer restoration results. Xiong et al. [4]
argued for explicit separation between structure inference and content restora-
tion. Their model guides inpainting through precise boundary prediction, where
a boundary restoration module infers reasonable structures within the region to
be inpainted, and an image restoration module generates content based on these
predicted boundaries, while also integrating coarse-to-fine network restoration
[5] into each GAN.
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A similar approach employs a hierarchical VQ-VAE based multiple-solution in-
painting method [6], which separates structure and texture by learning a con-
ditional autoregressive network for the distribution of structural features. For
texture generation, it proposes a structural attention module to capture long-
range correlations in structural features, improving structural consistency and
texture realism [7]. Li et al. designed an edge restoration module that simpli-
fies the edge restoration process, enabling edge-color restoration within a sin-
gle GAN. Through a Visual Structure Reconstruction (VSR) module [8], edge
restoration is performed in the initial layers of the generator while color restora-
tion occurs in the main generator pathway. Embedding edge restoration as a
module within the network effectively avoids the high computational load and
convergence difficulties associated with multiple cascaded GANs in hierarchical
restoration.

Subsequently, Li et al. [9] argued that edge-color hierarchy is not optimal for
image inpainting and designed the Recurrent Feature Reasoning (RFR) module,
which adopts a region-graded restoration approach that progressively inpaints
from the outside inward. The RFR module controls the restoration region at
each step, using the content from the previous restoration step as the basis for
inference in the next step. Knowledge Consistent Attention (KCA) [9] mech-
anisms are designed across feature maps at each layer to enhance inter-layer
correlation.

While most existing models achieve better inpainting results, they also increase
computational burden and fail to resolve the convergence issues of multiple cas-
caded GANs. A simple yet effective solution is to introduce hierarchical restora-
tion concepts without increasing training difficulty by designing a plug-and-play
feature reasoning module for inpainting tasks. The RFR module provides a new
modular network design approach for progressive inpainting. Inspired by the
RFR design philosophy, this paper reconstructs the RFR module and combines
it with an asymmetric U-Net framework to design an asymmetric periodic fea-
ture inference module, thereby further enhancing the module’s feature reasoning
capability.

The main contributions of this paper are as follows:

(1) To address the problem that image inpainting networks cannot simultane-
ously maintain global and local consistency while requiring high computa-
tional load, we compare existing methods and find that the RFR module
demonstrates good performance in reducing unknown pixels in the encoder
portion and improving the decoder. We reconstruct and improve the RFR
module into an asymmetric periodic feature module and apply it within
a U-Net structure, proposing the Asymmetric Periodic Feature Inference
(APFI) module.

(2) We propose a progressive inpainting [10] face completion network. We
introduce PatchGAN to train the inpainting network, use gated convo-
lutional layers as the convolution function in the encoder of the U-Net
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structured generator, modify the U-Net bottom layer to use dual-channel
dilated convolution, and combine perceptual loss and style loss to achieve
excellent face completion results.

(3) Experiments on the CelebA face dataset use random masks for training
and testing, and comparisons with state-of-the-art inpainting models in-
cluding Edge-Connection [2], PConv [11], GatedConv [12], GFP-GAN [13],
and LaMa [14] demonstrate the effectiveness of our algorithm in improving
both subjective quality and objective metrics.

1.1 Cyclic Inpainting Network Framework

The periodic feature reasoning module draws inspiration from progressive in-
painting concepts and the restoration region localization mechanism in partial
convolutions, locating each step’ s restoration region through mask channel
updates. The periodic reasoning module consists of four components: area iden-
tification [15], feature reasoning [16], feature merging, and knowledge consistent
attention. The module structure is shown in Figure 1.

Unlike current popular image inpainting methods, the RFR model does not use
GANs and is overall a CNN structure. In our designed asymmetric periodic
feature inference module, we introduce GANs’ excellent unsupervised learning
capability by designing a PatchGAN structure and employing a Markovian dis-
criminator trained based on Wasserstein distance [17] to train the U-Net gener-
ator embedded with the RFR module.

Area identification uses the mask [18] update mechanism from partial convolu-
tions to locate the size and position of the restoration region in each cycle. Since
conventional convolution is unsuitable for image hole filling—because spatially
shared convolution filters treat all input pixels or features as equally valid, lead-
ing to visual artifacts such as color differences, blurriness, and noticeable edge
reflections around holes—this paper adopts gated convolution [12] as the con-
volution kernel for the feature reasoning module to enhance feature reasoning
capability for inpainted content, constructing an asymmetric structure. The
framework of our proposed asymmetric periodic feature inference module is
shown in Figure 2.

By combining the above asymmetric feature reasoning module with the skip con-
nection [19] mechanism of the U-Net network structure, we enhance the decoder’
s image generation capability, thereby improving image visual performance. We
adopt a VGG-Net pretrained on face datasets to construct perceptual loss and
style loss, which enhances the generator’ s performance in visual perception
and style. The designed asymmetric periodic inference cyclic progressive face
completion network framework is shown in Figure 3. The cyclic progressive in-
painting network first embeds the RFR module after the input layer, ensuring
that images entering the encoder have no unknown regions. The feature map
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without unknown regions is then fed into the U-Net network. This network op-
erates similarly to an RNN: the feature map output from the first pass through
the RFR module is re-input into the RFR module a second time. The second
pass further fills in or predicts more reasonable values based on the feature map
from the first pass. After several such cycles, the process proceeds to the feature
fusion stage. This cyclic mechanism enables repeated utilization of features in
the RFR module, allowing the model to achieve lightweight design while predict-
ing more reasonable feature parameters and further enhancing module feature
reasoning capability.

To improve the network’ s ability to extract semantics from high-level feature
maps, the U-Net bottom layer is designed as a parallel dilated convolution struc-
ture. This algorithm uses gated convolutional layers as the convolution function
in the encoder of the U-Net structured generator and modifies the U-Net bottom
layer to dual-channel dilated convolution to prevent the image spatial structure
from being corrupted at the generator’ s bottom layer.

1.2 Markovian Discriminator

Conventional GANs employ a discriminator to determine whether input comes
from the real data distribution or generated data distribution. Unlike standard
GAN discriminators, the Markovian discriminator is designed as a fully convo-
lutional structure that outputs an N x N matrix X, where each element X ;
represents the authenticity of an image patch corresponding to a receptive field
of size M x M in the original image. The final authenticity score is obtained by
averaging all values in the matrix. Network training employs a metric based on
Wasserstein distance to ensure convergence.

The Markovian discriminator offers several advantages over conventional dis-
criminators: (1) It can focus on inpainting results at the patch level, significantly
improving image detail performance. (2) By focusing on different regions of the
input, it can learn to consider the contribution of different regions to identify-
ing whether the image is real, enabling targeted attention to regions with high
contribution. For example, when inpainting faces, the discriminator focuses on
facial regions while reducing attention to background areas.

To improve PatchGAN convergence speed and enhance restoration diversity, we
incorporate spectral normalization based on Miyato et al.” s research. WGAN
convergence requires the network to satisfy the Lipschitz constraint [20]. To
meet this condition, the original WGAN employed gradient clipping to artifi-
cially constrain all convolutional layer weights to a range, which caused uneven
gradient distribution. Subsequently, WGAN-GP [21] alleviated this issue using
gradient penalty regularization. Later, Miyato et al. proposed spectral normal-
ization regularization, which enables the network to satisfy the 1-Lipschitz con-
dition without interfering with gradients. Our Markovian discriminator employs
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spectral normalization regularization during training to improve discriminator
performance.

1.3 Perceptual Loss and Style Loss

For face inpainting tasks, this paper introduces perceptual loss and style loss
[22]. Our algorithm uses a face recognition network pretrained on face datasets
as supervision to compute perceptual differences and style consistency between
inpainted and original images.

The restoration network output and original image have dimensions of
2568 x 256, whileV GG16networkinputis224 x 224images. T here fore, duringtraining, boththerestorationnetwo
when computing losses. The VGG16 network structure is shown in Figure 4.

Perceptual loss is computed at the relu3_ 3 layer of VGG16, as shown in Equa-
tion (1):

1
’Cperceptual = Z m||¢](lgt) - ¢j (Iout)”%
P R A

where ¢ represents the VGG network, ¢; denotes using the feature map from
the j-th layer of VGG network as output, and C}, H;, W; represent the number
of channels, height, and width of the feature map output from the j-th layer of
VGG network.

Using VGG16 as a supervision network identifies pixel-level differences between
two input images at the feature map level. Compared to direct pixel-level differ-
ence computation on images, feature maps represent high-level semantic features
of images, so pixel-level computation on feature maps can represent perceptual
differences between two images.

Style loss computation is shown in Equations (2) and (3):
’Cstyle = Z ||¢J(Igt) - (bj(‘[out)”%
J

1
Gy, (1)er = = D 05(0) e - 05(2)
¢ c,c J c,h,w 7 ¢’ h,w
’ CHW; o~
where G¢j represents the Gram matrix computation, and other symbols main-

tain the same meaning as in perceptual loss.
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1.4 Overall Loss

The total training loss consists of four components: PatchGAN loss, perceptual
loss, style loss, and L1 reconstruction loss. Define the network input as I,, =
I, © M, where M is the mask image. In M, regions with pixel value 0 represent
unknown areas, while regions with pixel value 1 represent known areas. The
input damaged image is obtained by pixel-wise multiplication of the original
image and mask image. After inpainting through the cyclic progressive face
completion network, the output is I, = G(I;,). The total network loss function
is shown in Equation (4):

L'total = )‘adv’cadv + )‘per’cper + )‘style’cs‘cyle + )‘ll"cll
where £, 4, represents the generative adversarial network loss [23], £
sents perceptual loss, £
struction loss.

per T€pre-

style Tepresents style loss, and £;; represents L1 recon-

Our network optimization employs the Adam optimizer to optimize the total
loss. First, forward computation is performed to obtain the output inpainted
image, then network loss is calculated according to Equation (4), and Adam is
used to optimize the loss. The weight update is shown below:

Wiy = Wy —

n ~
Vi e !

where first-order momentum 7, and second-order momentum 7, are given by
Equations (6) and (7):

- my 0L
my = T my = V1M +(1—71)78wt
2
A n 0L
nt:ﬁ, ny =Yon_y + (1= 72) <6wt>

where vy, 75, and € are optimizer parameters, and £ is the total network loss.
The backpropagation process first computes unbiased estimates of first-order
and second-order momentum from the gradient of network loss with respect to
weights, then substitutes them into Equation (5) to update weights.

2.1 Deep Learning Environment Configuration

Our algorithm’s experimental code is implemented using the PyTorch framework.
PyTorch provides functionality for computing derivatives of each node based on
computational graphs, enabling dynamic construction of computational flow
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graphs and facilitating gradient backpropagation. It also integrates numerous
commonly used deep learning functions, simplifying network construction and
experimentation.

Our experimental platform operates on a 64-bit Linux kernel system, Ubuntu
18.04 LTS, with PyTorch version 1.2.0, OpenCV 4.4.0.46, numpy 1.16.5, scipy
1.1.0, and scikit-image 0.13.1. The GPU is an Nvidia 1080Ti with 8GB memory.

2.2 Dataset Introduction and Hyperparameter Configura-
tion

CelebA [24] is a large-scale face dataset collected and created by the Chinese
University of Hong Kong, containing 202,599 face images. Since the unprocessed
dataset contains images of varying sizes and face positions, making learning
difficult, we first preprocess using the author’s provided face bbox regression box
annotation files to obtain 202,599 aligned images, then resize them to 256% x $256.
We randomly select 1,000 images as the test set, with the remaining images used
as the training set.

Our experiments use the Adam optimizer with a learning rate of 4 x 107* during
training and 1 x 1075 during fine-tuning, batch size of 6, and 450,000 training
iterations. Hyperparameters are set as \,q, = A e, = 0.05, A = 120, and
)\ll == 1

style

2.3 Experimental Results and Evaluation Metrics

The selected comparison models all demonstrate excellent performance on face
data, including Edge-Connection [2], PConv [11], GatedConv [12], GFP-GAN
[13], and LaMa [14]. We employ the irregular mask dataset proposed in PConv
for training and testing masks. This dataset provides random occlusions with
different occlusion ratios and shapes, simulating the randomness of real-world
occlusions. Using this dataset for test masks ensures greater objectivity for
horizontal comparison. Different mask ratios are illustrated in Figure 5, and
images to be restored are shown in Figure 6.

The subjective performance of each algorithm on the face dataset is shown in
Figure 7. Observation reveals that PConv, GatedConv, Edge-Connection, GFP-
GAN, LaMa, and our algorithm all achieve good effects in restoring global se-
mantics, but our algorithm demonstrates more prominent performance in restor-
ing detailed structures, which the first five algorithms cannot accurately restore
completely.

We conduct horizontal comparisons of objective metrics across different mask
ratios. The irregular mask dataset categorizes different mask ratios, with each
ratio containing 2,000 random mask images. To test our algorithm’ s restoration
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performance under different mask ratios, we select three different mask ratio
datasets: (0.1,0.2], (0.3,0.4], and (0.5,0.6] for testing. The horizontal comparison
results of objective metrics between our algorithm and other algorithms under
different mask ratios are shown in Tables 2-4.

Table 2 shows the metrics for different models when mask ratio is in (0.1,0.2].
Table 3 shows the metrics when mask ratio is in (0.3,0.4]. Table 4 shows the
metrics when mask ratio is in (0.5,0.6].

Tables 2-4 demonstrate the objective effectiveness of our algorithm under differ-
ent mask occlusion ratios. We employ three different metrics: Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index (SSIM), and L1 error. Higher
PSNR and SSIM values indicate better performance, while lower L1 error is
preferable. L1 error represents the L1 norm between restored and original im-
ages. Our algorithm shows superiority across these three objective metrics on
different datasets.

Experiments demonstrate that our algorithm achieves certain improvements
over the original algorithm. We find that the iteration count of the non-periodic
feature reasoning affects restoration results. Through experiments with different
iteration counts, we determine that network restoration performance is optimal
at 6 iterations, as shown in Table 5.

To explore the effectiveness of our proposed asymmetric periodic feature infer-
ence module and the network framework trained with PatchGAN, we design

comparison experiments with RFR. The comparison results are shown in Table
1.

The above experiments prove the effectiveness of our innovations. Figure 8 shows
our algorithm’ s restoration performance under different occlusion ratios, and
Figure 9 shows our algorithm’ s performance on the same image with different
occlusion ratios. Subjectively, our algorithm achieves good restoration results
across large-range arbitrary occlusions.

3 Conclusion

To address the problem that inpainting networks cannot simultaneously main-
tain global and local consistency while requiring high computational load, this
paper proposes an asymmetric periodic feature inference module that enhances
the correlation between inpainted content and surrounding known pixels. First,
we introduce progressive inpainting concepts by combining a progressive inpaint-
ing module (RFR) with an asymmetric network architecture and reconstructing
the progressive inpainting module. Second, we employ a U-Net framework with
an embedded asymmetric RFR module, introduce PatchGAN to train the in-
painting network, use gated convolutional layers as the convolution function in
the encoder of the U-Net structured generator, and modify the U-Net bottom
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layer to dual-channel dilated convolution to prevent image spatial structure cor-
ruption at the generator’ s bottom layer. Finally, combining perceptual loss and
style loss yields excellent face completion results. Experimental results demon-
strate that our algorithm shows significant improvements in objective metrics
including PSNR, SSIM, and L1 error, as well as in subjective visual quality
compared to existing algorithms.
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