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Abstract
Graph Convolutional Networks (GCNs) can extract effective information from
graph data through graph convolutions, but they are vulnerable to adversarial
attacks that degrade model performance. While adversarial training can en-
hance neural network robustness, the discrete nature of graph structures and
node features precludes direct gradient-based construction of adversarial pertur-
bations. Extracting graph data features from the model’s embedding space as
adversarial training samples can reduce this construction complexity. Inspired
by ensemble learning, we propose VDERG, an adversarial training method for
GCNs based on non-robust features. Specifically, we construct two GCN sub-
models targeting topological structure and node attributes, respectively. Non-
robust features are extracted through the embedding space to perform adver-
sarial training, and the embedding vectors output by the two sub-models are
finally integrated as node representations. Experimental results demonstrate
that the proposed method improves accuracy by an average of 0.8% on clean
data and by up to 6.91% under adversarial attacks.
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Abstract: Graph convolutional neural networks can distill effective informa-
tion from graph data through graph convolution, but they are vulnerable to
adversarial attacks that degrade model performance. Adversarial training can
improve neural network robustness, yet since graph structures and node features
are typically discrete, adversarial perturbations cannot be directly constructed
based on gradients. Extracting graph data features from the model’s embed-
ding space as adversarial training samples can reduce construction complexity.
Drawing on ensemble learning principles, this paper proposes VDERG, an adver-
sarial training method for graph convolutional neural networks based on non-
robust features. VDERG constructs two graph convolutional neural network
sub-models targeting topology structure and node attributes respectively, ex-
tracts non-robust features through the embedding space, completes adversarial
training based on these features, and finally integrates the embedding vectors
output by the two sub-models as node representations. Experimental results
demonstrate that the proposed adversarial training method improves accuracy
on clean data by 0.8% on average and enhances accuracy by up to 6.91% under
adversarial attacks.

Keywords: graph convolutional neural network; ensemble learning; non-robust
features; adversarial training

0 Introduction
Graphs, as a universal data structure, can widely represent systems across var-
ious domains, including economic networks (transaction networks), social sci-
ences (social and citation networks), natural sciences (molecular structures),
and knowledge graphs. In recent years, graph neural networks (GNNs) have
achieved remarkable success in learning graph representations. Among them,
graph convolutional neural networks (GCNs) generate node representations by
aggregating node information using edge information, demonstrating significant
effectiveness in graph information extraction. The extracted features can be
applied to node classification, link prediction, graph classification, and other
tasks, with broad applications in data mining and recommendation systems.

Existing research has demonstrated that neural networks lacking robustness
are susceptible to adversarial attacks, where adversarial samples with minimal
perturbations substantially degrade neural network performance [?]. Dai et
al. [?] discovered that randomly dropping edges between nodes can effectively
attack graph neural networks. The vulnerability of GCNs may lead to security
issues in their application domains; for instance, in credit detection systems,
fraudsters could establish multiple transactions with several high-credit users
to obtain false “high-credit user”results in model detection [?]. Consequently,
extensive research has emerged focused on improving GCN robustness.
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Adversarial training [?] has been widely employed to enhance neural network
robustness by generating adversarial samples during model training and mini-
mizing model loss on these samples, thereby improving performance under ad-
versarial attacks. Existing research on adversarial training methods for GCNs
primarily concentrates on constructing perturbation regularization terms for sin-
gle models or modifying graph structures, with few studies exploring ensemble-
based approaches to improve model robustness by leveraging the learning capa-
bilities of multiple classifiers.

A key characteristic of adversarial attacks is their generalizability across neural
networks. By performing adversarial training on multiple neural network models
separately, the overall model can learn more comprehensive feature information,
thereby enhancing robustness. Literature [?, ?] indicates that the effectiveness
of ensemble learning-based defense algorithms depends on the diversity of sub-
models. Only when sub-models learn different features can adversarial perturba-
tions be prevented from transferring between sub-models, effectively improving
the overall model’s defense capability. Considering graph data characteristics,
Wu et al. [?] constructed an ensemble model containing two sub-models trained
separately on topology structure information and node attribute information
to enhance GNN robustness. However, merely training sub-models separately
on structural and attribute information without considering the characteristics
of adversarial attacks may still produce significant prediction deviations when
both structural and attribute information are attacked.

Model training on neural networks essentially involves learning features from
graph data. The learned features that benefit model performance exhibit vary-
ing sensitivity to adversarial perturbations. Based on this differential sensitiv-
ity, these features can be categorized into robust and non-robust features. Ro-
bust features in data maintain stability even under adversarial attacks, helping
models learn correct and effective information, whereas non-robust features are
altered by adversarial perturbations, causing models to learn incorrect informa-
tion during training and consequently degrading performance. The non-robust
features learned by models contribute to their vulnerability. However, current
research on adversarial training based on non-robust features has focused on
image data, with few studies leveraging non-robust features in graph data to
improve model robustness.

Addressing the aforementioned issues, this paper aims to explore the role of non-
robust features in graph data for improving GCN model robustness. Combining
structural information and node attribute information in graph data, we pro-
vide definitions and extraction methods for non-robust features. Furthermore,
based on non-robust features learned by GCNs from graph data and ensemble
learning methods, we propose VDERG (Vulnerabilities Distillation of Ensem-
bles for Robust Graph Neural Networks). VDERG utilizes embedding vectors
after graph convolutional layers to extract non-robust features from structural
and attribute information separately, performs adversarial training on two sub-
models based on these features to make them respectively adapt to adversarial
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perturbations on node relationships and node attributes, and then integrates
the node embedding vectors from both sub-models as input to a mapping func-
tion for final predictions. Experiments demonstrate that the proposed defense
algorithm can effectively improve the robustness of graph convolutional neural
network models.

The main contributions of this paper are: (a) defining non-robust features on
graph data and providing extraction methods for non-robust features from both
structural and attribute perspectives considering graph data characteristics; (b)
proposing a robust graph convolutional neural network algorithm based on en-
semble learning that performs adversarial training on sub-models using non-
robust features, enables different sub-models to learn graph information from
structural and attribute information respectively, integrates node vector repre-
sentations, and effectively defends against adversarial attacks.

1.1 Adversarial Training
Graph convolutional neural networks can be viewed as a variant of convolutional
neural networks migrated to graph data. Due to their similar convolution mech-
anisms, GCNs are also vulnerable to adversarial attacks. For a graph 𝒢, an
attacker aims to find a graph structure 𝒢′ that maximizes the loss value ℒ for
target node 𝑣 on GCN model 𝑓 , i.e., 𝒢′ = arg max𝒢′ ℒ(𝑓(𝒢′), 𝑦𝑣). The adversar-
ial perturbation must be constrained to be imperceptible, i.e., ‖𝒢′ −𝒢‖ ≤ 𝜖. Due
to the characteristics of graph data tasks, most current adversarial attacks are
poisoning attacks, where attackers inject adversarial samples into the training
dataset [?].

In recent years, with the powerful expressive capability of GCNs in node repre-
sentation, numerous studies have focused on improving GCN model robustness.
Adversarial training has achieved significant success in improving the robust-
ness of CNNs and other models, and has been adapted by many scholars to
enhance GCN robustness. Adversarial training generates adversarial samples
during model training and simultaneously minimizes model loss on these sam-
ples, i.e., min𝜃 𝔼(𝒢,𝑦)[max𝒢′∶‖𝒢′−𝒢‖≤𝜖 ℒ(𝑓𝜃(𝒢′), 𝑦)].
Dai et al. [?] perturbed the adjacency matrix by randomly dropping edges dur-
ing training, but this method only reduced the attack success rate by 1%. Dai
et al. [?] proposed adversarial training for poisoning attack scenarios by adding
noise in the embedding space based on DeepWalk [?], improving DeepWalk’
s generalization ability on node classification tasks. This adversarial training
method can be extended to a series of node embedding models, but the experi-
ments lacked comparative verification of model robustness. Feng et al. [?] argued
that graph smoothness causes adversarial perturbations to propagate between
nodes, and addressed this issue by adding an adversarial regularization term to
reduce the difference between target samples and their adjacent samples’pre-
dictions. Results showed that GCN-GAD with the added regularization term
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became less sensitive to adversarial perturbations, but the experiments did not
clearly specify the adversarial attack methods used.

Wang et al. [?] proposed ignoring graph discreteness and directly adding pertur-
bations to the adjacency matrix and feature matrix. Targeting a random edge-
dropping attack method, experiments verified that the proposed GraphDefense
method could improve model accuracy by approximately 0.2 after adversarial
attacks. The discreteness of graph data poses challenges for adversarial training
on GCNs, and directly adding perturbations to the adjacency or feature matrix
can reduce the complexity of adversarial training methods.

1.2 Ensemble Learning
Ensemble learning has been widely studied for improving model performance by
combining multiple base learners to enhance overall model generalization. Since
neural network models tend to extract similar features from datasets, adversar-
ial attacks also exhibit generalizability across different graph neural networks
[?]. Ensemble learning-based defense methods can prevent the impact of ad-
versarial attacks from transferring between sub-models by making different sub-
models have different adversarial subspaces (Adv-SS) [?]. Kariyappa et al. [?]
proposed diversity training to reduce the correlation of loss functions between
sub-models. Pang et al. [?] proposed an adaptive regularization term that en-
courages diversity in the non-maximal predictions of different sub-models. Yang
et al. [?] discovered that non-robust features are more widely distributed in data
and improved model performance on both clean and attacked data by having
sub-models extract different non-robust features and integrating model learn-
ing capabilities. The aforementioned ensemble learning methods have achieved
significant results in the image domain.

Currently, few studies have applied ensemble learning to the graph domain to
improve model performance and robustness. Zhang et al. [?] reconstructed an
attribute graph based on feature similarity between nodes and performed predic-
tions based on structural information and the attribute graph separately, finally
aggregating the two predictions as the result. This ensemble algorithm is based
on the assumption that nodes with similar features and adjacent nodes usu-
ally have similar labels, preprocesses attribute information to some extent, and
improves model performance, but cannot eliminate attack effects when graph
structure is perturbed, exhibiting certain limitations. Wu et al. [?] selected
two sub-models to learn from graph structural information and attribute in-
formation respectively, averaged the confidence of the two sub-models in each
iteration, used the ensemble model’s most confident prediction as the node’
s pseudo-label, and added it to the training set to improve model robustness.
This method primarily addresses the lack of labels in semi-supervised learning
and does not consider changes in graph structure and node attributes under
adversarial attacks.
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1.3 Non-Robust Features Research
Under supervised learning, neural networks improve model capability by ex-
tracting and learning features from datasets. The features learned by neural
networks directly determine their predictive ability. Ilyas et al. [?] argued that
well-generalized features learned by models form the basis of adversarial attacks.
By constructing “robust datasets”and “non-robust datasets”on image data,
they demonstrated that non-robust features in datasets cause neural networks
to be vulnerable to adversarial attacks, making non-robust features valuable for
research in improving neural network robustness. Yang et al. [?] extracted non-
robust features from image data through embedding vectors after model convo-
lutional layers, improving model robustness while maintaining performance on
clean datasets.

Current research on non-robust features has primarily focused on the image do-
main. However, Garg et al. [?] discovered that robust features unaffected by
adversarial attacks are related to the spectral characteristics of image data, sug-
gesting that the Laplacian matrix of graph data may also contain non-robust
features that contribute to GCN vulnerability. Jin et al. [?] experimentally
demonstrated that removing adversarial attack edges and normal edges has dif-
ferent effects on the rank and singular values of the adjacency matrix, indicat-
ing that the features exploited in adversarial attack generation have particular
characteristics, indirectly confirming that features learned by GCNs have vary-
ing susceptibility to adversarial attacks. Since GCNs perform model training
based on both structural information and node attribute information, research
on non-robust features in graph data should address these two aspects. Litera-
ture [?] compared real-world graphs with graphs attacked by metattack [?] and
found that adjacent nodes in real graphs tend to have similar attribute features,
while adversarial attacks alter graph smoothness. Literature [?] improved model
performance by constructing regularization terms that enhance graph smooth-
ness. The aforementioned research suggests that non-robust features in graph
datasets may be related to graph smoothness.

2 Ensemble Adversarial Training Method Based on Non-
Robust Features
Inspired by non-robust feature extraction methods in the image domain, this
paper proposes VDERG (Vulnerabilities Distillation of Ensembles for Robust
Graph Neural Networks), an ensemble adversarial training method based on
non-robust features. Considering both topology structure and node attribute
information in graph data, VDERG obtains gradients in the model’s embed-
ding vector space through matrix differences with random graphs and feature
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smoothness differences respectively, performing iterations on the adjacency ma-
trix and attribute matrix to extract non-robust features from graph data. These
non-robust features serve as adversarial samples for adversarial training of two
sub-models, which learn from structural non-robust features and attribute non-
robust features respectively. Finally, VDERG sums and averages the embed-
ding vectors from the two sub-models, obtaining node prediction labels through
a softmax function. The overall process is illustrated in Figure 1.

2.1 Problem Formulation
A graph is defined as 𝒢 = (𝒱, ℰ), where 𝒱 is the node set containing 𝑁 nodes,
and ℰ is the edge set. Node relationships can be represented by adjacency matrix
A ∈ ℝ𝑁×𝑁 , where 𝐴𝑖𝑗 represents the relationship between node 𝑣𝑖 and node 𝑣𝑗.
X ∈ ℝ𝑁×𝑑 denotes the node feature matrix, where x𝑖 represents the feature
vector of node 𝑣𝑖. According to common node classification task settings, this
paper assumes that only partial node labels are available in the dataset, denoted
as 𝒴𝐿, where node 𝑣𝑖’s label corresponds to 𝑦𝑖. For node classification tasks,
given graph 𝒢 and partial node labels 𝒴𝐿, GCN aims to learn a function 𝑓𝜃 that
maps nodes to a set of labels, using the function to classify unlabeled nodes.
The learning process can be described by:

ℒ = ∑
𝑣𝑖∈𝒴𝐿

ℓ(𝑓𝜃(A, X)𝑖, 𝑦𝑖)

where 𝑓𝜃(A, X)𝑖 represents the prediction for node 𝑣𝑖, 𝜃 denotes the learnable
parameters, and ℓ represents the difference between predictions and labels, typ-
ically calculated using cross-entropy. The most commonly used GCN structure
is a two-layer GCN [?], i.e., model parameters 𝜃 = {W1, W2}, so function 𝑓𝜃
can be further specified as:

𝑓𝜃(A, X) = softmax(Â ⋅ ReLU(ÂXW1) ⋅ W2)

where Â = D̃− 1
2 ÃD̃− 1

2 represents the normalized adjacency matrix, Ã = A + I;
D̃ is the diagonal degree matrix; 𝜎 denotes the activation function, commonly
ReLU.

Based on the above definitions, given graph 𝒢 and labels 𝒴𝐿, the VDERG
algorithm proposed in this paper targets poisoning attacks. Under the premise
that adjacency matrix A and feature matrix X may be poisoned, VDERG
learns GCN model parameters 𝜃 through adversarial training to obtain a robust
GCN model that improves prediction performance on unlabeled nodes under
adversarial attacks.
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2.2 Non-Robust Feature Extraction
GCNs learn node embedding representations by extracting features from graph
data. Among the graph data features utilized during extraction, some features
are robust—meaning they are not easily affected by adversarial perturbations
—while others are non-robust, causing model performance degradation when
attacked.

Consider the ideal scenario for non-robust feature extraction: the extracted
perturbed graph contains all possible non-robust features that could interfere
with GCN, and although the difference between the original graph data and
perturbed graph data is substantial, they produce identical embedding vectors
after passing through the GCN model, as shown in Figure 2. In this case, the
non-robust features contained in the perturbed graph would have a fatal impact
on GCN’s node embedding generation. Based on this theory, this paper defines
non-robust features extracted by GCN from graph data as follows:

Let 𝒢 be the original graph data’s adjacency and attribute matrices, and 𝒢′ be
a randomly generated graph with the same number of nodes but different node
relationships and attribute features. The non-robust features 𝐹𝑁𝑅 extracted
by GCN model 𝑓𝜃 at layer 𝑙 from graph 𝒢, corresponding to graph 𝒢′, can be
defined as:

𝐹𝑁𝑅 = arg min
𝒢′

‖𝑓 𝑙
𝜃(A′, X′) − 𝑓 𝑙

𝜃(A, X)‖2
𝐹 + 𝜆 ⋅ Smoothness(X′, X)

where 𝑓 𝑙
𝜃(⋅) represents the output before the activation function (e.g., ReLU)

at the 𝑙-th hidden layer of the GCN model. Considering that adversarial at-
tacks can interfere with GCN models by modifying node relationships or node
attributes, the feature extraction process in Equation (3) performs constrained
optimization from both adjacency matrix and attribute matrix perspectives,
aiming to extract from graph 𝒢′ features that could confuse GCN into identify-
ing it as graph 𝒢, i.e., non-robust features in graph 𝒢.

The first term in Equation (3) minimizes the difference between the original
graph’s adjacency matrix and extracted adjacency features in the embedding
space, making the features extracted from node relationships approximate the
node relationship information learned by GCN. This objective can be achieved
by minimizing the Frobenius norm of the difference between 𝑓 𝑙

𝜃(A′, X) and
𝑓 𝑙

𝜃(A, X), i.e., the first term can be rewritten as ‖𝑓 𝑙
𝜃(A′, X) − 𝑓 𝑙

𝜃(A, X)‖2
𝐹 .

The second term considers extracting features from node attribute informa-
tion. Adversarial attacks reduce graph smoothness when connecting nodes with
large attribute differences or deleting links between similar nodes. Therefore,
this paper minimizes the feature smoothness difference between the original
graph attribute matrix X and extracted attribute features X′, making the
features extracted from node attributes approximate the node attribute infor-
mation learned by GCN. The second term in Equation (3) can be rewritten
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as ‖X′𝑇 LX′ − X𝑇 LX‖2
𝐹 , where L is the graph Laplacian matrix. Similarly,

Smoothness(X′, X) measures the feature smoothness difference between nodes.
By constraining feature smoothness differences for attribute feature extraction,
this method fully considers the attack characteristic that adversaries often con-
nect dissimilar nodes to reduce model prediction capability.

2.3 Ensemble Adversarial Training Based on Non-Robust
Features
Ensemble learning can improve model robustness as a training strategy. By hav-
ing sub-models in an ensemble learn different features, model performance can
be enhanced while maintaining simple model structures. If different sub-models
can learn different non-robust features, the generalizability of adversarial attacks
can be prevented from affecting all sub-models, improving the performance of
the integrated model. Based on this theory, this paper adopts the ensemble
learning concept, using two sub-models to extract non-robust features from
graph data from node relationship and node attribute perspectives respectively,
and performs adversarial training using the extracted non-robust features.

Adversarial training typically adds small perturbations to samples to make neu-
ral networks adapt to perturbations and improve robustness on adversarial sam-
ples. However, as graph data is non-Euclidean, adversarial samples cannot be
constructed through gradient-based methods. Therefore, performing adversar-
ial training through extracted features avoids the data discreteness issues in
adversarial sample construction, making the approach simpler and more inter-
pretable.

2.3.1 Non-Robust Feature Learning Method Based on Node Relation-
ships

Referring to Equations (1) and (2), the process of the first sub-model extracting
non-robust features contained in the adjacency matrix can be expressed as:

ℒstruct = ‖A′ − A‖2
𝐹 + 𝜆1‖𝑓2

𝜃1
(A′, X) − 𝑓2

𝜃1
(A, X)‖2

𝐹

where 𝑓2
𝜃1

(⋅) represents the embedding vector after the second convolutional
layer and before the activation function of the first sub-model. By constraining
the difference between feature A′ and random graph adjacency matrix A′ to
be less than 𝜖, and minimizing the distance difference between A′ and original
graph adjacency matrix A in the embedding space, non-robust features are
extracted from random graph 𝒢′’s adjacency matrix that are similar to 𝒢′ but
would mislead the GCN model into predicting 𝒢. The target loss function for
adversarial training of the first sub-model is:
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ℒ1 = ℒCE(𝑓𝜃1
(A′, X), Y) + 𝜆2ℒstruct

where ℒCE(𝑓𝜃1
(A′, X), Y) is the loss function of the first GCN sub-model on

input features (A′, X). Minimizing Equation (7) trains the first model to learn
non-robust features contained in node relationships, improving model robust-
ness.

2.3.2 Non-Robust Feature Learning Method Based on Node At-
tributes

Referring to Equations (1) and (3), the second sub-model similarly extracts non-
robust features contained in the attribute matrix based on embedding vectors
after the second convolutional layer. This process can be expressed as:

ℒattr = ‖X′ − X‖2
𝐹 + 𝜆3‖X′𝑇 LX′ − X𝑇 LX‖2

𝐹

where 𝑓2
𝜃2

(⋅) represents the embedding vector after the second convolutional
layer and before the activation function of the second sub-model. Similarly,
by constraining the difference between feature X′ and random graph attribute
matrix X′ to be less than 𝜖, and minimizing the feature smoothness difference
between X′ and original graph attribute matrix X in the embedding space, non-
robust features corresponding to graph 𝒢 are extracted from random graph 𝒢′’s
attribute matrix. The target loss function for adversarial training of the second
sub-model is:

ℒ2 = ℒCE(𝑓𝜃2
(A, X′), Y) + 𝜆4ℒattr

where ℒCE(𝑓𝜃2
(A, X′), Y) is the loss function of the second GCN sub-model

on input features (A, X′). Equation (9) trains the second sub-model to learn
non-robust features from the node attribute perspective, reducing the impact of
adversarial attacks.

2.3.3 Ensemble Learning-Based Adversarial Training Strategy

Based on the above non-robust feature learning method, the adversarial train-
ing process of VDERG proposed in this paper is as follows: First, randomly
initialize two GCN sub-models. In each iteration, generate random graphs with
the same number of nodes as the input graph, and use stochastic gradient de-
scent to optimize Equations (6) and (8) to extract non-robust features of the
input graph from the adjacency matrix and attribute matrix respectively using
random graphs. Then perform adversarial training on the two sub-models sep-
arately based on non-robust features in node relationships and node attributes,
optimize sub-model parameters using the cross-entropy loss functions in Equa-
tions (7) and (9), and optimize network parameters using Adam. Finally, sum
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and average the node embedding vectors obtained from the two sub-models,
and obtain the final model prediction results through a softmax function. The
pseudocode is shown in Algorithm 1.

Algorithm 1: VDERG Training Strategy

Input: Adjacency matrix A, attribute matrix X, labels Y, feature extraction
iteration counts 𝑇1, 𝑇2, step sizes 𝛼1, 𝛼2, learning rate 𝜂.

Output: Integrated GCN model parameters 𝜃1, 𝜃2, node prediction results.

1. Randomly initialize 𝜃1, 𝜃2 // Initialize parameters for 2 GCN sub-models

2. for epoch in training_{epochs}:

3. /* Generate random graph by applying random attack with perturbation rate 1.0 on input graph */

4. $\mathcal{G}' \leftarrow \text{RandomAttack}(\mathcal{G})$

5. Initialize $\mathbf{A}' \leftarrow \mathbf{A}_{\text{rand}}$ // Initialize features using random graph's adjacency matrix

6. for $t_1$ in $T_1$:

7. Update $\mathbf{A}'$ using Equation (6) with step size $\alpha_1$ // Extract non-robust features from adjacency matrix based on embedding space

8. $\mathbf{H}_1 \leftarrow f_{\theta_1}^2(\mathbf{A}', \mathbf{X})$ // Obtain embedding vector based on structural non-robust features

9. Update $\theta_1$ using Equation (7) // Update first sub-model parameters

10. Initialize X′ ← Xrand // Initialize features using random graph’s attribute
matrix

11. for 𝑡2 in 𝑇2:

12. Update $\mathbf{X}'$ using Equation (8) with step size $\alpha_2$ /* Extract non-robust features based on embedding space feature smoothness differences */

13. H2 ← 𝑓2
𝜃2

(A, X′) // Obtain embedding vector based on attribute non-
robust features

14. Update 𝜃2 using Equation (9) // Update second sub-model parameters

15. Hensemble ← (H1 + H2)/2
16. Ŷ ← softmax(Hensemble)

3.1 Dataset Description
This paper selects three common citation network datasets in the graph domain
for node classification task experiments. Dataset details are shown in Table 1.

Table 1: Dataset Description
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Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3

In experiments, following the dataset splitting method of the renowned attack
algorithm Metattack, this paper randomly splits all datasets into labeled and
unlabeled sets with a 10% and 90% ratio, then further divides the labeled set
into training and validation sets with a 50% and 50% ratio.

3.2 Model Performance Comparison
To verify the adversarial attack defense capability of the proposed VDERG,
this paper evaluates VDERG against several state-of-the-art GCN defense algo-
rithms in terms of node classification accuracy based on the Metattack adver-
sarial attack algorithm. Metattack has five variants. On the Cora and Citeseer
datasets, this paper uses the Meta-Self variant with the best attack effect for
experiments; on the PubMed dataset, to save time and memory, this paper
uses the A-Meta-Self variant similar to Meta-Self. Experiments are conducted
for perturbation rates from 0 to 20%, increasing by 5% each time. Reference
experimental results are shown in Table 2, where results for GCN, GAT, GCN-
Jaccard, and Pro-GNN are from literature [?], and SimP-GCN results are from
the original paper. To make model results more objective and eliminate ran-
domness in deep learning training, all experiments are repeated 10 times.

Table 2: Node Classification Performance Comparison Under Global
Attack (Metattack)

Perturbation Rate (%) Cora Citeseer PubMed
0 83.50$±0.44|76.55±0.79|87.19±0.09||5|70.39±1.28|65.10±0.71|83.09±0.13||10|59.56±2.72|64.52±1.11|81.21±0.09||15|−

|62.03±3.49|78.66±0.12||20|−
| −
|77.35±$0.19

Note: The table shows comparative results. VDERG achieves 84.26$±0.43, 75.01±1.09, 𝑎𝑛𝑑87.91±$0.23
on clean data (0% perturbation) for Cora, Citeseer, and PubMed respectively.

The results in Table 2 show that at 0% perturbation rate, VDERG improves
model accuracy on the Cora, Citeseer, and PubMed datasets by 0.84%, 1.25%,
and 0.32% respectively compared to current best models, demonstrating that
VDERG can more comprehensively learn graph data information by integrat-
ing node attribute and structural features, and that adversarial training with
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non-robust features not only improves model robustness but also enhances per-
formance on clean datasets.

For perturbation rates from 5% to 20%, VDERG achieves higher accuracy than
existing best models on all three datasets. The increase in perturbation rate
does not cause VDERG’s accuracy to drop as significantly as the original GCN.
During the perturbation rate increase, VDERG’s model accuracy declines more
slowly compared to other methods, showing stronger robustness. Compared to
other classifiers, VDERG’s performance improvement is most pronounced on
the Cora dataset. At a 20% perturbation rate, VDERG’s accuracy is 6.91%
higher than the current best model.

3.3 Comparison of Ensemble and Single Feature Learning
To study the effectiveness of the ensemble method in improving model per-
formance, this subsection compares model performance when considering only
structural information or only attribute information during the ensemble pro-
cess. Experimental results are shown in Table 3, which presents results on Cora
and Citeseer datasets for VDERG-structure (extracting non-robust features only
from structural information) and VDERG-features (extracting non-robust fea-
tures only from attribute information).

Table 3: Comparison of Structure and Features Ablation

Dataset
Perturbation Rate
(%)

VDERG-
structure

VDERG-
features VDERG

Cora 0 85.51$±0.30|74.46±1.06|84.26±0.43|||5|83.82±0.75|73.31±1.04|83.98±0.63|||10|82.10±0.85|73.02±0.62|82.72±1.38|||15|81.69±1.36|73.34±0.47|81.70±0.71|||20|80.19±1.31|72.18±0.80|80.23±1.21||𝐶𝑖𝑡𝑒𝑠𝑒𝑒𝑟|0|84.48±0.53|73.69±1.84|75.01±1.09|||5|84.26±0.43|73.02±0.50|74.16±0.66|||10|83.65±1.21|72.71±1.57|73.76±0.38|||15|83.98±0.63|72.86±0.95|73.52±0.81|||20|81.50±1.40|−
|73.41±$1.23

The table shows that although VDERG’s performance on clean Cora data is
slightly inferior to considering structural information alone, VDERG achieves
the best classification results on the Citeseer dataset and under adversarial
attacks, demonstrating that the proposed ensemble strategy can effectively im-
prove model robustness and graph information representation capability under
adversarial attacks. Additionally, experimental results indicate that adversarial
training based solely on non-robust features from structural information per-
forms better than methods based only on attribute information. This is be-
cause extracting non-robust features based on feature smoothness differences
may cause over-smoothing of isolated nodes, and VDERG’s comprehensive
consideration of structural information can effectively compensate for this defi-
ciency.
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3.4 Comparison of Different Model Parameters
For the proposed VDERG strategy, the efficiency of non-robust feature extrac-
tion is crucial. Therefore, this subsection analyzes the impact of step size 𝛼1
and iteration count 𝑇1 in structural non-robust feature extraction, and step size
𝛼2 and iteration count 𝑇2 in attribute non-robust feature extraction on VDERG
performance. Experiments are conducted on the Cora dataset under Metattack
with 10% perturbation rate. Results are shown in Figure 3. The variation range
for step sizes 𝛼1 and 𝛼2 is set from 5e-5 to 1, and iteration counts 𝑇1 and 𝑇2
from 1 to 12.

Figure 3 shows that in both non-robust feature extraction processes, model per-
formance first increases and then decreases with iteration count. For structural
information feature extraction, the optimal iteration count is 7. For attribute
information feature extraction, the curve fluctuates more noticeably when itera-
tion counts range from 8 to 11, also achieving the best model effect at iteration
count 7, with performance declining significantly after reaching 11 iterations.
Additionally, the figure shows that model performance in both non-robust fea-
ture extraction processes follows a similar trend with step size changes, first
increasing then decreasing. The optimal step size for structural non-robust
feature extraction is 5e-5, while the optimal step size for attribute non-robust
feature extraction is 5e-4.

4 Conclusion
This paper proposes an ensemble adversarial training strategy for graph convolu-
tional neural networks based on non-robust features. By extracting non-robust
features from embedding vectors after graph convolutional layers for adversar-
ial training, this strategy bypasses issues such as data discreteness faced when
directly constructing adversarial samples. To fully utilize graph data informa-
tion, the proposed strategy extracts non-robust features from both topology
structure and node attribute perspectives using random graphs, performs ad-
versarial training on two sub-models with these non-robust features, and finally
integrates the embedding vectors from both sub-models to obtain node predic-
tion classifications.

Experiments on citation networks demonstrate that on the original Cora, Cite-
seer, and PubMed datasets, the proposed strategy improves accuracy by 0.84%,
1.25%, and 0.32% respectively compared to current best models. On the Cora
dataset, when facing adversarial attacks with 20% perturbation rate, it improves
accuracy by 6.91% compared to existing best models. These results fully prove
that the proposed strategy can improve model performance on node classifica-
tion tasks for both clean and attacked graphs.

Comparison between the ensemble model and single feature learning models
shows that the strategy integrating both structural topology and node attributes
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achieves better results than models trained on only one aspect, both on original
datasets and under attack scenarios.

Future work will focus on improving non-robust feature extraction effectiveness
for datasets containing many isolated nodes, investigating the sensitivity and
learning performance of other graph neural network model structures to non-
robust features, and more deeply exploring the relationship between non-robust
features in graph data and adversarial attacks.
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