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Abstract
To address the issue of attackers exploiting background knowledge and other in-
formation to launch attacks during user location privacy protection, this paper
proposes a location privacy protection method for mobile terminals. The scheme
leverages k-anonymity and local differential privacy techniques to protect user
locations, ensuring a trade-off between privacy and utility. It constructs anony-
mous sets by incorporating background knowledge, partitions the k-anonymous
set via an improved Hilbert curve, perturbs the partitioned location set using the
local differential privacy algorithm RAPPOR, and finally transmits the gener-
ated location set to the location service provider to obtain services. Experiments
on real datasets compare the proposed approach with existing schemes in terms
of user location protection, location availability, and time overhead. The results
demonstrate that the proposed scheme enhances the degree of location privacy
protection while ensuring the quality of LBS services.
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Abstract: To address the problem of attackers exploiting background knowl-
edge to launch attacks during user location privacy protection, this paper pro-
poses a location privacy protection method for mobile terminals. This solution
leverages k-anonymity and local differential privacy technologies to safeguard
user locations while ensuring a trade-off between privacy and utility. The scheme
constructs anonymous sets by incorporating background knowledge, segments
the k-anonymous set using an improved Hilbert curve, perturbs the divided lo-
cation sets with the local differential privacy algorithm RAPPOR, and finally
transmits the generated location sets to location service providers to obtain ser-
vices. Experiments on real datasets compare the proposed scheme with existing
approaches in terms of user location protection, location availability, and time
overhead. Results demonstrate that the proposed scheme enhances location
privacy protection while ensuring LBS service quality.

Keywords: RAPPOR; k-anonymity; Hilbert curve; location protection

0 Introduction
The rapid development of Internet technology, satellite positioning technology,
and mobile devices has led to widespread adoption of location-based services
(LBS) [1,2]. While users enjoy the convenience of location services, the result-
ing location privacy leakage from LBS poses significant concerns. Malicious
location service providers (LSP) can extract sensitive user information from lo-
cation data, severely compromising user privacy. Consequently, location privacy
protection has become a critical research focus in user privacy preservation [3].

In location privacy protection research, k-anonymity technology has been widely
applied. Originally proposed by Sweeney [4], its core idea uses attribute gener-
alization to make individual data indistinguishable from k-1 other data points.
Gruteser and Grunwald [5] first applied k-anonymity to location privacy protec-
tion, constructing k-anonymous location models through quadtree search to en-
sure anonymous regions met minimum size requirements. However, this method
increases time overhead, tends to generate excessive anonymous locations, uses
uniform k values, and cannot accommodate personalized user preferences. To
address excessive anonymous location generation, Kido et al. [6] employed ran-
dom strategies to generate k-anonymous sets, reducing communication costs,
but failed to consider unreasonable dummy locations, thereby degrading secu-
rity and service quality. Zhu et al. [7] added a location caching mechanism
to Kido’s approach, designing the MobileCache system that reduced query
frequency and resource overhead while improving utilization. Ye et al. [8] con-
sidered service similarity when generating anonymous regions to enhance service
quality, but neither approach accounted for background knowledge attacks. Yin
et al. [9] combined k-anonymity with pseudonym methods, selecting appropriate
anonymization approaches based on k’s maximum and minimum values to im-
prove location protection. Jin et al. [10] designed a trust-based location hiding
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mechanism that added k-1 trusted users to anonymous regions, ensuring each
user achieved their desired anonymity level, but this mechanism relied on central-
ized anonymous servers. Ling et al. [11] addressed untrusted anonymous servers
by constructing a distributed location privacy protection mechanism based on
offset grids, dividing location regions into grids using historical query probabil-
ities and selecting k-1 grid coordinates to form anonymous sets, preventing un-
trusted servers from obtaining real user information. Zhang et al. [12] combined
k-anonymity with irregular polygon generation algorithms to create polygonal
anonymous regions, achieving spatial anonymity through density parameters
and constructing dummy locations. Yan et al. [13] constructed similarity maps
through service similarity, selected points of interest with query results similar
to the user’s real location from these maps, and combined background knowl-
edge to generate anonymous sets with maximum entropy, randomly selecting
one location from the set to complete query services, thereby ensuring privacy
while maximizing service quality. Yang et al. [14] designed a k-anonymous
dummy selection algorithm based on historical query probabilities, improving
location privacy security from geographical distribution and zero-query perspec-
tives, but required discretization during anonymous set construction, increasing
generation time.

Differential privacy (DP), first proposed by Dwork [15] in 2006, provides rigor-
ous mathematical guarantees that user privacy remains protected against back-
ground knowledge attacks and individual data changes. Yuan et al. [16] de-
signed an LBS trajectory protection algorithm combining Laplace mechanisms
with anonymous groups, generating anonymous groups through multiple rounds
of noise addition to real LBS user locations for service acquisition, addressing
excessive privacy budget dependency in DP-based trajectory protection and
enhancing effectiveness. Wang Jie et al. [17] proposed a location protection
method based on differential privacy perturbation, using Hilbert curves to map
locations into one-dimensional space and Laplace noise to perturb location in-
formation before sending it to service providers. Zhang et al. [18] employed
a max-min distance-based multi-center clustering algorithm to generate multi-
ple candidate dummy sets, selecting optimal virtual candidate sets to achieve
k-anonymity. Zhang et al. [19] proposed a differential privacy-based location
privacy protection scheme including mean and anonymous algorithms, using
Laplace mechanisms to protect location privacy and exponential mechanisms to
protect query privacy.

DP protection of sensitive information requires a fully-trusted third party (TTP)
data collector, but third-party security cannot be guaranteed in real environ-
ments. Consequently, researchers proposed the concept of local differential pri-
vacy (LDP) [20-22], enabling users to process sensitive data locally and avoid un-
trusted third-party leakage issues. Wang et al. [23] proposed an LDP-based con-
tinuous location upload protection scheme, using Hilbert curves to dynamically
subdivide regions based on user location counts, perturbing locations through
LDP before uploading to servers, though this reduced data availability. Wang et
al. [24] allowed participants to select between two LDP perturbation methods—
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RAPPOR and k-RR—based on personal privacy requirements at their current lo-
cation, segmenting participant locations and perturbing location regions before
sending them to data collection servers for analysis.

Addressing these issues, this paper combines k-anonymity and LDP technologies
to propose a local differential privacy perturbation scheme that requires no
TTP and can resist background knowledge attacks, reducing the probability of
attackers obtaining user information while ensuring performance and further
improving location privacy security.

1.2 Location Entropy
Without considering background knowledge, the probability of identifying a
user’s real location under k-anonymity protection is 1/k. Let qi denote the
probability that loci is the real location, where i = 1, 2, ⋯, k, and Σqi = 1.
Location entropy can estimate the privacy protection strength of an anonymous
location set. The entropy value increases as the location set becomes more
disordered, indicating higher privacy protection. The formula is as follows:

H = -Σ(qi × ln(qi))

When all qi values are equal, location entropy H reaches its maximum, repre-
senting the strongest privacy protection.

1.3 Hilbert Curve
The Hilbert curve maps s-dimensional space Rs to one-dimensional space R,
denoted as H: Rs→R. If point p�Rs, then H(p)�R, meaning H(p) is the H-value
corresponding to p. For a point set {p1, p2, ⋯, pn}, H{p1, p2, ⋯, pn} = {H(p1),
H(p2), ⋯, H(pn)}. The Hilbert curve encoding rules are shown in Figure 1.

1.4 Location Local Differential Privacy
Given n locations where each corresponds to a record, and a privacy algorithm N
with domain Def(N) and range Ran(N), algorithm N satisfies �-local differential
privacy if for any two location records t and t’(t, t’�Def(N)) and any output
result t* (t*�Ran(N)), the following inequality holds:

Pr[N(t) = t*] ≤ e^� × Pr[N(t’) = t*]

This demonstrates that LDP controls algorithm N to produce similar outputs,
preventing attackers from distinguishing which data represents the user’s real
location.

2.1 System Architecture
In trusted third-party models, the TTP easily becomes a system efficiency bottle-
neck when users initiate multiple requests. Moreover, TTPs themselves are vul-
nerable; once compromised, all user privacy information leaks. Therefore, this
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paper’s solution eliminates TTPs, consisting primarily of local users and LSPs,
as shown in Figure 2. Local users obtain their location information through wire-
less devices and run privacy protection schemes locally, avoiding security risks
from untrusted third parties. They send perturbed location queries to LSPs,
which return query results. Local users then process these results through loca-
tion processing algorithms to display required data.

2.2 k-Anonymous Location Set Generation
The k-anonymous location set generation process first obtains user query request
probabilities at urban points of interest from historical records, sorts these prob-
abilities to generate probability table T, stores T locally for future queries, and
updates T periodically to prevent data staleness. To counter background knowl-
edge attacks, the anonymous set’s entropy should be maximized. Therefore,
points with query probabilities closest to the user’s real location Z are added
to anonymous candidate region Lc. Research [13] shows that entropy in Lc
increases with location count, approaching maximum entropy at 2k-2 locations
with no significant increase beyond this point. Location count directly affects
computational overhead. To balance efficiency and privacy protection, Lc’s
location count is set to 2k-2. To ensure selected locations maintain good utility,
the nearest points of interest are chosen based on Euclidean distance from the
user’s real location. The Lc generation algorithm is as follows:

Algorithm 1: Anonymous Candidate Region Lc Generation
Input: T, Z, k
Output: Lc

a) Obtain Z’s query probability Zp from T

b) Retrieve points of interest with probability difference from Zp not
exceeding �, store in temporary location set R

c) Calculate Euclidean distance Si from each location ri in R to Z

d) Use heap sort to select the top 2k-2 points with smallest Si, store in Lc

e) End

As shown in Figure 3, after querying table T to obtain point-of-interest proba-
bilities and comparing them with Z, points L1, L2, L3, L4, L5 have probability
differences from Z not exceeding �=0.01. Their Euclidean distances to Z are
Si={1,2,3,4,5}. For k=2, after comparing Si values, Lc={L2, L3}. If temporary
set R contains n points, Algorithm 1’s space complexity is O(n). Using heap
sort to order distances yields time complexity O(nlogn).

From generated Lc, k-1 locations are randomly selected with the user’s real loca-
tion to form k-anonymous set L. During L generation, selected locations should
be maximally dispersed to ensure anonymous region scope, using the sum of
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Euclidean distances between points as the dispersion metric. Through multiple
random assignments, the most dispersed location set is selected, making the
probability of attackers obtaining the real location from L approach 1/k. Since
selection criteria include Euclidean distance from the real location, anonymous
locations tend to cluster around the real location, which compromises protection.
To further reduce attack success probability, an Improved Hilbert Curve (IHC)
segments locations, and the segmented map is perturbed through RAPPOR.

The Hilbert curve maps geographical locations from two-dimensional to one-
dimensional space while preserving spatial adjacency, reducing data processing
time and improving efficiency. However, it cannot reflect point-of-interest den-
sity distributions, and densely populated regions should use finer granularity.
IHC construction proceeds as follows: the farthest point from Z in L serves as
boundary R, enclosing all locations in an N×N map space. When a region con-
tains more than threshold 𝜎=1 points of interest, it is recursively divided into
four equal square subregions. Figure 4(a) shows the regional distribution after
point segmentation, ensuring density-based distribution. The segmented IHC is
stored in a quadtree, as shown in Figure 4(b). With k points of interest, storage
overhead is O(k) and IHC value computation complexity is O(k). Compared to
standard Hilbert curves, IHC segmentation saves storage space and improves
computational efficiency.

2.4 RAPPOR Perturbation Based on Local Differential Pri-
vacy
RAPPOR [22] can anonymize end-user crowdsourced data, providing efficient
privacy and utility without trusted third parties. For anonymous candidate
locations mapped to Hilbert curves, RAPPOR enables random perturbation for
strong privacy protection. Let A={a1, a2, ⋯, an} represent region IDs after
map segmentation, where n is the total region count. For region i, ai is set to 1
if a selected point of interest exists, otherwise 0. Let R be an n-bit array where
Rj denotes the j-th bit value. When aj=1, the corresponding bit in R is set to
1, otherwise 0, as shown in formula (5).

Next, R is perturbed. Each bit in R undergoes random response perturbation
as shown in formula (6), where f (f�[0,1]) is a probability parameter controlling
privacy level. Values closer to 1 provide stronger privacy guarantees. The
generated R’is called the permanent random response in RAPPOR.

Another perturbation is then applied to each bit of R’to obtain the instantaneous
random response U, as shown in formula (7). The generated U is called the
instantaneous random response in RAPPOR, where the probability of the k-
th bit being set to 1 depends on parameters q (or p) and Rk. According to
RAPPOR, this random encoding method satisfies �-differential privacy.

The probability that an initially selected region remains selected after RAPPOR
perturbation is:
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Pr[U_k = 1 | R_k = 1] = p

The probability that an initially unselected region becomes selected after per-
turbation is:

Pr[U_k = 1 | R_k = 0] = q

After RAPPOR perturbation, the geographical location set R is obtained
through IHC decoding. Using R for queries ensures user location privacy. Since
the real location may be lost during perturbation, when it is absent from R,
the query results for the n locations nearest to the real location are retrieved
from the LBS server’s response for anonymous set R, and their union is taken
as the user’s query information. The location union algorithm is presented as
Algorithm 2.

Algorithm 2: Location Union Acquisition
Input: R={lt, t=1,2,⋯,r}
Output: Result set T

a) Initialize T as empty

b) For all locations in R, calculate Euclidean distance to user’s real location

c) Use heap sort to select the top n locations with smallest distances

d) Select one location, store its query result points of interest in T

e) Sequentially query results for n locations, store union with T

f) Return T

Figure 5 shows query results for points of interest in location set R. With R={L1,
L2, L3, L4, L5} as five points selected after perturbation and n=3, the three
nearest locations are L2, L4, L5 with query results L2={a,b,e,f}, L4={e,f,g},
L5={c,d}. The union yields user query information T={a,b,c,d,e,f,g}. For r
locations in R, heap sort complexity is O(rlogr). With m query results per
location, generating T has complexity O(nmlogn). Thus Algorithm 2’s time
complexity is max(O(rlogr), O(nmlogn)).

3.1 Experimental Environment and Methods
The San Francisco dataset [25] validates the proposed scheme’s performance,
containing 174,956 points of interest. As shown in Figure 6, x and y represent
Cartesian coordinates converted from latitude and longitude. Implementation
uses Python 3.6 on Windows 10 Home with an Intel i7 CPU and 64GB RAM.

LBS servers can obtain user historical query records. As shown in literature
[26], when query records are unavailable, point-of-interest counts on maps can
serve as substitutes. This experiment uses San Francisco dataset points as user
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query records. The map is divided into 100$×$100 uniform location cells, with
each cell’s historical query probability serving as prior probability. One point
of interest is randomly selected per cell, with its query probability equal to the
cell’s historical query probability. The point in the user’s location cell serves
as the real location.

3.2 Security Analysis
Security analysis examines anonymous set entropy and attack algorithm recog-
nition probability, comparing the proposed scheme with others. Each data point
represents averages over 100 experiments with k ranging from 2 to 30.

3.2.1 Attack Method Analysis

For LBS services, primary attacks include background knowledge attacks, prob-
ability attacks, and semantic attacks. Background knowledge attacks are typi-
cally mitigated by eliminating links between background information and user
locations.

Probability attacks involve attackers using known information to filter unrea-
sonable locations (e.g., rivers, deserts), increasing the probability of discovering
real locations. While not directly associated with real locations, filtering such
dummy locations from k-anonymous sets reduces privacy protection levels, en-
abling auxiliary attacks. Typically, probability attacks can be countered by
using high-query-probability locations as dummy points after obtaining user
history. This scheme uses real points of interest as dummies, selecting locations
with query probabilities matching the user’s real location to construct candidate
sets, effectively preventing probability attacks.

Semantic attacks take many forms, with location homogeneity attacks being
common. These occur when anonymous locations are too close to the real
location, allowing attackers to further narrow the anonymous region through
clustering even when k-anonymity is satisfied. This scheme selects the most dis-
persed location set as the anonymous set, reducing the probability of successful
location homogeneity attacks.

3.2.2 Location Entropy

Performance validation compares the proposed scheme with literature [13], [14],
and optimal selection. From the entropy formula, when k is fixed, location en-
tropy depends on query probability differences among points in the anonymous
set—smaller differences yield higher entropy. Maximum entropy occurs when
all query probabilities are equal, defined here as optimal selection. Results are
shown in Figure 7.

Figure 7 demonstrates that location entropy increases with k, enhancing anony-
mous set security. Optimal selection achieves maximum entropy. Literature [13]
and [14] consider query probabilities, selecting points with probabilities similar
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to the user’s location, achieving entropy values close to optimal (0.5% and 3%
lower on average, respectively). The proposed scheme accounts for attacker-
known background information, ensuring query probabilities in k-anonymous
sets are as identical as possible. By introducing difference parameter � in Al-
gorithm 1 to select nearest-probability points, the generated anonymous set’s
entropy approaches optimal selection most closely (only 0.3% lower on average),
demonstrating high privacy protection.

3.2.3 Attack Algorithm Recognition Probability

When attackers obtain anonymous set R and combine it with background in-
formation, they can infer real locations using the attack algorithm from [14].
Figure 8 shows the probability distribution of anonymous set locations inferred
by this attack algorithm for literature [13], [14], [17] and the proposed scheme
under different privacy levels k. In formula (6), parameter f determines initial
perturbation degree (f=1: fully random response; f=0: no perturbation). For
privacy-utility balance, f is set to 0.5. In formula (7), parameters q and p deter-
mine perturbation degree and point count in location sets. Larger p+q values
yield more points, while p+q=1 maintains approximately constant point counts.
Based on utility analysis, q and p are set to 0.75 and 0.25, respectively. Ex-
periments show that when n=k/2 in Algorithm 2, generated query results best
match real location queries with highest efficiency, so n=k/2 is used.

Figure 8 shows the proposed scheme yields lower real location recognition prob-
ability than the other three schemes. Compared to [13] and [14], RAPPOR per-
turbation is added, potentially removing the real location from the anonymous
set and increasing randomness. Literature [17] does not consider background
knowledge when selecting obfuscation locations, allowing attackers to narrow
location ranges. The proposed scheme’s anonymous region expands with k, re-
ducing the probability of successful semantic attacks and effectively enhancing
location protection.

3.3 Performance Analysis
Privacy protection schemes must consider performance utility. Figure 9 com-
pares location service availability among literature [13], [14], [17] and the pro-
posed scheme. Availability decreases as k increases. The proposed scheme better
maintains query result availability because the anonymous set may or may not
contain the real location. When it does, availability is optimal; when not, Algo-
rithm 2 retrieves nearby query results, preserving availability. Under identical
conditions, the proposed scheme achieves 11.95%, 5.92%, and 29.51% higher
availability than literature [13], [14], and [17], respectively.

Figure 10 shows time overhead for literature [13], [14], [17] and the proposed
scheme. Execution time increases with k. Literature [14] requires discrete lo-
cation selection during anonymous set construction, resulting in slightly longer
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runtime. The proposed scheme’s time overhead is marginally higher than liter-
ature [13] due to added perturbation.

4 Conclusion
This paper studies existing location privacy protection methods and proposes an
anonymous protection scheme based on local differential privacy. By perturbing
candidate locations in k-anonymous sets, the probability of real location leak-
age is reduced. Security and availability analyses demonstrate that the scheme
achieves an excellent privacy-utility trade-off with significantly improved perfor-
mance.

A limitation is low query result utilization when using anonymous sets for
queries. Future work will employ local caching to improve query resource utiliza-
tion, reduce interactions between users and LBS servers, and enhance location
privacy protection.
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