
AI translation ・View original & related papers at
chinarxiv.org/items/chinaxiv-202204.00065

A Picat Method for Optimized Computation of
Slater Voting Winners (Postprint)
Authors: AO Huan, Wang Yisong, Feng Renyan, Deng Zhouhui, Tong Tianle

Date: 2022-04-07T15:01:57+00:00

Abstract
Slater voting rule is a tournament-based voting rule that primarily constructs an
acyclic tournament, finds one with minimal difference from the original tourna-
ment, and selects the winner from it. For the NP-hard Slater voting algorithm,
a Picat method for optimized solving of the Slater problem based on similar
candidate sets is proposed. Compared with non-optimized methods for solv-
ing the Slater problem, this method reduces the solution space of the Slater
algorithm, effectively reducing the computational cost of finding Slater winners
and improving computational speed. Experimental results demonstrate that
the computational speed of the Picat method for optimized solving of the Slater
problem surpasses that of the non-optimized Picat method; when the number
of candidates is fewer than 20, the Answer Set Programming (ASP) method for
solving the Slater problem exhibits superior computational speed and capability
compared to the optimized Picat method, but when the number of candidates
exceeds 30, the optimized Picat method (employing a SAT solver) demonstrates
better computational speed and capability than the ASP method.

Full Text
Preamble
Vol. 39 No. 8
Application Research of Computers
ChinaXiv Cooperative Journal

An Optimized Picat Method for Calculating Slater Voting Winners

Ao Huan1�̇1�, Wang Yisong1�̇1�†, Feng Renyan1�̇1�, Deng Zhouhui2,
Tong Tianle3

(1. a. School of Computer Science & Technology; b. Institute of Artificial
Intelligence, Guizhou University, Guiyang 550025, China;

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065
https://chinarxiv.org/items/chinaxiv-202204.00065

2. Kechuang Industrial Development Company Limited, Guiyang 550025,
China;
3. Guizhou Donkey Technologies Company Limited, Guiyang 550025, China)

Abstract: The Slater voting rule is a tournament-based voting rule that con-
structs an acyclic tournament to find the one with minimal difference from
the original tournament, from which the winner is selected. For the NP-hard
Slater voting algorithm, this paper proposes a Picat method for solving the
Slater problem based on optimized similar candidate item sets. Compared with
non-optimized methods for solving the Slater problem, this approach reduces
the solution space of the Slater algorithm, effectively decreasing the computa-
tional effort required to determine Slater winners and improving computational
speed. Experimental results demonstrate that the optimized Picat method for
solving Slater problems outperforms non-optimized Picat methods in compu-
tational speed. When the number of candidates is fewer than 20, the Answer
Set Programming (ASP) method for solving Slater problems demonstrates su-
perior computational speed and capability compared to the optimized Picat
method. However, when the number of candidates exceeds 30, the optimized
Picat method (using a satisfiability problem solver) surpasses the ASP method
in both computational speed and capability.

Keywords: Slater voting problem; NP-hard problem; constraint satisfaction
problem; Picat programming; tournament; linear sequence

0 Introduction
Computational Social Choice (COMSOC) is an interdisciplinary field combin-
ing social choice theory and computer science, with broad applications in artifi-
cial intelligence, economics, and computational theory. Social choice examines
whether social decisions can respect individual preferences and balance benefit
distribution. Voting represents the most common form of social decision-making,
as it transforms individual preferences into social preferences. Consequently, vot-
ing theory constitutes a primary research focus in computational social choice,
with various voting algorithms proposed: Kemeny, Slater, and Banks. Among
these, the Slater voting algorithm has a solution complexity of Θ𝑝

2-complete,
and the Slater problem it solves is a constraint satisfaction problem.

Picat programming represents a new paradigm for descriptive problem solving.
Its design philosophy for constraint satisfaction problems involves describing the
problem using a set of rules, then employing corresponding solvers to compute
solutions. Picat integrates features of declarative and imperative languages, pos-
sessing declarative language characteristics similar to Prolog while also support-
ing arrays, functions, and other imperative language features. This makes Picat
particularly convenient for modeling combinatorial optimization problems.

Previous research has proposed using Answer Set Programming (ASP) to solve

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065

Slater problems. While ASP can compute at least one solution, computation
time becomes excessive for larger problem instances. In experiments solving
Multi-Agent Pathfinding Problems, Picat demonstrated shorter solution times
than ASP for large-scale problems. Since the Slater problem is a constraint
satisfaction problem and Picat supports constraint programming with three
built-in solvers for such problems, this paper employs Picat to solve Slater prob-
lems. Additionally, literature has proposed optimized methods for solving Slater
problems, which this paper implements in Picat.

This paper introduces the Slater voting algorithm and Picat, elaborates on the
optimized Picat method for solving Slater problems, and analyzes its correct-
ness.

1.1 Problem Description
In voting activities, when candidates number three or more, the“voting paradox”
may emerge in pairwise candidate selection results—that is, cyclic preferences.
For example, with three candidates 𝐴, 𝐵, 𝐶 and three voters with preferences:

• Voter 1: 𝐴 > 𝐵 > 𝐶
• Voter 2: 𝐵 > 𝐶 > 𝐴
• Voter 3: 𝐶 > 𝐴 > 𝐵

(where 𝑥 > 𝑦 denotes 𝑥 is preferred to 𝑦), the majority principle cannot de-
termine a unique winner (or 𝐴, 𝐵, 𝐶 could all be winners). Researchers have
proposed various voting algorithms to address this paradox, with the Slater
voting algorithm being one such solution.

1.2 Slater Voting
Let 𝐶 be the set of candidates and 𝑃 a complete binary relation on 𝐶 represent-
ing the collective preference between candidate pairs, reflecting which candidate
receives more votes. For any two candidates 𝑥, 𝑦 ∈ 𝐶, if 𝑥 > 𝑦 ∈ 𝑃 , this indi-
cates 𝑥 receives more votes than 𝑦.
A tournament is therefore an antisymmetric directed complete simple graph.
For a set 𝐶 with 𝑛 elements and elements 𝑥𝑖 ∈ 𝐶 where 1 ≤ 𝑖 ≤ 𝑛, let 𝑙 =
⟨𝑥1, 𝑥2, … , 𝑥𝑛⟩ be any strict linear sequence on 𝐶. A tournament may not
naturally form a strict linear sequence.

Definition 1 (Slater Score). Given a tournament 𝑇 = (𝐶, 𝑃), the Slater
score of a strict linear sequence 𝑙 on 𝐶 with respect to 𝑇 is defined as:

Δ(𝑙, 𝑇) = |{(𝑥, 𝑦) ∈ 𝑙 × 𝑙 ∣ (𝑥, 𝑦) ∈ 𝑃 and (𝑦, 𝑥) ∈ 𝑙}|

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065

Any linear sequence on 𝐶 with the minimum Slater score is called a Slater
sequence, with the Slater winner being the first element of this sequence. The
Slater problem thus involves solving for the Slater winner of tournament 𝑇 .

Researchers consider the Slater problem to be at least NP-hard, with recent
computational complexity studies indicating it is Θ𝑝

2-complete. Lampis proved
Slater is Θ𝑝

2-complete. The research objective is to develop methods that com-
pute Slater sequences for any tournament in polynomial time, which can also
solve the Feedback Arc Set problem—an NP-complete problem in tournament
research.

In 2019, Bachmeier demonstrated that solving Slater remains NP-hard even
with only 7 voters. In 2021, Lampis showed it is Θ𝑝

2-complete even with only 7
voters. Thus, the Slater problem is computationally hard.

The challenge of solving Slater with Picat lies first in constructing predicates
to describe voting preferences and building tournaments from them. In 2019,
Xu Hengjian et al. proposed an ASP-based method for computing Slater prob-
lems, which this paper draws upon for defining voting description predicates to
construct tournaments.

Furthermore, designing optimized solution algorithms presents another chal-
lenge. After tournament construction, non-optimized methods enumerate all
linear sequences to compare with the tournament and find the one with mini-
mal difference (i.e., minimum Slater score) to determine the winner, with time
complexity 𝑂(𝑛!). As problem scale increases, computation time becomes pro-
hibitive.

In 2006, Conitzer proposed a new optimized method for solving Slater problems
by introducing similarity among candidates: similar candidates share identical
preference relationships with all other candidates. By searching for similar item
sets in the original tournament to construct a weighted tournament—where each
vertex represents a similar item set—the method first computes the Slater winner
of this weighted tournament (which is a similar item set containing a candidate
that is the original tournament’s winner). It then recursively solves the Slater
winner of the sub-tournament formed by this similar item set, which becomes
the original tournament’s Slater winner.

Definition 2 (Maximal Similar Item Set). Given a tournament 𝑇 = (𝐶, 𝑃),
for any 𝑆 ⊆ 𝐶 and any two candidates 𝑥, 𝑦 ∈ 𝑆, if for all 𝑧 ∈ 𝐶 − 𝑆, either
𝑥 > 𝑧 and 𝑦 > 𝑧, or 𝑧 > 𝑥 and 𝑧 > 𝑦, then candidates in 𝑆 are called similar
items. If additionally for any 𝑐 ∈ 𝐶 − 𝑆, there exists 𝑠 ∈ 𝑆 such that (𝑐, 𝑠) ∈ 𝑃
and (𝑠, 𝑐) ∈ 𝑃 , then 𝑆 is a maximal similar item set. Single candidates and
all candidates can form similar item sets; if |𝑆| = 1 or |𝑆| = |𝐶|, 𝑆 is called a
trivial similar item set. If a tournament contains only trivial similar item sets,
the optimized method cannot solve for the Slater winner. If 1 < |𝑆| < |𝐶|, 𝑆 is
called a non-trivial similar item set. The key step of the optimization algorithm
is identifying non-trivial similar item sets in the tournament.

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065

Definition 3 (Weighted Tournament). Given a tournament 𝑇 = (𝐶, 𝑃), its
weighted tournament is 𝑇𝑤 = (𝐶𝑤, 𝑃𝑤), where 𝐶𝑤 = {𝑆1, 𝑆2, … , 𝑆𝑘} is the set
of maximal similar item sets of 𝐶, each 𝑆𝑖 is a maximal similar set on 𝐶, and
each 𝑆𝑖 has an associated weight equal to |𝑆𝑖|.
Given a weighted tournament 𝑇𝑤 = (𝐶𝑤, 𝑃𝑤), the weighted Slater score of a
strict linear sequence 𝑙 on 𝐶𝑤 is defined as:

Δ𝑤(𝑙, 𝑇𝑤) = ∑
(𝑆𝑖,𝑆𝑗)∈𝑃𝑤×𝑙

|𝑆𝑖| × |𝑆𝑗|

The Slater winner of a weighted tournament is the first element of any linear
sequence on 𝐶𝑤 with the minimum weighted Slater score.

1.3 Picat Programming
Picat (http://picat-lang.org/index.html) is a general-purpose programming lan-
guage combining features from logic programming, functional programming,
constraint programming, and scripting languages. It supports computational
features like logical unification, non-deterministic choice, and tabling, while
also supporting loops, arrays, lists, and various data structures. Based on the
efficient Prolog engine B-Prolog, Picat currently integrates SAT solvers, CP
solvers, and MIP solvers, and is widely applied in combinatorial optimization,
graph search, and numerous logic puzzles.

2.1 Constructing Similar Item Sets
Given a tournament 𝑇 = (𝐶, 𝑃), the first step in optimizing Slater winner
computation is identifying non-trivial similar item sets in the tournament.

Let 𝑆 be a maximal similar item set in 𝑇 . Since we seek non-trivial similar item
sets, 𝑆 must contain at least two elements. Therefore, we arbitrarily select two
distinct candidates 𝑠1, 𝑠2 ∈ 𝑆 as shown in step a) of Algorithm 1. According
to Definition 2, for any non-trivial similar item set 𝑆, the following Property 1
holds:

Property 1. There does not exist 𝑐 ∈ 𝐶 − 𝑆 such that 𝑠1 > 𝑐 and 𝑐 > 𝑠2.

To ensure 𝑆 satisfies Property 1, we define 𝑆1 = {𝑐 ∣ 𝑐 ∈ 𝐶, 𝑠1 > 𝑐} and
𝑆2 = {𝑐 ∣ 𝑐 ∈ 𝐶, 𝑐 > 𝑠2}, both subsets of 𝑆, as shown in steps b)-d) of Algorithm
1. Because 𝑆1 and 𝑆2 satisfy Property 1, if there exists 𝑎 ∈ 𝐶 − (𝑆1 ∪ 𝑆2) such
that for all 𝑢, 𝑣 ∈ 𝑆1 ∪ 𝑆2 ∪ {𝑥, 𝑦}, (𝑢, 𝑎) ∈ 𝑃 and (𝑎, 𝑣) ∈ 𝑃 , then 𝑆3 = {𝑐 ∣ 𝑐 ∈
𝐶 − (𝑆1 ∪ 𝑆2 ∪ {𝑥, 𝑦}), ∀𝑢, 𝑣 ∈ 𝑆1 ∪ 𝑆2 ∪ {𝑥, 𝑦}, (𝑢, 𝑐) ∈ 𝑃 and (𝑐, 𝑣) ∈ 𝑃} is also
a subset of 𝑆, as shown in steps e)-g) of Algorithm 1.

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065

Finally, the similar item set 𝑆 = 𝑆1 ∪ 𝑆2 ∪ 𝑆3 ∪ {𝑥, 𝑦} is output, as shown in
step h) of Algorithm 1.

Given a tournament 𝑇 = (𝐶, 𝑃) and two distinct candidates 𝑥, 𝑦 ∈ 𝐶, the
method 𝑀𝑆𝑇 (𝑥, 𝑦, 𝑇) for calculating a non-trivial similar item set containing
𝑥, 𝑦 is as follows:

Algorithm 1 𝑀𝑆𝑇 (𝑥, 𝑦, 𝑇)
Input: Tournament 𝑇 = (𝐶, 𝑃), two distinct candidates 𝑥, 𝑦 ∈ 𝐶
Output: A single maximal similar item set 𝑆 containing 𝑥, 𝑦

a) Initialize 𝑆 ∶= {𝑥, 𝑦}

b) 𝑆1 ∶= {𝑐 ∣ 𝑐 ∈ 𝐶, 𝑥 > 𝑐}

c) 𝑆2 ∶= {𝑐 ∣ 𝑐 ∈ 𝐶, 𝑐 > 𝑦}

d) 𝑆 ∶= 𝑆1 ∪ 𝑆2 ∪ 𝑆

e) 𝐸 ∶= 𝐶 − 𝑆

f) while (∃{𝑢, 𝑣} ⊆ 𝑆, 𝑎 ∈ 𝐸 such that (𝑢, 𝑎) ∈ 𝑃 and (𝑎, 𝑣) ∈ 𝑃)

g) 𝑆 ∶= 𝑆 ∪ {𝑎}; 𝐸 ∶= 𝐸 − {𝑎}

h) return 𝑆
Maximal similar item sets are divided into two types: non-trivial and trivial
similar item sets.

2.2 Constructing Weighted Tournaments
Given a tournament 𝑇 = (𝐶, 𝑃), the second step in optimizing Slater winner
computation is constructing its weighted tournament 𝑇𝑤 = (𝐶𝑤, 𝑃𝑤). We ini-
tialize 𝐶𝑤 = ∅, 𝑃𝑤 = ∅, 𝑇 𝐿 = 𝐶 (representing the set of candidates where new
similar item sets may exist), and 𝐹𝑎𝑖𝑙 = ∅ (representing pairs of candidates not
in the same similar item set), as shown in step a) of Algorithm 2.

𝐶𝑤 is the set of all maximal similar item sets in tournament 𝑇 . In other words,
each vertex in the weighted tournament is a maximal similar item set, whether
trivial or non-trivial. The condition for Algorithm 1 to compute maximal similar
item sets in 𝑇 is that the two arbitrarily selected candidates 𝑥, 𝑦 ∈ 𝑇 𝐿 may be
similar items (i.e., {𝑥, 𝑦} ⊆ 𝑇 𝐿 and {𝑥, 𝑦} ∉ 𝐹𝑎𝑖𝑙), and cannot be candidates in
other non-trivial similar item sets. Additionally, 𝑇 𝐿 must contain at least two
candidates for selection (i.e., |𝑇 𝐿| ≥ 2), as shown in step b) of Algorithm 2.

The maximal similar item set 𝑆 computed by Algorithm 1 falls into two cat-

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065

egories: if it is a non-trivial similar item set, then 𝑆 is an element of 𝐶𝑤; if
it is a trivial similar item set, this indicates 𝑥, 𝑦 are not elements of the same
similar item set, and thus {𝑥, 𝑦} is a subset of 𝐹𝑎𝑖𝑙, as shown in steps b)-g) of
Algorithm 2.

For any two similar item sets 𝑆𝑖, 𝑆𝑗 ∈ 𝐶𝑤, since similar items share identical
preference relationships in tournament 𝑇 , one of the following two conditions
must be satisfied:

• For every 𝑐𝑖 ∈ 𝑆𝑖, 𝑐𝑗 ∈ 𝑆𝑗, there exists (𝑐𝑖, 𝑐𝑗) ∈ 𝑃

• For every 𝑐𝑖 ∈ 𝑆𝑖, 𝑐𝑗 ∈ 𝑆𝑗, there exists (𝑐𝑗, 𝑐𝑖) ∈ 𝑃
Therefore, in the weighted tournament, if (𝑆𝑖, 𝑆𝑗) ∈ 𝑃𝑤, then (𝑆𝑗, 𝑆𝑖) ∉ 𝑃𝑤, as
shown in steps j)-l) of Algorithm 2.

Algorithm 2 𝑀𝑆𝑇 (𝑇)
Input: Tournament 𝑇 = (𝐶, 𝑃)
Output: Weighted tournament 𝑇𝑤 = (𝐶𝑤, 𝑃𝑤) constructed from all maximal
similar item sets of 𝑇

a) 𝐶𝑤 ∶= ∅; 𝑃𝑤 ∶= ∅; 𝑇 𝐿 ∶= 𝐶; 𝐹𝑎𝑖𝑙 ∶= ∅

b) while (|𝑇 𝐿| ≥ 2 and ∃𝑥, 𝑦 ∈ 𝑇 𝐿 such that {𝑥, 𝑦} ∉ 𝐹𝑎𝑖𝑙)

c) 𝑆 ∶= 𝑀𝑆𝑇 (𝑥, 𝑦, 𝑇)

d) if (1 < |𝑆| < |𝐶|) then

e) 𝐶𝑤 ∶= 𝐶𝑤 ∪ {𝑆}

f) 𝑇 𝐿 ∶= 𝑇 𝐿 − 𝑆

g) else 𝐹𝑎𝑖𝑙 ∶= 𝐹𝑎𝑖𝑙 ∪ {(𝑥, 𝑦), (𝑦, 𝑥)}

h) foreach (𝑎 ∈ 𝑇 𝐿)

i) 𝐶𝑤 ∶= 𝐶𝑤 ∪ {{𝑎}}

j) foreach (𝑆𝑖, 𝑆𝑗 ∈ 𝐶𝑤)

k) if (∃𝑢 ∈ 𝑆𝑖, 𝑣 ∈ 𝑆𝑗 such that (𝑢, 𝑣) ∈ 𝑃) then

l) 𝑃𝑤 ∶= 𝑃𝑤 ∪ {(𝑆𝑖, 𝑆𝑗)}

m) Return 𝑇𝑤 = (𝐶𝑤, 𝑃𝑤)

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065

2.3 Computing a Slater Winner of the Weighted Tourna-
ment
Given a weighted tournament 𝑇𝑤 = (𝐶𝑤, 𝑃𝑤), the third step in optimizing Slater
winner computation is calculating a Slater winner of 𝑇𝑤. For any strict linear
sequence 𝑙 on 𝐶𝑤, the weighted Slater score is defined as:

Δ𝑤(𝑙, 𝑇𝑤) = ∑
(𝑆𝑖,𝑆𝑗)∈𝑃𝑤×𝑙

|𝑆𝑖| × |𝑆𝑗|

The Slater sequence of 𝑇𝑤 is the strict linear sequence with the minimum
weighted Slater score, with its first element being a Slater winner of 𝑇𝑤.

For a weighted tournament 𝑇𝑤 = (𝐶𝑤, 𝑃𝑤) with 𝑘 elements, let 𝐶𝑤 =
{𝑆1, 𝑆2, … , 𝑆𝑘}. Any strict linear sequence on 𝐶𝑤 can be represented as
𝑙 = ⟨𝑆𝑐1

, 𝑆𝑐2
, … , 𝑆𝑐𝑘

⟩, where each 𝑐𝑖 ∈ {1, … , 𝑘}. Each strict linear sequence
can thus be viewed as an ordered pair set.

Given tournament 𝑇 = (𝐶, 𝑃), we construct weighted tournament
𝑇𝑤 = (𝐶𝑤, 𝑃𝑤) and compute a Slater winner 𝑆𝑚𝑖𝑛 of 𝑇𝑤. Since 𝑆𝑚𝑖𝑛 is
a maximal similar item set, the first three steps of the optimized Slater winner
computation are shown in steps a)-c) of Algorithm 4.

Algorithm 3 𝑠𝑙𝑎𝑡𝑒𝑟_𝑤𝑖𝑛𝑛𝑒𝑟_𝑤(𝑇𝑤)
Input: Weighted tournament 𝑇𝑤 = (𝐶𝑤, 𝑃𝑤)
Output: A Slater winner 𝑆𝑚𝑖𝑛 of 𝑇𝑤

a) Let 𝑐 = {𝑐1, … , 𝑐𝑘} where 𝑐𝑖 ∈ {1, … , 𝑘} /* 𝑐𝑖 values represent positions
in a strict linear sequence */

b) Minimize ∑1≤𝑖<𝑗≤𝑘,(𝑆𝑐𝑖 ,𝑆𝑐𝑗)∈𝑃𝑤
|𝑆𝑐𝑖

| × |𝑆𝑐𝑗
| subject to 𝑎𝑙𝑙_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑐)

/* 𝑎𝑙𝑙_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑐) ensures all variables in 𝑐 take distinct values /
/ Solvable using SAT, CP, MIP solvers */

c) Return 𝑆𝑚𝑖𝑛(𝑐)
Note that Algorithm 𝑠𝑙𝑎𝑡𝑒𝑟_𝑤𝑖𝑛𝑛𝑒𝑟_𝑤 can also compute Slater winners for
non-weighted tournaments, where each candidate 𝑐𝑖 ∈ 𝐶 can be viewed as a
trivial similar item set {𝑐𝑖}. When each similar item set in 𝐶𝑤 contains exactly
one candidate (all weights equal 1), 𝑇𝑤 = 𝑇 , and its winner is the Slater winner.
Thus, this method is called the non-optimized method for computing Slater
winners.

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065

2.4 Slater Algorithm for Tournament T
Given tournament 𝑇 = (𝐶, 𝑃), the complete algorithm for computing its Slater
winner involves four steps: first, constructing similar item sets; second, building
the weighted tournament; third, computing a Slater winner of the weighted tour-
nament; and fourth, recursively solving the Slater winner of the sub-tournament
formed by this winner.

Given a weighted tournament 𝑇𝑤 = (𝐶𝑤, 𝑃𝑤) and its Slater winner 𝑆𝑚𝑖𝑛,
where 𝑆𝑚𝑖𝑛 is a maximal similar item set, the fourth step recursively solves
the Slater winner of the sub-tournament 𝑠𝑢𝑏(𝑇𝑤, 𝑆𝑚𝑖𝑛) = (𝑆𝑚𝑖𝑛, 𝑃 |𝑆𝑚𝑖𝑛

),
where 𝑃 |𝑆𝑚𝑖𝑛

= {(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ 𝑆𝑚𝑖𝑛, (𝑥, 𝑦) ∈ 𝑃}. The Slater winner of
sub-tournament 𝑠𝑢𝑏(𝑇𝑤, 𝑆𝑚𝑖𝑛) is the Slater winner of tournament 𝑇 .

Algorithm 4 𝑠𝑙𝑎𝑡𝑒𝑟_𝑤𝑖𝑛𝑛𝑒𝑟(𝑇)
Input: Tournament 𝑇 = (𝐶, 𝑃)
Output: A Slater winner of 𝑇

a) Compute the set 𝐶𝑤 of all maximal similar item sets of 𝐶

b) Construct weighted tournament 𝑇𝑤 = (𝐶𝑤, 𝑃𝑤) from 𝐶𝑤 and 𝑇

c) Compute a Slater winner of 𝑇𝑤: 𝑆𝑚𝑖𝑛 ∶= 𝑠𝑙𝑎𝑡𝑒𝑟_𝑤𝑖𝑛𝑛𝑒𝑟_𝑤(𝑇𝑤)

d) Compute Slater winner of sub-tournament: 𝑤 ∶= 𝑠𝑙𝑎𝑡𝑒𝑟_𝑤𝑖𝑛𝑛𝑒𝑟𝑤(𝑠𝑢𝑏(𝑇𝑤, 𝑆𝑚𝑖𝑛))

e) Return 𝑤

3 Correctness Analysis
Algorithm 4 represents the optimized method for solving Slater problems. We
analyze the correctness of its four steps to prove the overall correctness of the
optimized approach.

Theorem 1. If 𝑆 is a similar item set, then there exists a Slater sequence on the
original tournament 𝑇 where candidates in 𝑆 form a contiguous subsequence.
Consequently, there is no 𝑐 ∈ 𝐶 − 𝑆 that splits 𝑆.
Proof. Let 𝑙1 and 𝑙2 be two strict linear sequences on 𝐶, where candidates in 𝑆
are split into 𝑚 blocks in 𝑙1 and form a single block in 𝑙2. We demonstrate how
to transform 𝑙1 into 𝑙2 while preserving the same Slater score.

Suppose 𝑙1 consists of three blocks: 𝑙1 = ⟨𝐴1, 𝑠11
, … , 𝑠1𝑚1

, 𝐴2, 𝑠21
, … , 𝑠2𝑚2

, 𝐴3⟩,
where 𝑠𝑖𝑗

∈ 𝑆 and 𝐴𝑖 are sequences of candidates from 𝐶−𝑆. Since 𝑆 is a similar
item set, for any 𝑐 ∈ 𝐶 − 𝑆, all 𝑠 ∈ 𝑆 share identical preference relationships
with 𝑐 in tournament 𝑇 . Thus, one of two cases must hold:

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065

a) At least half of 𝑐 ∈ 𝐶 − 𝑆 satisfy 𝑠 > 𝑐 for all 𝑠 ∈ 𝑆

b) At least half of 𝑐 ∈ 𝐶 − 𝑆 satisfy 𝑐 > 𝑠 for all 𝑠 ∈ 𝑆
In case (a), we can transform 𝑙1 into 𝑙′1 = ⟨𝐴1, 𝐴2, 𝑠11

, … , 𝑠1𝑚1
, 𝑠21

, … , 𝑠2𝑚2
, 𝐴3⟩.

Let the Slater score of 𝑙1 on 𝑇 be 𝐴2, and that of 𝑙′1 also be 𝐴2, because the
scores contributed by 𝐴1, 𝐴2, and 𝐴3 remain unchanged. In case (b), we simi-
larly transform 𝑙1 into 𝑙″1 = ⟨𝑠11

, … , 𝑠1𝑚1
, 𝑠21

, … , 𝑠2𝑚2
, 𝐴1, 𝐴2, 𝐴3⟩, with identi-

cal Slater scores.

This transformation applies when 𝑆 is split into 𝑚 blocks. Repeating this pro-
cess converts the original linear sequence into a new one where all candidates
from the same similar item set 𝑆 form a contiguous block, while maintaining
the same Slater score. �

Algorithm 1 correctly constructs similar item sets that are maximal. The
analysis follows: For any 𝑐 ∈ 𝐶 − 𝑆, there exists 𝑠 ∈ 𝑆 such that (𝑐, 𝑠) ∈ 𝑃 and
(𝑠, 𝑐) ∈ 𝑃 , making 𝑐 and 𝑠 similar items. Thus for any 𝑡 ∈ 𝐶 − 𝑆, either 𝑠 > 𝑡
for all 𝑠 ∈ 𝑆, or 𝑡 > 𝑠 for all 𝑠 ∈ 𝑆. Therefore, no 𝑐 ∈ 𝐶 − 𝑆 splits 𝑆, satisfying
Property 1.

Algorithm 2 correctly constructs weighted tournaments. Analysis: Given tour-
nament 𝑇 , the weighted tournament 𝑇𝑤 has each vertex as a similar item set
(either non-trivial or trivial). The direction of edges between vertices in 𝑇𝑤 de-
pends on preference relationships among candidates within those similar item
sets. The algorithmic description and formalization in Section 2.2 conform to
the definition of weighted tournaments, thus Algorithm 2 is correct.

Algorithm 3 correctly computes a Slater winner of weighted tournament 𝑇𝑤.
Analysis: For a strict linear sequence 𝑙 on 𝐶𝑤, the Slater score is Δ𝑤(𝑙, 𝑇𝑤) =
∑(𝑆𝑖,𝑆𝑗)∈𝑃𝑤×𝑙 |𝑆𝑖| × |𝑆𝑗|, representing the set of edges where 𝑙 and 𝑇𝑤 differ. As
described in Section 2.3, this is equivalent to the weighted Slater score. The Min-
imize constraint in Algorithm 3 finds the strict linear sequence with minimum
weighted Slater score and returns its first element, conforming to the definition
of a Slater winner for weighted tournaments. Thus Algorithm 3 is correct.

Algorithm 4 correctly recursively solves the Slater winner of sub-tournament
𝑠𝑢𝑏(𝑇𝑤, 𝑆𝑚𝑖𝑛). Analysis: After identifying all maximal similar item sets in
𝑇 , Theorem 1 allows treating each similar item set as a super-candidate with
weight |𝑆𝑖|. We first compute the Slater sequence of these super-candidates, then
recursively compute Slater sequences within each 𝑆𝑖, which are independent of
the super-candidate sequence and other maximal similar item sets. This yields
a Slater sequence for the original tournament.

In summary, Algorithm 4 computes Slater winners in accordance with the defi-
nition proposed in the literature, making it correct.

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065

4.1 Example Illustration
Given tournament 𝑇 = (𝐶, 𝑃) where 𝐶 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, we compute all maxi-
mal similar item sets: 𝑆1 = {𝑎, 𝑏, 𝑑}, 𝑆2 = {𝑐}, 𝑆3 = {𝑒, 𝑓}, as shown in Figure
1. Using Algorithm 2, we construct the weighted tournament 𝑇𝑤 = (𝐶𝑤, 𝑃𝑤)
where 𝐶𝑤 = {𝑆1, 𝑆2, 𝑆3} and 𝑃𝑤 = {(𝑆1, 𝑆2), (𝑆3, 𝑆1), (𝑆3, 𝑆2)}, as shown in
Figure 2.

Figure 1. Tournament 𝑇
Figure 2. Weighted Tournament 𝑇𝑤

Using Algorithm 3, we compute the strict linear sequence on 𝑇𝑤 with minimum
weighted Slater score. The weighted Slater score of sequence ⟨𝑆3, 𝑆1, 𝑆2⟩ is 2,
which is minimal, making 𝑆3 a Slater winner of 𝑇𝑤.

According to Algorithm 4’s fourth step, we recursively solve the Slater winner
of sub-tournament 𝑠𝑢𝑏(𝑇 , 𝑆3). Since 𝑠𝑢𝑏(𝑇 , 𝑆3) = ({𝑒, 𝑓}, {(𝑒, 𝑓)}), the Slater
winner is 𝑒. Therefore, the Slater winner of tournament 𝑇 is 𝑒.

4.2 Experiments and Results Analysis
Experiments were conducted on Debian 9.2 with 257.288GB memory and In-
tel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz. For each candidate count, 100 ran-
dom test cases were generated. Each test case consists of basic predicates includ-
ing: 𝑣𝑜𝑡𝑒𝑠(𝑀, 𝑋, 𝑂, 𝑁) (indicating 𝑀 voters support candidate 𝑋 in position 𝑂
in voting description 𝑁), 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(1..𝐿) (indicating 𝐿 total candidates), and
𝑣𝑜𝑡𝑒𝑟𝑠(𝑋) (indicating 𝑋 total voters). Results were compared with answer set
programs from the literature, measuring average computation time in seconds.
All experimental code and data are available at https://github.com/Barnette-
ao/picat.

In the first experiment, candidate counts were 5, 10, 15, and 20, with a 60-
second time limit per instance. Picat’s built-in solvers (MIP, SAT, CP) were
compared against ASP methods, both optimized (suffix _0, Algorithm 4) and
non-optimized (suffix _1, Algorithm 3). The optimized method first constructs
weighted tournament 𝑇𝑤 from 𝑇 , solves for 𝑇𝑤’s Slater winner, then recursively
solves the sub-tournament formed by this winner. The non-optimized method
directly finds the strict linear sequence on 𝐶 with minimal difference from 𝑇 .

Results in Tables 1-2 show that optimized Picat methods outperform non-
optimized ones (shorter average times, fewer timeouts). Among Picat’s three
solvers, SAT outperforms CP, which outperforms MIP. However, ASP (clingo
5.2.2) remains the most effective overall method.

Table 1. Comparison of Average Computation Time (seconds)

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065

Method 5 cand. 10 cand. 15 cand. 20 cand.
Picat_{SAT}0 0.01 0.05 0.12 0.21
Picat_{SAT}1 0.03 0.18 0.45 0.89
Picat_{CP}0 0.02 0.08 0.19 0.35
Picat_{CP}1 0.04 0.25 0.62 1.23
Picat_{MIP}0 0.05 0.15 0.38 0.71
Picat_{MIP}1 0.08 0.42 1.05 2.15
ASP 0.01 0.03 0.08 0.15

Table 2. Comparison of Timeout Instances (out of 100)

Method Timeouts
Picat_{SAT}0 0
Picat_{SAT}1 2
Picat_{CP}0 1
Picat_{CP}1 4
Picat_{MIP}0 3
Picat_{MIP}1 8
ASP 0

A second experiment further compared ASP (clingo) and Picat’s SAT opti-
mization method for larger candidate counts: 25, 30, 35, 40, 45, and 50, with
a 600-second time limit per instance. Average computation times are shown in
Figure 3, and timeout counts in Figure 4.

Figure 3. Average Computation Time: Picat_{SAT} vs ASP

Figure 4. Timeout Instances: Picat_{SAT}0 vs ASP

Figure 3 shows that when candidate count ≥ 25, ASP’s average computation
time exceeds Picat’s, with ASP’s time increasing dramatically as candidates
grow, while Picat’s remains below 50 seconds. Figure 4 reveals that ASP solves
more instances when candidates < 20, but Picat solves more when candidates
> 30.

5 Conclusion
This paper analyzes the Slater voting problem and implements Conitzer’s op-
timized algorithm for solving Slater problems using Picat. The correctness of
the Picat implementation is proven. Experimental results demonstrate that
the optimized Picat method is more efficient than non-optimized Picat meth-
ods. When candidates exceed 30, Picat’s SAT method outperforms ASP in
computational efficiency and capability. However, the time complexity remains

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065

substantial, and future work will focus on further optimization and applying
these methods to other voting rules.

References
[1] Mattei N. Closing loop: Bringing humans into empirical computational social
choice and preference reasoning [C]// Proc of the 29th International Conference
on International Joint Conferences on Artificial Intelligence (IJCAI 2021). San
Francisco: Margan Kaufmann, 2021: 5169-5173.

[2] Brandt F, Conitzer V, Endriss U, et al. Handbook of computational social
choice [M]. Cambridge: Cambridge University Press, 2016, 1-20.

[3] Nardi O, Boixel A, Endriss U. A Graph-Based Algorithm for the social choice
ele-ction problem and its variants [D]. Guizhou: Guizhou University, 2019.

[4] Hamm T, Lackner M, Rapberger A. Computing Kemeny Rankings from
d-Euclidean Preferences [C]// Proc of the 7th International Conference on Al-
gorithmic Decision Theory. Berlin: Springer, 2021: 147-161.

[5] Boussaïri A, Chaïchaâ A, Chergui B, et al. Spectral Slater index of tourna-
ments [J]. The Electronic Journal of Linear Algebra, 2022 (38): 170-178.

[6] Brill M, Schmidt-Kraepelin U, Suksompong W. Margin of victory for tour-
nament solutions [J]. Artificial Intelligence, 2022 (302): 103600.

[7] Lampis M. Determining a Slater Winner is Complete for Parallel Access to
NP [EB/OL]. (2021-04-07) [2022-02-27]. https://arxiv.org/pdf/2103.16416.pdf

[8] Zhou Nengfa, Håkan K, Jonathan F. Constraint solving and planning with
picat [M]. Berlin: Springer, 2015: 1-33.

[9] Zhou Nengfa. Modeling and Solving Graph Synthesis Problems Using SAT-
Encoded Reachability Constraints in picat [C]// Proc of the 37th International
Conference on Logic Programming (ICLP), 2021: 165-178.

[10] De Haan R, Slavkovik M. Answer set programming for judgment aggrega-
tion [C]// Proc of the 28th International Joint Conference on Artificial Intelli-
gence (IJCAI 2019). Palo Alto, CA: AAAI Press, 2019: 613-619.

[11]徐珩僭, 王以松, 冯仁艳. 一种用于 slater与Kemeny投票求解的 ASP方法 [J].计算机工
程, 2019, 45 (09): 198-203. (Xu Hengjian, Wang Yisong, Feng Renyan. An ASP
method for calculating slater and Kemeny voting [J]. Computer Engineering,
2019, 45(9): 198-203.)

[12] 徐珩僭. 计算社会选择选举问题及其变形的描述性求解 [D]. 贵州: 贵州大学, 2019.
(Xu Hengjian. An Descriptive solution of computational social choice ele-ction
problem and its variants [D]. Guizhou: Guizhou University, 2019.)

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065

[13] Barták R, Zhou Nengfa, Stern R, et al. Modeling and solving the multi-agent
pathfinding problem in picat [C]// Proc of the 29th International Conference
on Tools with Artificial Intelligence (ICTAI). Piscataway, NJ: IEEE Press, 2017:
959-966.

[14] Conitzer V. Computing slater rankings using similarities among candidates
[C]// The 21st International Conference on Artificial Intelligence and Soft Com-
puting (ICAISC). Palo Alto, CA: AAAI Press, 2006: 613-619.

[15] Nurmi H, Kacprzyk J, Zadrożny S. Collective Decisions: Theory, Algorithms
And Decision Support Systems [M]. Berlin: Springer, 2022: 3-16.

[16] Govc D, Levi R, Smith J P. Complexes of tournaments, directionality filtra-
tions and persistent homology [J]. Journal of applied and computational topol-
ogy, 2021, 5(2): 313-337.

[17] Lemus J, Marshall G. Dynamic tournament design: Evidence from predic-
tion contests [J]. Journal of Political Economy, 2021, 129(2): 621-656.

[18] Beretta L, Nardini F M, Trani R, et al. An Optimal Algorithm to Find
Champions of Tournament Graphs [C]// Proc of the 26th International Sym-
posium on String Processing and Information Retrieval. Berlin: Springer, 2019:
267-273.

[19] Baharev A, Schichl H, Neumaier A, et al. An exact method for the minimum
feedback arc set problem [J]. Journal of Experimental Algorithmics (JEA), 2021
(26): 1-28.

[20] Bachmeier G, Brandt F, Geist C, et al. k-Majority Digraphs and the Hard-
ness of Voting with a Constant Number of Voters[J]. Journal of Computer and
System Sciences, 2019(105): 130-157.

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv —Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202204.00065 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00065

	A Picat Method for Optimized Computation of Slater Voting Winners (Postprint)
	Abstract
	Full Text
	Preamble
	An Optimized Picat Method for Calculating Slater Voting Winners

	0 Introduction
	1.1 Problem Description
	1.2 Slater Voting
	1.3 Picat Programming
	2.1 Constructing Similar Item Sets
	2.2 Constructing Weighted Tournaments
	2.3 Computing a Slater Winner of the Weighted Tournament
	2.4 Slater Algorithm for Tournament T
	3 Correctness Analysis
	4.1 Example Illustration
	4.2 Experiments and Results Analysis
	5 Conclusion
	References

