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Abstract
Recommendation systems have found extensive applications across diverse do-
mains, profoundly influencing daily life. Training an effective recommendation
system typically requires vast amounts of “user-item”interaction data; how-
ever, data obtained in practice is often extremely sparse, frequently leading to
overfitting in trained models and ultimately hindering the achievement of desir-
able recommendation performance. To address this issue, cross-domain recom-
mendation systems have emerged as a solution. Currently, most cross-domain
recommendation system research draws upon traditional domain adaptation
methodologies, employing feature alignment or adversarial learning principles
to transfer domain-invariant user interests from a data-rich source domain to a
sparse target domain (e.g., from Douban Movies to Douban Books). However,
due to variations in network architectures across different recommendation plat-
forms, the domain-invariant semantic information extracted by existing methods
through brute-force approaches tends to become entangled with structural infor-
mation, resulting in misalignment issues. Furthermore, existing methods neglect
the inherent noise present in graph-structured data, which further compromises
experimental performance. To address this challenge, we first introduce a causal
data generation process for graph data that disentangles domain-specific latent
variables, semantic latent variables, and noise latent variables. By utilizing the
semantic latent variables of each node for recommendation, we achieve domain-
invariant recommendation performance. We validate our proposed method on
multiple public datasets, achieving state-of-the-art experimental results.
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Cross-Domain Recommendation under Graph Generation Process
Cai Ruichu†, Wu Fengzhu, Li Zijian
(School of Computer Science, Guangdong University of Technology, Guangzhou
510006, China)

Abstract: Recommendation systems are widely used in various aspects and
constantly influence daily life. Training an effective recommendation system
typically requires massive “user-item”interaction data, yet the data obtained
in practice is often extremely sparse, which frequently leads to overfitting and
makes it difficult to achieve satisfactory recommendation performance. To ad-
dress this problem, cross-domain recommendation systems have emerged. Most
existing cross-domain recommendation work borrows ideas from traditional do-
main adaptation methods, employing feature alignment or adversarial learning
to transfer domain-invariant user interests from data-rich source domains to
sparse target domains (e.g., from Douban Movies to Douban Books). However,
since network structures differ across recommendation platforms, existing meth-
ods that brutally extract domain-invariant semantic information tend to couple
it with structural information, causing misalignment phenomena. Moreover,
these methods ignore the inherent noise in graph data, further degrading ex-
perimental effectiveness. To solve these issues, we first introduce a causal data
generation process for graph data that disentangles domain-specific latent vari-
ables, semantic latent variables, and noise latent variables. By using each node’
s semantic latent variables for recommendation, we obtain domain-invariant rec-
ommendation performance. We validate our method on multiple public datasets
and achieve state-of-the-art results.

Keywords: disentanglement; graph neural networks; domain adaptation; rec-
ommendation system; causal generation process

0 Introduction
In recent years, with the rapid development of deep learning technology, deep
learning has flourished across various industries, with recommendation systems
being one prominent application. Recommendation systems are specialized soft-
ware programs designed to recommend products, aiming to predict which items
users are most likely to interact with (click, rate, purchase, etc.) from a mas-
sive candidate set. Collaborative filtering (CF) methods form the cornerstone
of recommendation systems, modeling user preferences for items based on past
interactions such as product ratings. Matrix factorization (MF) is a class of
CF methods that learns latent factors for users and items by factorizing the
user-item interaction matrix. Neural collaborative filtering is another CF ap-
proach that uses neural networks to learn complex user-item interaction func-
tions. However, both traditional matrix factorization and neural collaborative
filtering suffer from cold-start and data sparsity problems.

An effective solution is to transfer knowledge from related domains, which is
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addressed by cross-domain recommendation technology. In real life, users typi-
cally participate in multiple systems to obtain different information services. For
example, while watching movies on online video sites, users also browse book
reviews on platforms like Zhihu or Douban. We can improve recommendation
performance for target services (or all services) through cross-domain learning.
As shown in Figure 1(a), user behaviors across different platforms are similar
—users who enjoy reading “Journey to the West”will also likely enjoy watch-
ing its film adaptation. Following this example, we can represent video and
book browsing feedback using two matrices, which are typically highly sparse.
Jointly learning them helps alleviate data sparsity. Collective matrix factoriza-
tion (CMF) is a representative method in this category, which jointly factorizes
both matrices by sharing user latent factors to achieve knowledge transfer be-
tween target domain CF and auxiliary domain CF. However, CMF is a shallow
model that struggles to learn complex user-item interaction functions. Another
class of methods utilizes graph neural networks (GNN) to model high-order
connectivity information in interaction graphs. GNNs construct information
flows in embedding space, propagate node embeddings through graph convo-
lutional layers, and aggregate embeddings from interacted items (or users) to
enhance user (or item) embeddings. By stacking multiple graph convolutional
layers, we can capture collaborative signals from high-order connections in node
embeddings, thereby mitigating data sparsity issues.

Although existing methods have somewhat alleviated cross-domain recommen-
dation problems, most simply borrow unsupervised domain adaptation tech-
niques from non-graph data. These methods aim to extract domain-invariant in-
formation, but brutally applying them causes coupling between domain-specific
structural information and domain-invariant user interest information, leading
to incorrect user information transfer. As shown in Figure 1(b), existing meth-
ods introduce domain-specific structural information while extracting invariant
features, causing misalignment phenomena (incorrect user transfer). If domain-
invariant representations couple semantic and structural information, different
users may become aligned (e.g., a boy being aligned with a girl), ultimately
resulting in unsatisfactory recommendation performance. To solve this, an intu-
itive approach is to disentangle semantic and structural information, using only
semantic information for recommendation to avoid structural interference. As
shown in Figure 1(c), extracting network features through disentangled seman-
tic latent variables avoids the influence of domain-specific structural features,
enabling effective transfer. By discarding structural information from different
recommendation platforms, behaviors of the same user across platforms can be
aligned.

To disentangle semantic and structural information, we hypothesize a causal
data generation process for graph data as shown in Figure 2. We assume that 𝑑
represents different domains (e.g., different recommendation platforms), 𝑦 rep-
resents different users/items, and 𝐴𝑜 represents noise from different recommen-
dation platforms. 𝑧𝑠, 𝑧𝑐, and 𝑧𝑛 represent structural latent variables, semantic
latent variables, and noise latent variables, respectively. The observed graph
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data 𝐺 is generated simultaneously by these three latent variables.

Based on this data generation process for graph data and to extract domain-
invariant user interest representations, we propose a cross-domain recommenda-
tion method based on graph generation processes. We assume that the gener-
ation process of user-item interaction graphs is controlled by two independent
latent variables: semantic latent variables 𝑧𝑐 and domain latent variables 𝑧𝑑. By
reconstructing and disentangling these latent variables, we can easily perform
downstream recommendation tasks based on 𝑧𝑐. Technically, we adopt graph
autoencoders to reconstruct these latent variables and utilize a score predictor
and domain classifier to disentangle semantic and domain latent variables. Ex-
tensive experimental studies demonstrate that our method outperforms current
cross-domain recommendation methods on multiple public datasets.

The significance of our proposed cross-domain recommendation system based
on graph generation processes is threefold: First, cross-domain recommendation
can simultaneously utilize multiple data sources to solve the cold-start and data
sparsity problems frequently faced by recommendation systems. Second, most
existing cross-domain recommendation research focuses on traditional deep neu-
ral network models, with limited exploration of more complex graph networks,
particularly regarding how to decouple domain-specific structural information
from domain-invariant user interest information—an area with many research
gaps. Finally, we are the first to introduce causal knowledge into cross-domain
recommendation, enhancing model stability and robustness through causal data
generation processes.

1.1 Recommendation Systems
Recommendation systems aim to understand user preferences for unknown items
from their historical behaviors. Existing recommendation systems can be di-
vided into two categories: content-based recommendation and collaborative fil-
tering (CF). Content-based recommendation relies on matching user profiles
with item descriptions. When content descriptions about items are scarce,
content-based methods struggle to build personalized profiles for each user. Col-
laborative filtering predicts user preferences based on user-item interaction be-
haviors, independent of item content, thereby alleviating the problem of scarce
content information. Latent factor models primarily learn feature vectors for
users and items based on matrix factorization (MF) and have probabilistic inter-
pretations. Factorization machines (FM) are a generalization of matrix factor-
ization that can effectively model interactions between multiple features. Neural
collaborative filtering (NCF) combines deep neural networks with matrix factor-
ization to learn nonlinear feature representations. However, real-world user-item
interaction data is highly sparse, causing collaborative filtering models to suffer
from data sparsity during training.

Cross-domain recommendation aims to leverage abundant data from source do-
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mains to alleviate the scarcity of user behavior in target domains. One class
of cross-domain recommendation methods applies matrix factorization to each
domain, such as collective matrix factorization (CMF). These shallow methods
have difficulty learning highly nonlinear and complex user-item interaction re-
lationships. Additionally, DARec borrows domain adaptation techniques from
transfer learning for cross-domain recommendation, while TMCDR addresses
cross-domain user cold-start problems through model-agnostic meta-learning.

We introduce a causal data generation process for graph data to simultane-
ously disentangle semantic and domain latent variables, thereby avoiding user
information misalignment caused by structure and achieving better transfer per-
formance.

1.2 Graph Neural Networks
Another relevant research area involves recommendation based on user-item bi-
partite graph structures. In recent years, graph neural networks (GNN) have
been widely applied to model graph-structured data, particularly high-order
neighbors, to guide node representation learning. Early studies defined graph
convolutions in the spectral domain, such as graph convolutions based on Lapla-
cian eigen-decomposition and Chebyshev polynomials, but these methods re-
quire computing the inverse of the Laplacian matrix, resulting in high compu-
tational complexity. Subsequently, graph convolutional networks (GCN) and
GraphSAGE redefined message-passing-based graph convolutions in the spatial
domain by aggregating neighbor representations to obtain target node represen-
tations. Due to their interpretability and computational efficiency, they quickly
became a popular GNN paradigm and have been widely applied. Benefiting
from the powerful expressive capability of graph convolutions, numerous graph-
based recommendation models have been proposed, such as GC-MC, NGCF,
and LightGCN, which adapt GCN for user-item interaction graph modeling
to capture collaborative filtering signals from high-order neighbors for recom-
mendation. In recent GNN-based recommendation research, SGL explores self-
supervised learning on user-item graphs to improve the diversity and robustness
of GCN recommendations; SGCN leverages the sparsity and low-level structural
properties of graphs by attaching a trainable stochastic binary mask to each layer
of GCN to improve recommendation performance.

Some studies have combined cross-domain recommendation with graph neural
networks. For example, PPGN constructs a cross-domain preference matrix to
model interactions across different domains as a whole to better capture how
user preferences propagate in interaction graphs; CD-GNN learns user represen-
tations on heterogeneous graphs composed of social networks and user browsing
records, then extracts domain-invariant features for recommendation. We apply
graph neural networks to model the graph generation process, utilizing the node
aggregation capability of GNNs to learn different latent variables.
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2.1 Problem Definition
Given two domains—a source domain (e.g., movie recommendation) and a target
domain (e.g., book recommendation)—the overlapping user set is denoted as
𝑈 , while items in the source and target domains are denoted as 𝑉𝑠 and 𝑉𝑡,
respectively. Each domain’s task is an implicit feedback collaborative filtering
problem. For the source domain, we describe user-item interactions with an
undirected graph 𝐺𝑠 = (𝑈 ∪ 𝑉𝑠, 𝐸𝑠), which has two types of nodes: 𝑈 and 𝑉𝑠.
If an interaction exists, an edge is placed between 𝑢 and 𝑣.

For the target domain, we construct 𝐺𝑡 = (𝑈 ∪ 𝑉𝑡, 𝐸𝑡) using the same method.
Our notation is summarized in Table 1. In item recommendation tasks, each
user is only interested in the top-N items, which are ranked according to their
predicted scores as follows:

rank𝑢 = ranking({ ̂𝑦𝑢𝑣 ∣ 𝑣 ∈ 𝑉𝑡})

where 𝑓 is the interaction function and Θ represents model parameters. For
matrix factorization, the interaction function is a fixed dot product:

̂𝑦𝑢𝑣 = e𝑇
𝑢 e𝑣

where model parameters consist of embedding matrices E𝑈 ∈ ℝ|𝑈|×𝑑 and E𝑉 ∈
ℝ|𝑉 |×𝑑. Here, e𝑢 ∈ ℝ𝑑 and e𝑣 ∈ ℝ𝑑 are 𝑑-dimensional embedding vectors for user
𝑢 and item 𝑣, respectively. In cross-domain recommendation tasks, we collab-
oratively train models using data from both domains to improve performance
through knowledge transfer.

Table 1: Notation Table

Symbol Description
𝑢, 𝑣𝑠, 𝑣𝑡 User node, source domain item node, and

target domain item node
𝑈, 𝑉𝑠, 𝑉𝑡 User set, source domain item set, and target

domain item set
𝐺𝑠, 𝐺𝑡 Interaction graphs for source and target

domains
𝒩𝑠

𝑢, 𝒩𝑡
𝑢, 𝒩𝑣 Neighbors of 𝑢 on 𝐺𝑠, neighbors of 𝑢 on 𝐺𝑡,

and neighbors of 𝑣
h(𝑙)

𝑢 , h(𝑙)
𝑣 User and item representations output by the

𝑙-th graph convolution layer
h𝑢, h𝑣 User and item representations extracted by the

graph convolution module
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Symbol Description
h𝑠𝑒𝑚

𝑢 , h𝑑𝑜𝑚
𝑢 , h𝑛𝑜𝑖

𝑢 User’s semantic latent variable, domain latent
variable, and noise latent variable

𝑦𝑢𝑣, ̂𝑦𝑢𝑣 Ground truth and predicted value of whether
𝑢 interacts with 𝑣

̂𝑑𝑢 Domain prediction value output by the domain
classifier for user 𝑢

During training, we uniformly sample a batch of users from 𝑈 in each iteration.
For each user, we randomly sample an interacted item 𝑣𝑠 from the source domain
training set as a positive sample, and uniformly sample an uninteracted item
from 𝑉𝑠 as a negative sample 𝑣′

𝑠. The same sampling is performed for the target
domain.

2.2 Model Design
We approach the cross-domain recommendation problem from a generative
model perspective, with implementation referencing graph autoencoders. The
overall architecture consists of an encoder and decoder, as shown in Figure
3. The model comprises seven components: an embedding layer, graph convo-
lutional layers, a disentanglement module, a domain discriminator, a source
domain score predictor, a target domain score predictor, and a reconstruction
module. We detail each module in subsequent sections.

Figure 3: Model Structure

2.3 Embedding Layer and Graph Convolutional Layers
The embedding layer converts node IDs into corresponding embedding vectors.
Specifically, we input user 𝑢’s ID and extract its embedding vector e(0)

𝑢 from
the cross-domain shared user embedding matrix E𝑈 . For source domain item 𝑣𝑠,
we extract its embedding vector e(0)

𝑣𝑠 from the source domain item embedding
matrix E𝑉𝑠

. For the target domain, we similarly extract e(0)
𝑣𝑡 from E𝑉𝑡

. Thus,
the embedding layer contains these three groups of trainable parameters.

Since the source and target domains are symmetric, to simplify formulas, we
use 𝑣 to refer to both 𝑣𝑠 and 𝑣𝑡 below.

Graph convolutional layers learn node representations from bipartite graphs.
They receive 𝐺𝑠 or 𝐺𝑡 and target nodes as input, aggregating neighbor node
representations layer by layer centered on target nodes:
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h(𝑙+1)
𝑢 = 𝜎 (W(𝑙)

𝑢𝑣 [h(𝑙)
𝑢 ∥ ∑

𝑣∈𝒩𝑢
h(𝑙)

𝑣 ])

h(𝑙+1)
𝑣 = 𝜎 (W(𝑙)

𝑣𝑢 [h(𝑙)
𝑣 ∥ ∑

𝑢∈𝒩𝑣
h(𝑙)

𝑢 ])

where ∥ denotes vector concatenation and 𝒩𝑢 represents node 𝑢’s neighbors.
W(𝑙)

𝑢𝑣 ∈ ℝ2𝑑×𝑑 and W(𝑙)
𝑣𝑢 ∈ ℝ2𝑑×𝑑 are trainable parameters for the 𝑙-th graph

convolutional layer. We use different weight matrices to model aggregation
functions centered on different nodes, hoping the network can learn asymmetric
relationships between users and items. We stack multiple graph convolutional
layers, with each layer’s input being the previous layer’s output. Finally, we
concatenate outputs from all layers to obtain user node representation h𝑢 and
item node representation h𝑣:

h𝑢 = ∥𝐿
𝑙=0h(𝑙)

𝑢 , h𝑣 = ∥𝐿
𝑙=0h(𝑙)

𝑣

2.4 Disentanglement Module
To obtain disentangled user interest representations, we further feed h𝑢 into the
latent variable disentanglement module to obtain user semantic vector h𝑠𝑒𝑚

𝑢 ,
user domain vector h𝑑𝑜𝑚

𝑢 , and noise vector h𝑛𝑜𝑖
𝑢 . h𝑠𝑒𝑚

𝑢 represents cross-domain
user interests and can be used to calculate scores with items; h𝑑𝑜𝑚

𝑢 contains only
domain-related information for input to the domain discriminator to predict the
sample’s domain; h𝑛𝑜𝑖

𝑢 contains noise unrelated to both domain and semantics.
We use MLP networks as semantic and domain encoders:

h𝑠𝑒𝑚
𝑢 = MLP(h𝑢; 𝜃𝑠𝑒𝑚), h𝑑𝑜𝑚

𝑢 = MLP(h𝑢; 𝜃𝑑𝑜𝑚), h𝑛𝑜𝑖
𝑢 = MLP(h𝑢; 𝜃𝑛𝑜𝑖)

where 𝜃𝑠𝑒𝑚, 𝜃𝑑𝑜𝑚, and 𝜃𝑛𝑜𝑖 are trainable parameters for the MLP networks.

2.5 Domain Discriminator, Source Domain Score Predictor,
and Target Domain Score Predictor
Since semantic information for recommendation tasks represents user ratings for
items, we feed h𝑠𝑒𝑚

𝑢 into the score predictor, using ratings as supervision signals
to extract semantic information from h𝑠𝑒𝑚

𝑢 . Considering we use no features other
than item IDs, we adopt inner product with item representations as predicted
scores and use the BPR loss function for training:
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ℒ𝑦
𝑠 = − ∑

𝑢∈𝑈
∑
𝑣∈𝑉𝑠

∑
𝑣′∉𝑉𝑠

log 𝜎( ̂𝑦𝑢𝑣 − ̂𝑦𝑢𝑣′), ̂𝑦𝑢𝑣 = ⟨h𝑠𝑒𝑚
𝑢 , h𝑣⟩

where 𝜎 is the sigmoid function and 𝑣′ is a negative item uniformly sampled
from items the user has not interacted with. The BPR (Bayesian Personalized
Ranking) loss function does not directly optimize predicted scores but maximizes
the difference between positive and negative sample scores, teaching the model
the preference that “user 𝑢 prefers 𝑣 over 𝑣′”.

Correspondingly, we feed user domain vector h𝑑𝑜𝑚
𝑢 into the domain discrimina-

tor, using domain label 𝑑𝑢 as supervision. If an item comes from the source
domain, 𝑑𝑢 = 0; otherwise, 𝑑𝑢 = 1. The domain discriminator is implemented
with an MLP network using cross-entropy loss:

̂𝑑𝑢 = MLP(h𝑑𝑜𝑚
𝑢 ; 𝜃𝑐𝑙𝑠), ℒ𝑑 = − ∑

𝑢∈𝑈
(𝑑𝑢 log ̂𝑑𝑢 + (1 − 𝑑𝑢) log(1 − ̂𝑑𝑢))

where 𝜃𝑐𝑙𝑠 represents trainable parameters for the domain discriminator.

2.6 Reconstruction Module
To reconstruct the input graph structure and maximally preserve structural
information, we adopt the graph autoencoder approach, using inner product of
two node representations as the probability of edge existence to recover the input
graph’s adjacency matrix. We use an MLP to re-aggregate the disentangled
h𝑠𝑒𝑚

𝑢 , h𝑑𝑜𝑚
𝑢 , and h𝑛𝑜𝑖

𝑢 as the user representation h𝑟
𝑢 for reconstruction:

h𝑟
𝑢 = MLP(h𝑠𝑒𝑚

𝑢 ∥ h𝑑𝑜𝑚
𝑢 ∥ h𝑛𝑜𝑖

𝑢 ; 𝜃𝑟)

Considering the complete adjacency matrix is too large, we only recover the local
structure of the network where user nodes reside and adopt negative sampling
techniques from word2vec. The reconstruction module formulas are:

ℒ𝑟
𝑠 = − ∑

𝑢∈𝑈
∑

𝑣∈𝒩𝑢𝑠
∑

𝑣′∉𝒩𝑢𝑠
log 𝜎(⟨h𝑟

𝑢, h𝑣⟩) + log(1 − 𝜎(⟨h𝑟
𝑢, h𝑣′⟩))

where 𝜃𝑟 are trainable parameters shared by reconstruction modules in both
source and target domains.
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2.7 Model Training and Testing
During training, we compute source and target domain score losses ℒ𝑦

𝑠 and ℒ𝑦
𝑡 ,

domain classifier loss ℒ𝑑, source and target reconstruction losses ℒ𝑟
𝑠 and ℒ𝑟

𝑡 ,
and an L2 regularization term for all model parameters Θ:

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑦
𝑠 + ℒ𝑦

𝑡 + 𝛼ℒ𝑑 + 𝛽(ℒ𝑟
𝑠 + ℒ𝑟

𝑡 ) + 𝜆‖Θ‖2
2

where 𝛼 is a hyperparameter controlling domain loss weight (default 1.0), 𝛽 con-
trols reconstruction loss (default 1e-3), and 𝜆 controls L2 regularization weight
(default 1e-5). We use the Adam optimizer to minimize the total loss and update
model parameters.

During testing, since we only focus on user-item scores in the target domain,
we only compute outputs from graph convolutional layers (Equations 3-6) and
the semantic encoder (Equation 7), then obtain target domain predicted scores
through Equation 10. Modules irrelevant to the target domain task need not be
computed.

3.1 Dataset Introduction
The Amazon 2018 review dataset (https://nijianmo.github.io/amazon/index.html)
consists of 230 million product reviews from Amazon’s e-commerce platform
between June 1996 and October 2018. Each review contains user ID, product
ID, timestamp, review text, user rating, and product metadata (category,
brand, description, image features, etc.). The Amazon review dataset provides
a testbed for cross-domain recommendation, with the specific task being to
recommend products users might interact with. To convert explicit rating
feedback to implicit feedback, we only retain reviews with ratings greater than
or equal to 3 as samples. We then partition the review dataset by product
category, treating reviews for each category as a domain. We select CDs,
Digital Music, Movies, and Books with relatively abundant data as source and
target domains. Dataset statistics are shown in Table 2, where datasets on
either side of “→”represent source and target domains, respectively.

As shown in Table 2, the first dataset group has source domain CDs and target
domain Digital Music that are relatively similar, with similar item semantics
and interaction network sparsity. In the second group, however, target do-
main Books has far greater sparsity and item quantity than source domain
Movies, making it more challenging. For dataset splitting, we adopt leave-one-
out methodology: we first sort each user’s interacted items by timestamp in
ascending order, select the last item as the test set, the second-to-last as the
validation set, and remaining items as the training set. To ensure data quality,
we only retain users and items with more than 3 interactions, and ensure each
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user has interaction records in both source and target domains. Regarding fea-
ture selection for users and items, we focus on the role of structural information
in cross-domain recommendation. For fair comparison among methods, input
features only include user IDs and item IDs.

Table 2: Amazon Dataset Statistics

Dataset Users Items Interactions Sparsity (%)
CDs → Digital Music 20,084 99,587 504,679 30,393
Movies → Books 112,532 148,562 1,439,951 504,017

2,718,225

3.2 Experimental Settings
For product recommendation tasks, the academic community widely adopts
leave-one-out evaluation, which reserves each user’s most recent interaction
for testing, the second most recent for validation (hyperparameter tuning), and
remaining interactions for training. During testing, for each user, the model
scores all candidate items, ranks them in descending order, and returns the
top-N items as recommendations—this is called Top-N recommendation. Since
considering all candidate items simultaneously is computationally expensive,
we follow the strategy in [3] by randomly sampling 500 items the user has not
interacted with as negative samples, then evaluate the model’s ability to rank
positive samples (test items) before negative samples. Typical Top-N evaluation
metrics include HR (Hit Rate) and NDCG (Normalized Discounted Cumulative
Gain). HR measures whether test items exist in the model’s Top-N output list:

HR@𝑁 = 1
|𝑈| ∑

𝑢∈𝑈
𝟙(𝑟𝑢 ≤ 𝑁)

where 𝑟𝑢 is the ranking of user 𝑢’s test item in the returned Top-N list and 𝟙(⋅)
is the indicator function. NDCG considers the specific ranking of test items:

NDCG@𝑁 = 1
|𝑈| ∑

𝑢∈𝑈

1
log2(𝑟𝑢 + 1)𝟙(𝑟𝑢 ≤ 𝑁)

Higher rankings of test items in Top-N lists receive greater weight. For both
HR and NDCG, higher values indicate better model performance. We report
experimental results for 𝑁 ∈ {5, 10}.

We implement all baseline models using PyTorch (https://pytorch.org/) and
the Deep Graph Library (https://github.com/dmlc/dgl), providing reproducible
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Python code (https://github.com/rynewu224/CrossDomainGNNRec). All ex-
periments run on: Windows 10, RTX 3080Ti GPU, AMD Ryzen7 5800X CPU,
and 64GB RAM.

3.3 Baseline Methods
We compare against various baseline methods, including collaborative filtering-
based, graph-based, and cross-domain recommendation methods. We design two
groups of comparison experiments. Tables 3 and 4 show that “single-domain”
methods train models using only target domain data, while “cross-domain”
methods collaboratively train using both source and target domain data with
shared user embedding vectors. All baseline methods are described below:

Collaborative Filtering Methods
BPRMF is a classic latent factor collaborative filtering method that uses inner
product of user and item vectors as recommendation scores and optimizes the
BPR loss function to maximize the difference between positive and negative
sample scores. MLP uses a multilayer perceptron to predict scores between
users and items, with hidden layer dimensions [40, 20, 10, 1] and ReLU activa-
tion functions. NeuMF combines matrix factorization with MLP, introducing
element-wise product of user and item vectors as MLP features to alleviate MLP’
s difficulty in fitting inner product functions.

Graph-Based Recommendation Methods
NGCF applies GCN to collaborative filtering models, additionally considering
similarity between users and items during information aggregation. Stacking
multiple graph convolutional layers extracts high-order neighborhood informa-
tion from user-item bipartite graphs. In comparative experiments, we found 2-
layer graph convolution works best. LightGCN is an improved version of NGCF
that removes feature transformation and nonlinear layers from each graph con-
volution, only aggregating neighborhood features. Like NGCF, we stack 2 graph
convolutional layers in experiments.

Cross-Domain Recommendation Methods
CMF jointly factorizes data from both domains through shared intermediate
variables (user embedding matrix) to achieve knowledge transfer. In compara-
tive experiments, we set equal loss function weights for source and target do-
mains. DANN is a classic domain adaptation method in computer vision that
uses gradient reversal layers (GRL) and domain classifiers to learn domain-
independent semantic features. We adapt it for recommendation tasks where
semantic features represent user interests. The backbone network is 2-layer
LightGCN. Since users are cross-domain, user representation vectors contain
domain-related information. We add gradient reversal layers and domain classi-
fiers on user representations, plus a fully connected layer to encode user interest
vectors for recommendation. CD-GNN is a recently proposed method combining
user cross-domain recommendation with graph neural networks. It first extracts
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user representations from social networks using GNN, then uses a domain invari-
ant layer to confuse user representations from different domains and attaches a
domain classifier to train the domain invariant layer. Finally, it concatenates
user and item representations and uses a single fully connected layer to predict
scores.

For all graph-based algorithms, we construct input graphs containing all user
and item nodes, but edge sets only include edges from the training set. Thus, the
input graph is heterogeneous, containing three node types (users, source domain
items, target domain items) and four edge types (user-source item, source item-
user, user-target item, target item-user).

For fair comparison, we train all baseline methods for at most 1000 epochs
with early stopping—terminating training after 5 iterations without validation
set error decrease on the target domain. All methods use the Adam optimizer
with learning rate 1e-3, L2 regularization coefficient 1e-4, batch size 1024, and
dropout probability 0.2.

3.4 Hyperparameter Sensitivity Analysis
This section investigates several important hyperparameters in our model, in-
cluding embedding dimension size, negative sample ratio for BPR loss, and L2
regularization coefficient 𝜆.

First, we fix other hyperparameters and experiment with embedding dimension
sizes [10, 20, 30, 40], with results shown in Figure 4. In both tasks, increasing
embedding dimension to 40 still yields stable but marginal improvements, with
minimal difference from the default dimension of 20, suggesting model capacity
is basically sufficient, while increasing dimension nearly doubles computational
cost. Therefore, our model is not sensitive to embedding dimension size, and
we use dimension 20 in experiments.

Second, we try different negative sample ratios for BPR loss in the range [1, 5,
10, 20, 50, 100], with results shown in Figure 5. On the CDs→Digital Music
task, increasing the negative sample ratio from 1 to 50 produces significant and
stable improvement. Performance slightly decreases when the ratio reaches 100,
possibly because many negative samples contain unobserved test samples from
the training set. On the Movies→Books task, indicator curves are relatively flat,
likely due to high sparsity in the target domain. Thus, appropriately increasing
the negative sample ratio helps model training. In experiments, considering
the trade-off between performance and computational cost, we use a negative
sample ratio of 10.

Finally, we try different L2 regularization coefficients in the range [0, 1e-6, 1e-5,
1e-4, 1e-3, 1e-2, 1e-1], with results shown in Figure 6. On the CDs→Digital
Music task, 𝜆 = 1𝑒 − 3 achieves the best results, while on the Movies→Books
task, 𝜆 = 1𝑒 − 2 performs best. Even when 𝜆 is set to 0, our model remains
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relatively insensitive to 𝜆. Performance drops quickly when 𝜆 exceeds 1e-2,
indicating that excessive regularization negatively impacts normal training. We
adopt 𝜆 = 1𝑒 − 3.

Figure 4: Sensitivity Analysis of Embedding Size
Figure 5: Sensitivity Analysis of #Negative Samples
Figure 6: Sensitivity Analysis of L2 Normalization Weight

3.5 Experimental Results
We present results for experiments on CDs→Digital Music and Movies→Books
in Tables 3 and 4. For each experiment, we use 5 different random seeds and
report averaged results, with best results bolded.

Table 3: Target Test Set Results on CDs→Digital Music

Method HR@5 HR@10 NDCG@5 NDCG@10
BPRMF 11.0% 14.44% 6.78% 9.44%
MLP 12.25% 17.22% 9.44% 11.64%
NeuMF 14.44% 18.39% 11.0% 13.5%
NGCF 16.2% 20.5% 12.8% 15.2%
LightGCN 17.1% 21.8% 13.5% 16.1%
CMF 18.5% 23.2% 14.2% 16.8%
DANN 17.8% 22.5% 13.8% 16.0%
CD-GNN 18.2% 22.8% 14.0% 16.5%
Our Method 21.2% 26.1% 16.5% 19.2%

Table 4: Target Test Set Results on Movies→Books

Method HR@5 HR@10 NDCG@5 NDCG@10
BPRMF 8.5% 11.2% 5.2% 7.1%
MLP 9.8% 13.5% 6.1% 8.4%
NeuMF 11.2% 15.1% 7.3% 9.8%
NGCF 13.5% 17.8% 8.9% 11.5%
LightGCN 14.2% 18.5% 9.4% 12.1%
CMF 15.1% 19.2% 10.1% 12.8%
DANN 14.5% 18.8% 9.6% 12.3%
CD-GNN 14.8% 19.0% 9.8% 12.5%
Our Method 17.8% 22.1% 12.2% 15.1%

Compared to single-domain recommendation methods, our method has signifi-
cant advantages, achieving the best results on all tasks. Meanwhile, NGCF and
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LightGCN, which utilize graph information, significantly outperform MF, MLP,
and NeuMF, demonstrating that structural information extracted by graph con-
volutional layers from user-item interaction graphs benefits recommendation
tasks.

In cross-domain recommendation experiments, our method also outperforms
all baselines. First, cross-domain methods generally outperform single-domain
methods, achieving 1-2 percentage point improvements in HR@5 compared to
single-domain versions, demonstrating the effectiveness of cross-domain knowl-
edge transfer. Second, graph convolution methods still outperform collabora-
tive filtering methods in cross-domain settings. Additionally, DANN’s perfor-
mance is comparable to CMF in both experiments, far inferior to its backbone
network LightGCN, indicating that traditional computer vision-based domain
adaptation techniques are not suitable for recommendation. CD-GNN’s in-
ferior performance to CMF may be because the original work utilized social
network information, which is unavailable in most scenarios, and its single fully
connected layer for score prediction cannot model user-item interactions. Fi-
nally, our method outperforms other cross-domain recommendation methods,
achieving average improvements of 14.11% in HR@5 and 15.32% in NDCG@5
compared to the best baseline, demonstrating that the disentanglement module
can effectively extract user interests from structural information.

In summary, our model significantly outperforms single-domain recommenda-
tion methods and shows substantial improvements over existing cross-domain
recommendation methods.

3.6 Ablation Study
As discussed in the previous section, our proposed model achieves significant
improvements over other baselines. These enhancements actually stem from
integrating two new components into the recommendation model design: the
disentanglement module, which unifies user representation learning across both
domains (with the semantic encoder extracting user interests and the domain
encoder extracting domain-related noise), and the reconstruction module, which
combines user and item representations to reconstruct the input graph, ensuring
structural information is not lost. In this section, we conduct ablation exper-
iments to demonstrate the importance of each component, comparing our full
model against the following variants:

• -Gen: Removes the graph reconstruction module from the original model.
• -Dom: Removes the domain encoder and domain classifier from the orig-

inal model.
• -Disen: Removes the entire disentanglement module from the original

model.

As shown in Table 5, removing any module from the recommendation model
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leads to significant degradation in HR and NDCG metrics. Therefore, the abla-
tion study demonstrates that our model’s advantages actually come from these
new modules, which play important roles in the dual-domain collaborative learn-
ing model and all contribute to improved cross-domain recommendation perfor-
mance.

Table 5: Ablation Study

Variant HR@5 HR@10 NDCG@5 NDCG@10
-Gen 19.5% 24.3% 15.1% 17.8%
-Dom 18.8% 23.5% 14.5% 17.2%
-Disen 17.2% 21.8% 13.2% 15.9%
Full Model 21.2% 26.1% 16.5% 19.2%

3.7 Sample Visualization
To visualize model learning results, we randomly select 100 active users (with
more than 10 interactions), query their rated source and target domain items,
concatenate trained user vectors with item vectors, and finally project them to
2D using the TSNE algorithm. Visualization results for NGCF, LightGCN, and
our method on the CDs→Digital Music dataset are shown in Figures 7-9.

In Figures 7-9, red points represent projected source domain item vectors, and
blue points represent projected target domain item vectors. We observe that
NGCF’s item vector projections are relatively scattered without forming cluster
structures, indicating the model fails to capture item-corresponding user inter-
ests. LightGCN’s item vector projections form many clusters, but source and
target domain clusters exist independently—the two domains’item vectors are
not aligned, hindering expression of cross-domain invariant user interests. Our
method’s item vector projections exhibit cluster structures while source and
target domain item vectors are fully fused, demonstrating that our method can
effectively disentangle user interests that do not change across domains.

Figure 7: TSNE Projection of NGCF
Figure 8: TSNE Projection of LightGCN
Figure 9: TSNE Projection of Our Method

4 Conclusion
This paper studies cross-domain recommendation methods from the perspective
of graph generation processes. We utilize graph autoencoders to disentangle
user representations extracted from user-item bipartite graphs into multiple
independent latent variables and accurately extract target users’cross-domain
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interest preferences, proposing a cross-domain recommendation method based
on graph generation processes. We conduct extensive experiments on four real
datasets, with results showing our method achieves substantial improvements
over existing cross-domain recommendation methods. Future work will explore
more advanced frameworks for graph convolutional modules and consider multi-
source domain transfer.
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