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Abstract

Traffic flow prediction constitutes a crucial component of intelligent transporta-
tion systems. Due to the complexity of traffic data, long-term and accurate traf-
fic flow prediction has consistently remained one of the most challenging tasks in
time series forecasting. In recent years, researchers have applied spatio-temporal
graph modeling methods based on graph neural networks to traffic flow predic-
tion tasks, achieving favorable predictive performance. However, existing graph
modeling methods only reflect spatial dependencies in road networks through
predefined adjacency structures, neglecting the importance of temporal correla-
tion relationships between nodes for prediction. To address this limitation, we
propose an Adaptive Gated Graph Neural Network (Ada-GGNN), whose core
lies in simultaneously capturing the spatial structure of road networks and adap-
tive temporal correlations through a spatial transmission module, and learning
time series features on nodes via a gating mechanism. Experimental results on
two real-world traffic network datasets, PeMSD7 and Los-loop, demonstrate the
superior performance of the proposed model.
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Abstract: Traffic flow prediction is a crucial component of intelligent trans-
portation systems. Due to the complexity of traffic data, long-term and accurate
traffic flow prediction has consistently been one of the most challenging tasks in
time series forecasting. In recent years, researchers have applied spatio-temporal
graph modeling methods based on graph neural networks to traffic flow predic-
tion tasks, achieving promising performance. However, existing graph modeling
methods only capture spatial dependencies in road networks through prede-
fined adjacency structures, neglecting the importance of temporal correlations
between nodes for prediction accuracy. To address this limitation, this paper
proposes an Adaptive Gated Graph Neural Network (Ada-GGNN), whose core
innovation lies in simultaneously capturing the spatial structure of road net-
works and adaptive temporal correlations through a spatial passing module,
while learning temporal features on nodes via a gating mechanism. Experimen-
tal results on two real-world traffic network datasets, PeMSD7 and Los-loop,
demonstrate the model’ s superior performance.

Keywords: traffic flow prediction; spatio-temporal graph; adaptive gated
graph neural networks; temporal correlation

0 Introduction

Intelligent transportation systems constitute an indispensable component of
smart city development. As a foundational and critical research direction within
these systems, accurate and real-time traffic flow prediction offers an effective
solution for reducing traffic accidents, alleviating congestion, and improving
transportation efficiency. In practice, traffic flow is typically recorded by sen-
sors deployed on roads, capturing metrics such as volume, speed, and occupancy
rates. The objective of traffic flow prediction is to forecast future traffic condi-
tions based on historical data from these sensors across the road network. Tra-
ditional traffic flow prediction models primarily rely on statistical or machine
learning approaches, including Historical Average (HA) [1], Autoregressive In-
tegrated Moving Average (ARIMA) [2], Vector Autoregression (VAR) [3], and
k-Nearest Neighbors (KNN) [4]. These methods often yield suboptimal predic-
tions in real-world applications due to their reliance on stationarity assumptions.
However, traffic conditions are inherently complex, exhibiting characteristics of
randomness, periodicity, trend, and spatio-temporal dependence due to various
environmental factors. Furthermore, these approaches require complex feature
engineering and consider only temporal information while ignoring the critical
importance of spatial information for traffic flow prediction.

In recent years, deep learning has been widely applied to traffic flow prediction
tasks due to its powerful feature representation and nonlinear fitting capabili-
ties. Yu et al. [5] utilized deep Long Short-Term Memory (LSTM) networks to
predict traffic sequences, demonstrating superior results compared to traditional
methods. However, this approach still fails to consider the spatial structure of
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traffic road networks. Shi et al. [6] designed the ConvLSTM model for precipi-
tation prediction, which combines Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) to model spatial and temporal correlations
respectively. Subsequently, Zhang et al. [7] converted traffic road networks
into regular grids and employed CNNs to extract spatial features. While these
models can capture spatio-temporal characteristics, traffic roads are essentially
irregular structures, and treating traffic data as regular 2D or 3D grid data leads
to loss of spatial topological information.

Researchers subsequently introduced Graph Neural Networks (GNN) to model
spatio-temporal network data, achieving significant progress in traffic flow pre-
diction. Li et al. [8] proposed the DCRNN model, which models traffic networks
as directed graphs, employs bidirectional random walks to capture spatial depen-
dencies between roads, and uses RNNs to capture temporal correlations. This
approach simultaneously processes temporal and spatial information, yielding
more accurate predictions. Following this paradigm, researchers have exten-
sively explored combinations of GNN with CNN or RNN. For instance, refer-
ences [9-11] all utilize GNN to capture spatial dependencies in topological struc-
tures while employing 1D convolutions or RNNs to capture dynamic temporal
dependencies.

Despite the relative success of these graph neural network-based methods for
traffic flow prediction, several limitations persist. First, these approaches only
capture spatial dependencies between nodes through predefined graph adjacency
structures, overlooking the temporal correlations between nodes. Predefined ad-
jacency matrices are typically constructed based on distances between sensor
locations or upstream-downstream relationships, which can result in situations
where two nodes exhibit correlated time series but lack direct connections. As
illustrated in Figure 1, the left diagram shows node distribution in a traffic
road network, while the right diagram shows solid lines representing predefined
adjacency structures and dashed lines indicating node pairs with temporal cor-
relations. The figure demonstrates that relying solely on predefined adjacency
relationships cannot comprehensively reflect mutual influences between nodes.
Second, another limitation of existing graph neural network methods for traffic
flow prediction is that they often explore temporal and spatial features sepa-
rately before fusing them, a delayed fusion strategy that prevents the model
from accessing global information in real-time, thereby affecting prediction per-
formance.

Figure 1. Problem description

To address these issues, this paper proposes a novel end-to-end spatio-temporal
data prediction model called Ada-GGNN. The model first captures spatial de-
pendencies in traffic road networks through a spatial passing module while simul-
taneously mining temporal correlations between nodes. It then employs GRU
[12] to learn dynamic temporal dependencies in traffic data and performs multi-
ple spatio-temporal fusions at each time step to explore high-order interactions
between time and space, obtaining spatio-temporal embedding representations.
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Finally, these representations are passed through fully connected layers to pro-
duce predictions. The main contributions of this work are as follows:

1. An adaptive correlation matrix between time series is learned in a data-
driven manner to capture associations between nodes that are lost due to
predefined adjacency structures.

2. A cyclic aggregation method is adopted to fuse spatio-temporal embed-
ding representations in real-time, enriching the model’ s spatio-temporal
embeddings.

3. Experimental results on two real-world traffic datasets demonstrate the
effectiveness of Ada-GGNN. The proposed method also exhibits strong
generalization and can be easily extended to other spatio-temporal data
mining tasks.

1.1 Graph Neural Networks

Gori et al. [13] first proposed Graph Neural Networks (GNN) for graph-
structured data. Subsequent improvements and variants of GNN have achieved
remarkable progress across various tasks. Defferrard et al. [14] improved GCN
using fast localized convolutional filters, proposing the ChebNet model. Kipf
et al. [15] simplified ChebNet using a first-order approximation of spectral
convolution, achieving excellent classification performance in semi-supervised
tasks. Reference [16] improved scalability for large graphs by sampling a fixed
number of neighbors for each node and aggregating their features. Reference
[17] proposed the GAT model, a powerful GCN variant that introduces an
attention mechanism to dynamically determine the importance of each neigh-
bor node to the central node. However, these GNN models typically update
node hidden states using multi-layer perceptrons, which limits long-range
information propagation in graphs.

To address this limitation, Li et al. [18] proposed Gated Graph Neural Net-
works (GGNN), a classic spatial domain message-passing model based on GRU.
Due to its effectiveness on spatio-temporal data, GGNN has been applied to
various tasks. Zhang et al. [19] proposed the TextING model, which constructs
individual graphs for each document and uses GGNN to learn word node embed-
dings, demonstrating superiority over state-of-the-art text classification meth-
ods through extensive experiments. Reference [20] focused on a novel financial
event prediction task, using GGNN to update event representations based on
event graphs. Reference [21] improved GGNN to better model node interactions
and infer compatibility from graphs. Additionally, GGNN has been applied to
other tasks such as recommendation [22], image classification [23], and situa-
tion recognition [24]. For spatio-temporal data prediction problems, GGNN has
demonstrated excellent performance. Inspired by this, we adopt the GGNN
framework with a learnable adaptive node correlation matrix to address both
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short-term and long-term traffic prediction challenges.

2.1 Problem Definition

In traffic prediction tasks, each sensor is typically treated as a node, with dis-
tances between sensors or upstream-downstream relationships forming edges
between nodes. The traffic network can thus be defined as an undirected graph
G = (V,E, A), where V is the set of nodes, E is the set of edges, and A € RV*V
is the adjacency matrix of graph G. At time step ¢, the traffic conditions of N
nodes are represented as X, € RV*P where D denotes the feature dimension.

Therefore, the traffic prediction problem can be formulated as learning a map-
ping function f that, given a road network topology and historical traffic infor-
mation over T time steps, can predict traffic information for the next 7 moments,
as defined in Equation (1):

Xipps ooy Xppr = f(G5 D, GRS PR 7Xt)

2.2 Model Architecture

The Ada-GGNN model primarily consists of two-stage spatio-temporal fusion
modules at each time step. Each spatio-temporal fusion module comprises two
components: a Spatial Passing (SP) module and a Gated Recurrent Unit (GRU).
As shown in Figure 2, the model first uses historical data from T time steps as
input. At each time step, the spatial passing module captures both the fixed
topology of the traffic road network and learns adaptive correlations between se-
quences. The time series with spatial features are then fed into the GRU, which
captures dynamic changes in sequential data, extracts temporal features, and
performs spatio-temporal data fusion. Finally, a fully connected layer produces
predictions for 7 time steps.

Figure 2. Model architecture diagram

2.3 Spatial Passing Module

Considering the topology of traffic road networks, the spatial passing module
primarily captures spatial dependency relationships between roads. As shown
in Figure 3, the module consists of two parts: one obtains fixed spatial relation-
ships through a predefined adjacency matrix, while the other captures correla-
tions between nodes through a learnable correlation matrix. Graph convolution
operations are employed to extract information transmitted between nodes. For
explicit spatial relationships in traffic networks, the adjacency matrix is typ-
ically constructed based on positional distances between sensors, denoted as
Aorg € RN*N. Let X, represent the input traffic data, Worg € RP*F represent

chinarxiv.org/items/chinaxiv-202204.00062 Machine Translation


https://chinarxiv.org/items/chinaxiv-202204.00062

ChinaRxiv [$X]

the model parameter matrix, and ReLU activation function is adopted. This
graph convolutional layer is defined as in Equation (2):

ZZ’,;g = ReLU(A4,,,X,W,.,), ke€l,2]

To mine temporal correlations between node sequences in traffic networks, let
Apda € RN denote the learnable adaptive correlation matrix between nodes,
randomly initialized and automatically capturing adjusting correlation strengths
during training. This graph convolutional layer is defined as in Equation (3):

ZZZG = ReLU(AadaXtWada>7 ke [17 2]

Notably, this module performs second-order interactions on the topology of
traffic networks (k € [1,2]). When k =1, ] = X,; when k =2, [ = Zgi‘il
(as shown in Figure 1). Finally, information extracted from both components is
fused via concatenation, as in Equation (4):

Zyy = Concat(Zf;f, Zf,%“)

Figure 3. The architecture of the SP module

2.4 Spatio-Temporal Fusion Module

The spatial passing module captures spatial features and sequence correlations
between nodes at each time step and extracts their fused feature representations.
However, traffic prediction is a spatio-temporal task that requires capturing not
only spatial information but also temporal dependencies in sequences. Therefore,
in the spatio-temporal fusion module, GRU captures temporal dependencies
along the sequence dimension, while cyclic aggregation enables real-time spatio-
temporal fusion at each time step. As shown in Equation (5), the GRU receives
two inputs: the current time step’s data embedding with spatial information Z, ;
and the previous state representation Hy}". Since Ada-GGNN adopts second-
order spatio-temporal interactions at each time step (as shown in Figure 1), the
previous state expression differs at order k, as specified in Equation (6):

H, ) = GRU(Z, ;, Hy}"), ke€|l,2]

re Htfl k+1 k=1
iy = {H o
k-1 =

GRU controls the degree to which current input and previous state are written
through gating mechanisms. Larger update gate values and smaller reset gate
values indicate less information from the previous state being written. In this
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manner, Ada-GGNN can capture long-term temporal correlations in traffic data.
The detailed operations are shown in Equations (7)-(11):

ut,k = J(WuZt,k + bu + W;renge + b;ra)

Tt,k = O(WthJc + br + W, Hfj]‘: + b;re)

pre

;Lt,k = tanh(W),Z, . + b, + 7,4, O (W;ZﬂeHz;e + b))
Ht,k =(1- U’t,k) © Htp?l;e T U O ht,k

where u, ;, and r, ;, represent the update gate and reset gate sizes respectively, o
denotes the Sigmoid activation function, and W and b are learnable parameters.

After T time steps of spatio-temporal fusion, Ada-GGNN employs a fully con-

nected layer to obtain final predictions Y,,,, as in Equation (12):

Yout = Wouth:T,k:Z + bout

Considering that traffic prediction is a regression task, Mean Absolute Error
(MAE) is adopted as the loss function, defined in Equation (13):

1 M
MAE = — 3" |y, — 3
M P |y’L yZ|

2.5 Prediction

The prediction section details the final output mechanism of the model.

3.1 Datasets

To evaluate the proposed model’ s effectiveness, experiments were conducted on
two publicly available real-world traffic datasets: PeMSD7 and Los-loop. The
PeMSD7 dataset contains traffic speed data collected by 228 sensors in Califor-
nia during May and June 2012 (weekdays only, 44 days total). The Los-loop
dataset comprises traffic speed data collected by 207 detectors on Los Angeles
highways from March 1-7, 2012. In all experiments, traffic speeds aggregated
at 5-minute intervals were used as features, with the first 80% of data selected
as the training set and the remaining 20% as the test set. Detailed statistics of
the datasets are presented in Table 1.
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Table 1. Summary statistics of two traffic network datasets

Dataset  Nodes Edges Max Value Mean Value

PeMSD7
Los-loop

3.2 Experimental Settings

The model was implemented using Python and the PyTorch deep learning frame-
work. The input consisted of 60 minutes of historical traffic data to predict traf-
fic speeds for the next 15, 30, and 60 minutes. During training, the learning rate
was set to 0.001, epochs to 1000, and the Adam optimizer [25] was employed.
Early stopping was used to prevent overfitting. All experiments were conducted
on a single NVIDIA Tesla T4 GPU with 16GB RAM.

The proposed model was compared against seven baseline methods:

a) ARIMA: Autoregressive Integrated Moving Average, a classical autore-
gressive model combining autoregression, moving average, and differencing
for time series prediction.

b) SVR [26]: Support Vector Regression, a key application branch of SVM.
Linear kernel functions were adopted for traffic prediction tasks.

¢) ASTGCN [10]: This model consists of three independent components
modeling hourly, daily, and weekly temporal attributes, each containing
spatio-temporal attention mechanisms and spatio-temporal convolution
operations, with final predictions generated through weighted fusion.

d) T-GCN [11]: This model uses GCN to learn traffic network topology and
GRU to learn dynamic changes in traffic data, thereby capturing spatial
and temporal dependencies.

e) A3T-GCN [27]: Built upon T-GCN, this model introduces attention
mechanisms to adjust the importance of different time points and assemble
global temporal information for traffic prediction.

f) LSGCN [28]: This model integrates GCN and graph attention networks
into a spatial gating block, using spatial gating blocks and Gated Linear
Units [29] (GLU) to capture spatio-temporal features for prediction.

g) GWN [30]: This model captures hidden spatial dependencies in data
through a learnable approach and uses dilated 1D convolution components
to expand the receptive field for processing long sequences.

To verify Ada-GGNN’ s effectiveness, three evaluation metrics were employed:

a) Root Mean Square Error (RMSE): RMSE = \/ﬁ Zﬁl(yl —7,;)?
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b) Mean Absolute Error (MAE): MAE = . Zi\il ly; — Ul

M
=1

Yi—Y;

Yi

¢) Mean Absolute Percentage Error (MAPE): MAPE = ; }°
100%

where M represents the number of samples, y, denotes the actual traffic speed
of the i-th sample, and g, represents the model’ s predicted value.

3.3 Experimental Results Analysis

Table 2 presents performance comparisons between Ada-GGNN and other base-
line models for 15, 30, and 60-minute traffic predictions on both datasets. The
following observations can be drawn:

Neural network-based methods achieve lower prediction errors than traditional
time series analysis and machine learning methods (e.g., ARIMA and SVR)
across all evaluation metrics on both datasets. This is because ARIMA and
SVR have limited nonlinear modeling capabilities. Particularly, ARIMA re-
quires high data stability, but traffic data is complex with numerous influencing
factors, resulting in the least favorable predictions. In contrast, neural network
models not only excel at modeling nonlinear data but also incorporate topologi-
cal structures to obtain spatial features of traffic networks, thereby demonstrat-
ing superior performance.

Ada-GGNN achieves state-of-the-art prediction performance compared to other
baseline models for both long-term and short-term predictions on both datasets.
For instance, for the 15-minute prediction task on the Los-loop dataset, Ada-
GGNN improves upon GWN by 2.21% and LSGCN by 8.10% in terms of RMSE.
Similar results are observed across other time horizons and evaluation metrics.
These improvements are primarily attributed to Ada-GGNN’ s architectural
design. First, Ada-GGNN outputs predictions for multiple time steps simulta-
neously, whereas LSGCN must generate predictions sequentially based on previ-
ous outputs, leading to error accumulation and inferior long-term performance.
Second, Ada-GGNN employs a learnable approach to mine correlations between
node sequences in traffic networks, enriching node embeddings with new useful
information that enhances prediction accuracy. Finally, the proposed model
applies cyclic aggregation to learn spatio-temporal embeddings through real-
time fusion rather than separate extraction and delayed fusion, facilitating the
learning of fine-grained dynamic spatio-temporal relationships.

Table 2. Performance comparison of Ada-GGNN and other baselines
on PeMSD7 and Los-loop datasets

Datasets Models 15min  30min 60min
RMSE MAE MAPE
PeMSD7 ARIMA 12.29 10.12  25.29%
SVR 4.89 4.08 8.28%
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Datasets  Models 15min  30min 60min
ASTGCN 3.41 1.94 4.50%
T-GCN 3.45 1.93 4.41%
A3T-GCN 3.40 1.89 4.30%
LSGCN 3.37 1.92 4.33%
GWN 3.39 1.89 4.32%
Ada-GGNN 3.30 1.82 4.21%

Los-loop ARIMA 10.05 7.71 20.84%
SVR 5.65 3.86 9.33%
ASTGCN 5.25 3.27 8.05%
T-GCN 5.21 3.27 8.34%
A3T-GCN 5.12 3.17 8.08%
LSGCN 5.31 3.35 8.33%
GWN 4.99 2.86 7.32%

Ada-GGNN 4.88 2.79 7.16%

3.3.1 Influence of Hidden Layer Units

The number of hidden layer units is often a direct cause of overfitting, making its
configuration crucial during model tuning. This experiment selects hidden unit
quantities from [16, 32, 64, 96, 128, 160] to analyze their impact on prediction
accuracy. Asshown in Figure 4, the x-axis represents the number of hidden units,
while the y-axis shows different metrics. The results indicate that as the number
of hidden units increases, RMSE and MAE first decrease and then increase, with
the lowest prediction errors achieved when the hidden layer contains 96 units
for both Los-loop and PeMSD7 datasets. This is primarily because excessive
hidden units increase model complexity and risk of overfitting.

Figure 4. Influence of different hidden units on both datasets

3.3.2 Model Robustness Verification

During traffic data collection, sensors inevitably introduce noise into the
data. Therefore, perturbation analysis experiments were conducted to test
Ada-GGNN’ s robustness. As shown in Figure 5, two types of random noise
were added: Gaussian noise and Poisson noise. Gaussian noise follows a normal
distribution N (u = 0,0 € [0.2,0.4,0.6,0.8,1]); Poisson noise follows a Poisson
distribution P(X\ € [1,2,4,8,16]). The results demonstrate that Ada-GGNN
exhibits minimal changes in evaluation metrics under both noise distributions,
indicating strong adaptability to noisy data and robust performance.

Figure 5. The influence of Gaussian perturbation and Poisson per-
turbation on the Ada-GGNN on the Los-loop dataset

chinarxiv.org/items/chinaxiv-202204.00062 Machine Translation


https://chinarxiv.org/items/chinaxiv-202204.00062

ChinaRxiv [$X]

3.3.3 Validation of Adaptive Correlation Matrix

To validate the effectiveness of adaptive correlation matrix learning in the spatial
passing module, a comparative experiment was designed. The No_ {Ada} model
removes adaptive temporal correlation learning from Ada-GGNN, relying solely
on the predefined adjacency matrix to capture spatial dependencies. Experi-
mental results for 15-minute and 60-minute prediction tasks on both datasets
are shown in Table 3.

Table 3. Influence of learning time-series correlation in the SP module

Datasets Models 15min  60min

RMSE MAE
PeMSD7 No_ {Ada} 359  1.99
Ada-GGNN 3.30 1.82
Los-loop No_{Ada} 5.05 2.86
Ada-GGNN 4.88 2.79

The results clearly show that Ada-GGNN significantly outperforms No_ {Ada}
across different tasks and datasets. This is because Ada-GGNN captures not
only spatial relationships in road networks but also learns temporal correla-
tions between nodes, compensating for the limitation of previous graph neural
network-based traffic flow prediction methods that contained only single spatial
relationships.

To further interpret the role of the learned adaptive correlation matrix, addi-
tional experiments were conducted, visualizing geographic locations of partial
nodes from the Los-loop dataset alongside heatmaps of the learned correlation
matrix. Figure 6(a) shows the geographic locations of six nodes, while Fig-
ure 6(b) displays the normalized correlation matrix heatmap between these six
node sequences. First, Figure 6(b) clearly shows that column 2 has more high-
value points than other columns, indicating that node 2 has greater influence
on other nodes during prediction and exhibits higher correlations with other
node sequences. Second, in the predefined fixed adjacency matrix, node 6 has
no connection with nodes 3 and 4 due to large distances. However, Figure 6(b)
reveals that node 6 significantly influences and correlates with nodes 3 and 4.
This demonstrates that Ada-GGNN can discover node connections lost in pre-
defined adjacency matrices due to distance constraints, introducing new useful
information that improves prediction accuracy.

Figure 6. The learned self-adaptive correlation matrix

3.3.4 Model Computational Cost

Table 4 presents computational time comparisons between Ada-GGNN and
other neural network baselines on the Los-loop dataset. During training, Ada-
GGNN is 1.07 seconds faster per epoch than ASTGCN and 8.65 seconds faster
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than GWN, but approximately 2-3 seconds slower than T-GCN, A3T-GCN, and
LSGCN. This is primarily because T-GCN uses only one graph convolutional
layer and one GRU for flow prediction, while GWN has a more complex model
structure with residual connections in each spatio-temporal layer, resulting in
greater computational overhead. On the test set, LSGCN requires more time
than other models because it must generate predictions sequentially based on
previous outputs, whereas other models produce multiple time step predictions
simultaneously. Considering both prediction accuracy and computational cost,
Ada-GGNN demonstrates strong overall performance.

Table 4. Computation time on the Los-loop dataset

Models Training (s/epoch) Testing (s)

ASTGCN
T-GCN
A3T-GCN
LSGCN
Ada-GGNN

4 Conclusion

This paper proposes a novel end-to-end Adaptive Gated Graph Neural Network
(Ada-GGNN) model for traffic flow prediction. The model utilizes a learnable
adaptive matrix to capture sequence correlations between nodes from data, in-
troducing new useful information, and employs a gated graph neural network
framework to handle long-term prediction problems. Ada-GGNN achieves the
best results on two public traffic datasets. Considering that real-world traffic
prediction is influenced by many external factors such as weather, temperature,
and social events, future work will incorporate more additional features as input
and explore scalable methods for applying Ada-GGNN to large graphs.
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