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Abstract
Given that edge clouds lack more powerful computational processing capabilities
compared to central clouds, they are susceptible to unnecessary scaling jitter
or insufficient resource processing capability when handling dynamic workloads.
This paper therefore conducts experimental evaluations on microservice appli-
cations using two synthetic and two real-world workloads in a real edge cloud
environment, and proposes a hybrid autoscaling method based on workload pre-
diction (Predictively Horizontal and Vertical Pod Autoscaling, Pre-HVPA). The
method first employs machine learning to predict workload data features and
obtain final workload prediction results, which are then utilized for hybrid hori-
zontal and vertical autoscaling. Simulation results demonstrate that autoscaling
based on this approach can reduce scaling jitter and container usage, making it
suitable for microservice applications in edge cloud environments.
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Abstract: Since edge clouds lack the powerful computing capabilities of cen-
tral clouds, they are prone to meaningless scaling jitter or insufficient resource
processing capacity when handling dynamic workloads. This paper experimen-
tally evaluates microservice applications in a real edge cloud environment using
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two synthetic and two real-world workloads, and proposes a hybrid autoscal-
ing method based on workload prediction (Predictively Horizontal and Vertical
Pod Autoscaling, Pre-HVPA). The method first employs machine learning to
predict workload data characteristics and obtains final workload predictions. It
then leverages these predictions for hybrid horizontal and vertical autoscaling.
Simulation results demonstrate that this approach reduces scaling jitter and
container usage, making it suitable for microservice applications in edge cloud
environments.

Keywords: edge computing; microservices; workload prediction; hybrid au-
toscaling

0 Introduction
Over the past few years, the convergence of cloud computing and the Inter-
net of Things has positioned Multi-access Edge Computing (MEC) and cloud-
native autoscaling technologies for microservice architectures as key research
directions. Edge cloud computing provides micro data center (MDC) facilities
closer to users and applications, helping to overcome latency issues. Microser-
vices represent an emerging architectural paradigm that decomposes applica-
tions into multiple fine-grained distributed components that interact to serve
complex business scenarios. Today, many industrial applications, particularly
edge cloud and IoT-based services, adopt microservice architectures. While edge
cloud platforms benefit from microservice architectures, they also face significant
challenges, most notably their limited resource processing capacity compared to
central clouds that use microservice architectures. Resource request processing
is typically handled through microservice autoscaling, making effective applica-
tion autoscaling under dynamically changing workloads a primary challenge for
reducing edge cloud resource consumption.

Currently, numerous tools support microservice autoscaling, with Kubernetes
(k8s) being the most popular container orchestration platform. Kubernetes
enables adaptation through Horizontal Pod Autoscaling (HPA) and Vertical
Pod Autoscaling (VPA). HPA adjusts the number of application instances (e.g.,
Pods—the smallest scheduling unit in k8s), while VPA modifies the computing
resources allocated to each instance. However, most existing solutions consider
only horizontal or vertical scaling in isolation, both of which require substantial
resources. Horizontal autoscaling, in particular, achieves high availability by
replicating microservices across machines, but this greedy approach consumes
significant resources during scaling and is only suitable for hardware-abundant
environments—not the resource-constrained, fine-grained edge cloud platforms.

Furthermore, Kubernetes’s container-level autoscaling employs threshold-based
policies that generate considerable scaling jitter under dynamic workloads, in-
curring additional overhead. Although recent research has improved upon Ku-
bernetes’s strategy using workload prediction methods, achieving performance
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gains over threshold-based approaches, these solutions remain unsuitable for
low-capacity edge clouds and fail to adequately demonstrate scaling effective-
ness under minor load fluctuations. Consequently, developing a fine-grained,
low-resource autoscaling strategy for edge cloud platforms represents a critical
research challenge.

1 Related Work
Researchers have proposed various microservice autoscaling strategies and al-
gorithms. Threshold-based policies, as implemented in Kubernetes, remain the
most popular approach. However, determining optimal thresholds is challenging,
requiring extensive parameter tuning at the container level. While Kubernetes
has added support for vertical autoscaling, it remains experimental at release
time, with limited implementation details available.

To address Kubernetes’s limitations, some studies have proposed novel algo-
rithms. One approach uses Q-learning to adaptively adjust thresholds without
user configuration while meeting SLA targets, though it performs poorly with
rapidly changing workloads. Other work employs artificial neural networks and
resource optimization for cost-effective microservice autoscaling in cloud infras-
tructure. Window prediction methods have been applied to fog computing
microservices to improve SLO response times. While ARIMA models enable
short-term load prediction improvements over threshold-based methods, they
rely solely on horizontal scaling—an inefficient, coarse-grained approach unsuit-
able for edge clouds. These improvements focus on threshold-based drawbacks
without considering scaling granularity or dimensions.

Most existing strategies remain exclusively horizontal or vertical. Reinforce-
ment learning has been used to improve QoS and response times in Kubernetes
horizontal scaling, but tested with disaster management systems that gener-
ate excessive workloads unsuitable for edge applications. Another framework
monitors container resource utilization for autoscaling but employs only single-
dimensional scaling. Only recent work has combined both dimensions: one
study achieved fine-grained hybrid autoscaling using reinforcement learning to
optimize response time, while another utilized IBM’s MAPE-K principle for
vertical scaling, demonstrating that fine-grained vertical scaling can reduce con-
tainer usage while horizontal scaling handles workload peaks. CloudVAMP
provides memory oversubscription for VMs (vertical scaling) but lacks support
for diverse workload types, limiting fine-grained resource management.

Unlike prior work, this paper focuses specifically on resource consumption during
microservice autoscaling at edge nodes. Building upon previous research, we
improve upon predictive load forecasting by implementing hybrid autoscaling
to reduce both Pod replica counts and scaling jitter.
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2.1 Deployment Framework
In the edge cloud environment, we first reconfigure modules and decompose
dependencies between central and edge cloud platforms to containerize cloud
components. We then install Kubernetes worker nodes on both central and
edge cloud nodes. After configuring infrastructure orchestration services, Ku-
bernetes clusters, and edge nodes, we define cloud-edge connection components
to enable information control between central cloud data and edge computing
nodes. Figure 1 illustrates the Kubernetes deployment across central and edge
clouds.

Figure 1. Edge cloud deployment framework

2.2 Kubernetes Autoscaling Scheme

Kubernetes, the most popular container solution, provides service discovery,
resource scheduling, monitoring, application deployment, and autoscaling. Its
microservice autoscaling solution uses threshold-based horizontal autoscaling,
which suffers from two problems: difficulty in determining optimal thresholds,
and coarse-grained scaling that fails to optimize individual Pod utilization. The
algorithm scales when CPU or memory utilization exceeds upper thresholds or
falls below lower limits, often leaving resources underutilized across multiple
Pods.

Algorithm 1: Kubernetes Horizontal Autoscaling 1) Input: Total appli-
cation resource requests, scaling threshold, Pod resources
2) Output: Number of scaled Pods
3) Set default tolerance 𝜏 = 0.1
4) Calculate resource utilization: Utilization = Request / (NumPods × Resource
per Pod)
5) If Utilization > Target + 𝜏 , then NumPods = NumPods + 1
6) If Utilization < Target - 𝜏 , then NumPods = NumPods - 1
7) Return final scaling result

This algorithm adjusts Pod replicas based on current resource utilization. When
average utilization across all replicas exceeds a target percentage threshold, the
system scales out; when below threshold, it scales in. Resource utilization is
calculated as total requests divided by allocated resources. We collect resource
request counts every 5 seconds to compute average utilization. This strategy
serves as our baseline for comparison, with its architecture shown in Figure 2.

Figure 2. Kubernetes horizontal pod autoscaling schematic

2.3 Limitations of Predictive and Reactive Autoscaling

Existing literature typically focuses on predictive methods to reduce jitter from
Kubernetes’s reactive scaling or optimizes response time violations through mod-
ified scaling policies. For instance, the predictive algorithm we compare against
(named HPA in Chapter 4) uses ARIMA for short-term prediction, inputting
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resource utilization and outputting predicted scaling values through time series
modeling. However, this approach only predicts incoming workload, and while
reducing jitter, it leads to higher Pod usage through proactive scaling.

The reactive hybrid autoscaling algorithm we compare (named HVPA in Chap-
ter 4) uses reinforcement learning for fine-grained microservice scaling through a
9-step transition model that introduces vertical autoscaling. While more precise,
this fine-grained approach targets minimal scaling quantities, causing frequent
Pod scaling operations under fluctuating loads and generating unnecessary jitter
—also detrimental to edge cloud resource utilization.

Note that the Kubernetes baseline requires optimization for both jitter and Pod
count, while existing predictive and reactive hybrid approaches each optimize
only one metric. To improve both simultaneously, we employ machine learn-
ing to predict characteristics across synthetic and real workloads, proposing
a hybrid autoscaling algorithm that combines prediction with hybrid scaling.
This provides proactive scaling for rapidly changing loads to reduce jitter while
prioritizing vertical scaling through min/max replica calculations to utilize fine-
grained per-Pod resources more effectively, thereby reducing Pod usage during
slow-changing loads and achieving overall resource reduction.

3 Predictive Hybrid Autoscaling Algorithm (Pre-HVPA)
To address excessive Pod resource consumption and scaling jitter, we propose
a hybrid autoscaling method using machine learning-based workload prediction.
Figure 3 illustrates our approach: first, we generate growth and periodic work-
loads for edge-deployed microservices while collecting CPU-intensive and I/O
memory-intensive load data. Next, we partition this data to train machine learn-
ing models for workload prediction. Finally, we integrate predicted results into
our edge cloud Kubernetes platform’s hybrid autoscaling module to determine
required Pod quantity changes and scaling frequency.

Figure 3. Block diagram of predicting hybrid scaling method

3.1 Deploying Edge Applications

We deploy microservice applications on edge cloud nodes (see Section 4.1 ex-
perimental environment) that use Support Vector Regression (SVR)—a super-
vised machine learning algorithm—to predict temperature from historical sen-
sor logs. This benchmark application simulates CPU-intensive and memory-
intensive workloads, representing typical microservice use cases such as data
prediction, search algorithms, digital content conversion, and data compression
tasks for IoT industrial applications.

3.2 Importing Workloads

To evaluate our predictive hybrid autoscaling model, we use two synthetic and
two real-world workloads. The synthetic workloads include growth and periodic
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patterns to simulate conventional load variations. Growth workloads occur when
most users begin accessing services, while periodic workloads are common in real
applications with regular cyclical patterns.

For growth workloads, we initialize a fixed request count M(0) and increase it
at a fixed growth rate q per minute, calculated as:

𝑀(𝑡) = 𝑀(0) + Δ𝑡 × 𝑞 + 𝑟𝑐 (1)

where r_c � (0,1) is a random factor.

For periodic workloads, we use a sinusoidal function with period 𝜆, amplitude
𝛼, and initial bias factor 𝛽:

𝑈(𝑡) = 𝑈(0) + 𝛼 × sin (2𝜋𝑡
𝜆 ) + 𝑟𝑐 (2)

The real-world workloads utilize the publicly available Alibaba Cloud Tianchi
2020 hybrid cloud workload trace, including CPU-intensive and I/O memory-
intensive patterns.

3.3 Machine Learning Module for Load Data Training

We train five linear regression models on the four workload datasets, comparing
their Mean Squared Error (MSE) to evaluate prediction accuracy:

MSE = 1
𝑚

𝑚
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 (3)

where m is the sample count, y_i is the true value, and ŷ_i is the predicted
value.

The compared models include Linear Regression (LR), Elastic Net (EN), Polyno-
mial Regression (PR), XGBoost (XGB), and Decision Tree Regression (DTR).
After 10 tests averaging MSE values, Bayesian Ridge (BR) demonstrates im-
provements of 88.5%, 85.9%, 83.8%, 63.2%, and 38.1% over LR, EN, PR, DTR,
and XGB respectively. To enhance hybrid autoscaling accuracy, we select BR
as our final machine learning algorithm.

Table 1. Prediction error (MSE) of dataset

Method MSE
⋯ ⋯

3.4 Hybrid Autoscaling Algorithm

The trained model and predicted workload data feed into our hybrid autoscal-
ing module. The primary objective is maintaining high availability with low
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resource consumption, enabling dynamic resource scaling at high utilization
rates across edge nodes. While Kubernetes-based horizontal scaling is effective,
it consumes excessive resources by replicating entire Pod instances. Vertical
scaling offers better resource efficiency for specific scenarios by allocating more
resources to individual Pods. Our hybrid approach differs from coarse-grained
horizontal scaling by precisely determining microservice requirements, incorpo-
rating fine-grained vertical adjustments while retaining horizontal capabilities
for state consistency.

Our algorithm uses different scaling metrics per workload type: CPU utilization
for CPU-intensive loads and memory utilization for memory-intensive loads,
quantified uniformly through resource request counts. Algorithm 2 describes
the CPU-intensive case.

Algorithm 2: Hybrid Autoscaling Algorithm - Input: Predicted load re-
sources, Pod resource requirements, target utilization
- Output: Number of scaled Pods, scaling operation count
- For observed resource usage, compare current utilization with target to deter-
mine vertical scaling feasibility
- If total allocation equals target utilization: maintain current scaling strategy
with horizontal scaling up to max replicas
- If total allocation exceeds target: first vertically scale each Pod up, then hori-
zontally scale out
- If total allocation is below target: first horizontally scale in, then vertically
scale each Pod down (minimum 1 Pod)
- Record final Pod replica count

When predicted loads enter the scaling module, the algorithm first compares
total allocated resources against target utilization to prioritize horizontal or
vertical scaling. When resources exceed targets, vertical scaling is prioritized
to increase per-Pod utilization, reducing horizontal scaling needs while meeting
requests. When requests decrease, horizontal scaling occurs first to reclaim
Pods, followed by vertical scaling to minimize Pod usage. Predictive inputs
enable proactive scaling based on future resource requests, avoiding unnecessary
scaling operations and reducing jitter for smoother Pod count transitions.

4.1 Experimental Environment
We test our hybrid autoscaling model using a Kubernetes cluster deployed in an
edge cloud environment consisting of four physical machines running compatible
Docker and Kubernetes versions. Detailed configurations are shown in Table 2.

Table 2. Equipment information of MEC

Configuration Details
OS CentOS 7.8
Memory 4 GB
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Configuration Details
CPU i5 4-core
⋯ ⋯

4.2 Load Prediction Results Analysis

We employ 10-fold cross-validation, randomly partitioning all workload data
into training (90%) and test (10%) sets. This method provides optimal error
estimation as demonstrated through extensive experiments.

Figure 4 presents 120-minute prediction results for four workload types. CPU-
intensive and I/O memory-intensive workloads show higher request density than
the synthetic loads. Growth and periodic workloads exhibit superior prediction
accuracy because machine learning methods struggle with abrupt bursts in in-
tensive workloads. Nevertheless, our approach achieves relatively good results
even for these challenging cases, enabling more accurate autoscaling when better-
predicted loads feed into our hybrid module.

Figure 4. Actual and forecasted load experiment evaluation

4.3 Autoscaling Results Analysis

This section compares our Pre-HVPA method against Kubernetes threshold-
based horizontal autoscaling, prediction-based horizontal autoscaling (HPA),
and threshold-based reactive hybrid autoscaling (HVPA) across incremental,
periodic, CPU-intensive, and memory-intensive workloads.

4.3.1 CPU-Intensive Load Results Kubernetes baseline uses threshold-
based horizontal autoscaling (reactive). When any Pod’s resource utilization
exceeds the custom scaling threshold (typically 75%), the system adds Pod
replicas; when all Pods fall below the reduction threshold (typically 50%), it
removes replicas. While this restores application performance, Figure 5(a) shows
that for rapidly changing CPU-intensive workloads, it generates excessive scaling
jitter and Pod usage overhead.

Our Pre-HVPA method predicts CPU-intensive load characteristics, better
adapting to dynamic changes through fine-grained hybrid autoscaling. Figure
5(b) shows that prediction-based HPA improves jitter but increases Pod count.
Our approach reduces both jitter and Pod usage, particularly during 20-50 and
70-80 minute intervals where it uses fewer Pods than horizontal scaling alone.

Figure 5(c) compares against reactive HVPA, which minimizes scaling quantity
without considering jitter. Our predictive hybrid approach uses similar Pod
counts during 0-40 minutes while reducing 2 meaningless scaling operations,
and proactively scales before the 60-minute load spike, reducing 2 unnecessary
expansions while using minimal Pods for smoother, more stable scaling.
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Figure 5. CPU intensive load autoscaling results

4.3.2 Memory-Intensive Load Results Memory-intensive workloads have
fewer requests with slower changes, making them another representative test
case. Figure 6(a) shows Kubernetes produces less jitter and fewer Pods for
memory-intensive loads compared to CPU-intensive cases. Nevertheless, our
predictive hybrid strategy demonstrates clear advantages, particularly during
80-100 minutes, where proactive prediction reduces 5 meaningless scaling jitters
and fine-grained scaling decreases Pod count. Detailed Pod usage is evaluated
in Section 4.4.

Figures 6(b) and 6(c) show comparisons with HPA and HVPA, demonstrating
that our strategy completes proactive scaling around 60 minutes while using
fewer Pods overall.

Figure 6. Memory intensive load autoscaling results

4.3.3 Periodic Load Results Periodic loads’regular patterns enable more ac-
curate prediction and precise resource calculation, facilitating proactive hybrid
autoscaling deployment with fewer resources. Figure 7(a) shows that compared
to Kubernetes, our strategy enables earlier resource reclamation during 10-30
minutes and uses relatively more Pods during 40-60 minutes for proactive scaling
that reduces jitter.

Figures 7(b) and 7(c) compare against prediction-only horizontal and hybrid
approaches, showing our method uses fewer Pods than pure prediction-based
scaling and generates less jitter than pure hybrid scaling. Growth workload
results follow similar patterns and are omitted for brevity.

Figure 7. Periodic load autoscaling results

4.4 System Performance Evaluation

This section evaluates scaling frequency and Pod usage across four workload
types. Figure 8 shows that Pre-HVPA generates less scaling jitter than Ku-
bernetes, HPA, and HVPA for all workloads: 40% and 20% improvement over
Kubernetes and HVPA for growth workloads; 8.5% over HVPA for periodic;
37.2%, 18.2%, and 32.5% over the three baselines for CPU-intensive; and 18.8%,
7.1%, and 25.7% for memory-intensive.

Figure 9 measures Pod replica usage over 120 minutes, showing clear improve-
ments: 9.4% and 8.4% over Kubernetes and HPA for growth; 9.6%, 11.4%, and
2.1% over all three for periodic; 9.5% and 8.8% over Kubernetes and HPA for
CPU-intensive; and 12.4% and 14.7% for memory-intensive.

For growth workloads, our strategy trades 1 additional scaling operation for 9.4%
fewer Pods. For periodic loads, it matches Kubernetes’s jitter while reducing
Pods by 9.6%. For CPU-intensive workloads, it sacrifices 2.1% more Pods to
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eliminate 13 unnecessary scaling operations. For memory-intensive loads, it
trades 2.5% more Pods to reduce 9 meaningless jitters.

Overall, our predictive hybrid autoscaling strategy for edge cloud environments
achieves superior results in both jitter reduction and Pod usage optimization.

Figure 8. Comparison of scaled times of four schemes

Figure 9. Comparison of number of scaled pod replicas of four schemes

5 Conclusion
Existing microservice autoscaling solutions primarily target central clouds.
Achieving resource-efficient autoscaling for edge cloud microservice contain-
ers presents significant challenges. This paper proposes a novel algorithm
that determines more cost-effective autoscaling strategies for industrial mi-
croservice applications deployed at the edge. Compared to current popular
solutions, our approach optimizes both scaling frequency and Pod replica count,
demonstrating superior performance.

Our method employs supervised machine learning with minimal MSE to pre-
dict diverse workload types, feeding predictions into a custom hybrid autoscal-
ing module. Evaluations using two intensive and two synthetic workloads show
overall optimization for both metrics. This research represents an initial achieve-
ment; future work will test the model with different applications and investigate
reducing scaling response time to further decrease user costs.
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