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Abstract
To improve the real-time estimation accuracy of human vigilance, a real-time
vigilance estimation method based on differential entropy (DE), improved mov-
ing average, and bidirectional two-dimensional principal component analysis
(TD-2DPCA) is proposed. First, the total frequency band is decomposed into
multiple sub-bands with a certain bandwidth, and DE is extracted from each
sub-band. Then, combining the temporal dynamic characteristics of vigilance,
the traditional moving average method is improved, and the improved moving
average is used to smooth the DE. Subsequently, TD-2DPCA is employed to
reduce the dimensionality of DE, and least squares support vector machine (LS-
SVM) is adopted to establish a regression model between the feature matrix and
vigilance, thereby achieving real-time accurate estimation of vigilance. Finally,
experimental validation was conducted using the SEED-VIG dataset, and the
results demonstrate that processing the data with the improved moving average
and TD-2DPCA methods can enhance the accuracy of vigilance estimation and
reduce estimation time. When the total frequency band is within 0-35 Hz and
the decomposition bandwidth is 1 Hz or 2 Hz, the extracted DE for vigilance
estimation can achieve the highest estimation accuracy, with a Pearson corre-
lation coefficient of approximately 0.91 and an RMSE of approximately 0.09,
which is superior to existing vigilance estimation methods.
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A Vigilance Estimation Method Based on Differential Entropy of
EEG

Chen Wan, Cai Yanping†, Li Aihua, Yang Meizhi, Jiang Ke
(Room 305, Rocket Force University of Engineering, Xi’an 710025, China)

Abstract: To improve the real-time estimation accuracy of human vigilance,
this paper proposes a method based on differential entropy (DE), improved
moving average, and two-directional two-dimensional principal component anal-
ysis (TD-2DPCA). First, the total frequency band is decomposed into multi-
ple sub-bands with a fixed bandwidth, and DE features are extracted from
each sub-band. Then, traditional moving average is improved by incorporating
the temporal dynamic characteristics of vigilance, and the improved method is
used to smooth the DE features. Subsequently, TD-2DPCA is employed for
dimensionality reduction, and least squares-support vector machine (LS-SVM)
is adopted to construct a regression model between the feature matrix and vig-
ilance levels, enabling accurate real-time estimation. Experimental validation
on the SEED-VIG dataset demonstrates that the proposed smoothing and di-
mensionality reduction approach enhances estimation accuracy while reducing
computation time. When the total frequency band is within 0–35 Hz and the
decomposition bandwidth is 1 Hz or 2 Hz, the extracted DE features achieve the
highest estimation accuracy, with a Pearson correlation coefficient of approxi-
mately 0.91 and RMSE of approximately 0.09, outperforming existing vigilance
estimation methods.

Keywords: EEG signal; differential entropy; improved moving average; two-
directional two-dimensional principal component analysis

0 Introduction
Vigilance refers to the degree of alertness exhibited when an individual concen-
trates on performing a task. Lower vigilance significantly increases the proba-
bility of errors during task execution [?]. Numerous high-risk professions—such
as long-distance bus drivers, chemical transporters, heavy equipment operators,
and pilots—require sustained high vigilance levels. Any decline in vigilance can
lead to catastrophic consequences [?]. Consequently, vigilance estimation has
become a critical research topic in human-computer interaction and proactive
safety systems.

Common vigilance estimation methods include self-assessment, eye-tracking
measurements, and electroencephalogram (EEG) measurements. Among these,
EEG-based approaches demonstrate superior accuracy and stability [?]. EEG
signals record scalp potential variations that reflect cognitive activity [?].
Typically, EEG signals are divided into five frequency bands: 𝛿 (0.5–4 Hz), 𝜃
(4–8 Hz), 𝛼 (8–14 Hz), 𝛽 (14–30 Hz), and 𝛾 (30–50 Hz), though exact divisions
may vary across studies [?]. Research indicates that drowsiness states exhibit
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increased 𝛿 and 𝜃 power alongside decreased 𝛼 and 𝛽 power [?]. Wang et al. [?]
utilized power spectral density ratios of 𝜃/(𝛼+𝛽), attention-to-relaxation ratios,
and blink frequency as fatigue detection features for real-time monitoring, but
this method only classified fatigue into three categories, preventing precise
vigilance tracking. Zhang et al. [?] extracted 37 features per channel and
employed random forests for fatigue detection; however, the lack of feature
processing resulted in high dimensionality and limited recognition accuracy.

Both approaches extracted features from only the five conventional EEG bands,
failing to maximize the information contained in EEG signals. While decom-
position methods such as empirical mode decomposition and wavelet transform
can extract additional useful features [?, ?], the resulting components lack clear
physiological meaning, and redundant features may interfere with existing ones,
compromising estimation performance [?]. Moreover, fatigue state evolution is
a dynamic process that cannot be simply categorized into discrete classes, mak-
ing real-time vigilance assessment more practical [?]. Studies have shown that
differential entropy (DE) outperforms traditional EEG features for vigilance
estimation [?, ?], motivating our adoption of DE as the primary feature.

Building upon existing research, this study further investigates vigilance esti-
mation methods. For feature extraction, we first divide each channel’s EEG
signal into multiple sub-bands and extract DE from each sub-band, analyz-
ing how different division strategies affect estimation accuracy to identify the
optimal DE extraction approach while comparing it with traditional methods.
For feature smoothing, we improve conventional moving average by incorporat-
ing vigilance’s temporal dynamics, proposing an edge data smoothing method
that combines variable-window averaging with short-term prediction to enhance
correlation between edge and overall data. For dimensionality reduction, we
compare traditional principal component analysis (PCA) with two-directional
two-dimensional PCA (TD-2DPCA) for EEG feature compression. Finally, we
construct a regression model between EEG features and vigilance levels using
least squares-support vector machine (LS-SVM) to achieve accurate estimation,
validated on real datasets.

1.1 Feature Extraction
Previous studies demonstrate that DE performs better than traditional power
spectral density and other time-frequency features for vigilance estimation [?].
Therefore, this paper adopts DE as the feature metric. DE describes the com-
plexity of continuous variables and is calculated as:

𝐷𝐸 = − ∫
+∞

−∞
𝑓(𝑥) log(𝑓(𝑥)) 𝑑𝑥

where 𝑓(𝑥) represents the probability density function of random variable 𝑋.
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Within a fixed frequency band, EEG signals can be approximated as following
a Gaussian distribution 𝑁(𝜇, 𝜎2), allowing DE to be simplified to:

𝐷𝐸 = 1
2 log(2𝜋𝑒𝜎2)

We employ two DE extraction methods: (1) For each channel, extract DE from
the five conventional bands (𝛿, 𝜃, 𝛼, 𝛽, 𝛾); (2) For each channel, divide a
portion of the frequency band into equal sub-bands at a specified bandwidth.
For example, on the 0–50 Hz band with 2 Hz bandwidth, the signal can be
decomposed into 25 sub-bands: [0,2], [2,4], ⋯, [48,50] Hz, with DE extracted
from each sub-band. All DE features are computed using short-time Fourier
transform with 8-second non-overlapping Hanning windows, yielding a feature
matrix of dimension 𝑁 ×𝑀 ×𝐿, where 𝑁 represents the number of channels, 𝑀
the number of sub-bands, and 𝐿 the total number of feature extractions (equal
to the EEG signal length divided by window length).

1.2 Feature Smoothing
Most vigilance estimation research maps EEG signals to static discrete fatigue
states, but human vigilance evolution is fundamentally a temporal dynamic pro-
cess [?]. Smoothing extracted features not only mitigates measurement errors
but also enhances temporal continuity, thereby improving estimation accuracy.
Moving average is a common smoothing technique. Assuming an odd window
length 𝑙, for an EEG feature sequence 𝑥𝑖, where features before and after have
equal weight:

𝑧𝑖 = 1
𝑙

(𝑙−1)/2
∑

𝑗=−(𝑙−1)/2
𝑥𝑖+𝑗

where 𝑥𝑖 is the original data, 𝑧𝑖 the smoothed data, and 𝐿 the data length.
However, Equation (3) cannot process data in the intervals [1, (𝑙 − 1)/2] and
[𝐿 − (𝑙 − 1)/2, 𝐿], causing potential jumps at both ends that significantly im-
pact the vigilance estimation model. Since vigilance exhibits dynamic temporal
characteristics that allow short-term prediction, we improve traditional moving
average as follows:

Step 1: Apply conventional moving average to obtain smoothed data 𝑧𝑖 for the
central region.

Step 2: Starting from 𝑖 = (𝑙 − 1)/2 + 1, compute backward smoothing results
using a variable window:
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𝑧𝑖 = 1
𝑠

𝑠
∑
𝑗=1

𝑥𝑖+𝑗−1, 𝑠 = 𝑖

Starting from 𝑖 = 𝐿 − (𝑙 − 1)/2, compute forward smoothing results:

𝑧𝑖 = 1
𝑠

𝑠
∑
𝑗=1

𝑥𝑖−𝑗+1, 𝑠 = 𝐿 − 𝑖 + 1

Step 3: For intervals [1, 𝑠] and [𝐿 − 𝑠, 𝐿] where windows remain too small for
adequate smoothing, apply short-term prediction using already-smoothed data:

𝑧𝑖 = 𝑧𝑖+𝑛1
− 𝑛1 ⋅

𝑧𝑖+𝑛1
− 𝑧𝑖+𝑛2

𝑛2 − 𝑛1

where 𝑛1 and 𝑛2 are variables requiring adjustment based on actual data; in
this paper, both are set to 4.

1.3 Feature Dimensionality Reduction
Decomposing each channel’s EEG signal extracts more information, but redun-
dant features may degrade training accuracy and increase computation time.
Dimensionality reduction thus improves estimation accuracy and reduces time
costs. This paper introduces two methods: PCA and two-directional two-
dimensional PCA (TD-2DPCA) [?], comparing their performance for vigilance
estimation.

Traditional PCA uses orthogonal transformation to map high-dimensional data
to a lower-dimensional space [?], reducing estimation time to some extent. How-
ever, PCA requires reshaping high-dimensional data into row vectors. For EEG
features of dimension 𝑁 × 𝑀 × 𝐿, each time window yields an 𝑁 × 𝑀 matrix
where rows represent different brain regions or channels and columns represent
different sub-bands. PCA cannot distinguish between these two dimensions
during reduction. TD-2DPCA directly reduces dimensions along both matrix
axes, offering greater flexibility for extracting channel and frequency informa-
tion. Moreover, TD-2DPCA’s covariance matrices have far lower dimensions
than PCA’s, yielding higher computational efficiency better suited for real-time
vigilance estimation.

In 2DPCA, for 𝑀 training samples 𝐴𝑖 of size 𝑛 × 𝑚, a projection matrix 𝑋
maps them to principal component space:

𝑌𝑖 = 𝐴𝑖𝑋, 𝑖 = 1, 2, ..., 𝑀
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where 𝑌𝑖 represents the 𝑖-th sample’s projection. The projection matrix 𝑋 is
selected to maximize inter-class scatter after projection, defined by the objective
function:

𝐽(𝑋) = tr(𝑆𝑥) = tr{𝐸[(𝑌 − 𝐸(𝑌 ))(𝑌 − 𝐸(𝑌 ))𝑇 ]}

where 𝑆𝑥 is the covariance matrix of 𝑌 and tr denotes the trace. 𝑋 is an 𝑛 × 𝑑
matrix. The training samples’overall scatter matrix 𝐺𝑡 is:

𝐺𝑡 = 1
𝑀

𝑀
∑
𝑖=1

(𝐴𝑖 − ̄𝐴)𝑇 (𝐴𝑖 − ̄𝐴)

where ̄𝐴 is the mean image. 𝐺𝑡 is an 𝑚 × 𝑚 non-negative definite matrix.
Computing its standard eigenvectors in descending eigenvalue order yields the
optimal projection matrix 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑑], where 𝑥𝑖 is the 𝑖-th eigenvector.
The projection result 𝑌𝑖 = 𝐴𝑖𝑋 reduces sample dimension from 𝑛 × 𝑚 to 𝑛 × 𝑑,
performing row-direction projection.

TD-2DPCA extends 2DPCA by additionally projecting along the column direc-
tion. The column projection matrix 𝑍 is solved similarly by transposing samples
𝐴𝑖, yielding the overall scatter matrix ̂𝐺𝑡 = 1

𝑀 ∑𝑀
𝑖=1(𝐴𝑖 − ̄𝐴)(𝐴𝑖 − ̄𝐴)𝑇 , an 𝑛×𝑛

non-negative definite matrix. Its eigenvectors are computed and sorted to ob-
tain the optimal column projection matrix 𝑍 = [𝑧1, 𝑧2, ..., 𝑧𝑞]. Simultaneous row
and column projection yields the final result:

𝐶𝑖 = 𝑍𝑇 𝐴𝑖𝑋

The original matrix dimension 𝑛 × 𝑚 is reduced to 𝑞 × 𝑑, achieving effective
compression. Covariance matrix dimensions become 𝑚 × 𝑚 and 𝑛 × 𝑛, far
smaller than PCA’s (𝑛𝑚) × (𝑛𝑚), improving computational efficiency.

Two common methods control projection dimension: (1) directly setting the
projected dimension (number of eigenvectors); (2) calculating cumulative con-
tribution rate from eigenvalues, selecting the number where the rate first exceeds
a threshold. Fixed dimensions affect generalization, while cumulative contribu-
tion may cause information loss if one eigenvalue dominates. This paper com-
bines both: primarily using cumulative contribution rate for generalization, but
applying fixed-dimension reduction when the resulting dimension falls below a
minimum allowed value.
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1.4 Least Squares Support Vector Machine
Support Vector Machine (SVM) offers fast computation and high accuracy for
small-sample classification and prediction, suitable for real-time vigilance esti-
mation. Least Squares SVM (LS-SVM) simplifies computation further and runs
faster, making it ideal for constructing regression models between EEG features
and vigilance. The LS-SVM kernel function uses a Gaussian kernel:

𝐾(x, z) = exp (−‖x − z‖2

2𝜎2 )

where 𝜎 represents the kernel bandwidth.

1.5 Vigilance Estimation Method
The core vigilance estimation procedure is:

Step 1: For 𝑁 channels of EEG signals, decompose each channel into 𝑀 com-
ponents using a fixed bandwidth.

Step 2: Extract differential entropy from each component via short-time
Fourier transform with non-overlapping Hanning windows.

Step 3: Smooth the extracted DE features using improved moving average and
reduce dimensions via TD-2DPCA.

Step 4: Feed the processed features into an LS-SVM regressor to obtain vigi-
lance estimation results.

The method’s framework is illustrated in Figure 1.

2.1 EEG Dataset
The dataset is the publicly available SEED-VIG driving fatigue dataset from
Shanghai Jiao Tong University’s Brain-Like Computing and Machine Intelli-
gence Center [?]. Experiments were conducted in a virtual driving system where
subjects operated a real vehicle (without unnecessary engine components) facing
a screen displaying synchronized driving scenes, primarily monotonous straight
roads to induce fatigue. Twenty-three subjects (12 females, mean age 23.3 ±
1.4) participated, all in good health. Most experiments began around 13:30 to
facilitate fatigue onset, with each session lasting approximately 2 hours.

Eighteen channels of EEG signals were recorded using the international 10-20
system: FT7, FT8, T7, T8, TP7, TP8, CP1, CPZ, CP2, P1, PZ, P2, PO3, POZ,
PO4, O1, OZ, O2 (Figure 2). CPZ served as the reference electrode, leaving
17 EEG channels. Additionally, 7 channels of eye and forehead signals were
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recorded (Figure 3). Channels 1–4 followed conventional EOG placement, while
channels 5–7 were unique to SEED-VIG, capturing signals that can be consid-
ered EEG heavily contaminated by EOG. To reduce noise and computational
load, the 17 EEG channels were downsampled to 200 Hz and bandpass-filtered
at 1–75 Hz; the 7 eye/forehead channels were downsampled to 125 Hz.

Vigilance levels were annotated using the PERCLOS index calculated from eye-
tracking glasses data:

PERCLOS = blink + CLOS
time

where time is the interval duration (8 seconds in SEED-VIG), blink is blink
time, and CLOS is eye closure time. PERCLOS ranges from 0 to 1, with higher
values indicating lower vigilance and greater fatigue.

2.2 Vigilance Estimation with Different Data Processing
Methods
All experiments used 17 EEG channels plus 4 forehead channels (21 total chan-
nels), validated across all 23 subjects. The 0–50 Hz band was divided into 50
sub-bands at 1 Hz intervals. DE features were extracted using 8-second non-
overlapping Hanning windows, yielding 885 data points from 118 minutes of
recording per subject, resulting in a DE feature dimension of 21 × 50 × 885.

Two smoothing methods (conventional and improved moving average) and
two dimensionality reduction methods (PCA and TD-2DPCA) were compared.
Since vigilance fluctuations typically exceed four-minute cycles [?], the smooth-
ing window width was set to 4 minutes. After extensive experimentation, PCA’
s contribution rate was set to 0.9, TD-2DPCA’s row/column contribution
rates to 0.9 and 0.85 respectively, with minimum allowed dimension of 4 for
both. LS-SVM regression models were trained with 𝛾 and 𝜎 set to 50000 and
3000. Performance was evaluated using:

RMSE =
√√√
⎷

1
𝑁

𝑁
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

Pearson = ∑𝑁
𝑖=1(𝑦𝑖 − ̄𝑦)( ̂𝑦𝑖 − ̄̂𝑦)

√∑𝑁
𝑖=1(𝑦𝑖 − ̄𝑦)2 ∑𝑁

𝑖=1( ̂𝑦𝑖 − ̄̂𝑦)2

where 𝑦𝑖 is the measured PERCLOS index, ̂𝑦𝑖 the estimated value, and 𝑁 the
number of samples. Five-fold cross-validation was used: for each subject, 885
data points were divided into five segments, with four segments for training and
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one for validation, repeated five times. Results were concatenated in original
order for final RMSE and Pearson correlation calculation.

Table 1 shows the impact of smoothing and dimensionality reduction, reporting
averages across 23 subjects and total time for all tests. Direct use of raw fea-
tures yielded only 64.08% Pearson correlation and the longest runtime, failing
practical requirements. After smoothing and dimensionality reduction, Pear-
son correlation exceeded 85% and runtime halved, confirming their benefits.
Improved moving average outperformed conventional methods, increasing Pear-
son correlation by ~2% and reducing RMSE by ~0.5%. The combination of
improved moving average with TD-2DPCA achieved the highest Pearson corre-
lation (87.83%) and shortest runtime, with RMSE only 0.04% higher than the
minimum. TD-2DPCA thus offers advantages over PCA, particularly as feature
dimensionality increases.

2.3 Vigilance Estimation with Different DE Extraction
Methods
To further improve accuracy, we systematically investigated DE extraction
methods. The total bands 0–15 Hz, 0–20 Hz, and 0–50 Hz were divided at
bandwidths of 1 Hz, 2 Hz, 3 Hz, 4 Hz, and 5 Hz, yielding 105 DE extraction
configurations. For example, dividing 0–25 Hz at 2 Hz bandwidth produces
12 sub-bands: 0–2 Hz, 2–4 Hz, ⋯, 22–24 Hz. Feature extraction used short-
time Fourier transform, smoothing used improved moving average, dimensional-
ity reduction used TD-2DPCA, and regression used LS-SVM, with parameters
identical to the first experiment.

Results are shown in Table 2. The 1 Hz bandwidth achieved the highest Pear-
son correlation (87.45% average), while the 2 Hz bandwidth yielded the low-
est RMSE (9.07% average), demonstrating clear advantages over 3–5 Hz band-
widths across all total bands. The maximum Pearson correlation reached 91.50%
at 1 Hz bandwidth, and the minimum RMSE was 8.67% at 2 Hz bandwidth.
Analysis of optimal total bands across bandwidths revealed that highest accu-
racy consistently occurred in ranges starting at 0 Hz and ending at 20–30 Hz,
indicating that 0–30 Hz EEG contains most vigilance-related information, while
excessive feature extraction degrades performance.

Table 3 lists all experiments achieving Pearson correlation > 0.9, showing cor-
responding RMSE, bandwidth, and total band. Nine DE extraction meth-
ods achieved high-precision vigilance assessment, with RMSE values near 0.09.
Among them, four methods used 1 Hz bandwidth, four used 2 Hz, and one used
3 Hz; no methods with 4 Hz or 5 Hz bandwidths achieved this threshold. No-
tably, none of the nine methods used total bands exceeding 35 Hz, confirming
that the optimal total bandwidth for DE-based vigilance estimation lies within
0–35 Hz.
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2.4 Comparison with Existing Methods
Table 4 compares our method with existing approaches. Our method extracts
DE from components obtained by dividing 0–35 Hz at 2 Hz bandwidth. The
five-band method extracts DE from conventional frequency bands, while Zheng
et al. [?] divided 0–50 Hz at 2 Hz bandwidth. Our method achieves 0.91/0.09
(Pearson/RMSE), surpassing the best existing result of 0.85/0.09. Comparison
with the five-band method further confirms that fine-grained EEG decomposi-
tion yields more effective features than conventional band extraction.

3 Conclusion
To improve real-time vigilance estimation accuracy using EEG DE features,
this paper systematically investigated DE extraction, data smoothing, and
dimensionality reduction methods, proposing an approach combining improved
moving average, TD-2DPCA, and optimal DE extraction. By incorporating
vigilance’s temporal dynamics, we enhanced traditional moving average
with variable-window smoothing and short-term prediction, strengthening
edge-central data correlation. TD-2DPCA was introduced for dimensionality
reduction, offering modest improvements in computational speed and informa-
tion extraction over PCA. Comprehensive experiments revealed that dividing
the total band within 0–35 Hz at 1 Hz or 2 Hz bandwidth yields high estimation
accuracy (Pearson � 0.91, RMSE � 0.09), outperforming existing methods
(0.85/0.09). Future work will integrate transfer learning for cross-subject
vigilance estimation.
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