
AI translation ・View original & related papers at
chinarxiv.org/items/chinaxiv-202204.00055

Postprint: Dynamic Cooperative Coverage Opti-
mization Algorithm for UAVs Based on Trajec-
tory Prediction in the Internet of Vehicles
Authors: Wu Zhuang, Tang Lun, Pu Hao, Wang Zhiping, Chen Qianbin

Date: 2022-04-07T15:01:57+00:00

Abstract
To address issues such as base station coverage holes and local traffic overload
in urban vehicular networks, this paper proposes a dynamic pre-deployment
scheme based on vehicle trajectory prediction information. First, to train a uni-
fied Seq2Seq-GRU trajectory prediction model, multiple UAVs equipped with
edge computing servers operate under a distributed federated learning and
blockchain architecture, eliminating the central aggregation node and adopt-
ing an improved Raft algorithm. In each training round, nodes are elected
based on the volume of contributed data to complete parameter aggregation
and model update tasks. Second, based on the model prediction results, an
improved virtual force-guided deployment algorithm is proposed, which utilizes
various virtual forces to guide UAVs in dynamic deployment, thereby enhancing
vehicle access rates and communication quality. Simulation results demonstrate
that the proposed training architecture can accelerate model training, while the
deployment algorithm enhances vehicle access rates and improves communica-
tion quality between vehicles and UAVs.
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Abstract: To address issues such as base station coverage voids and local traf-
fic overload in urban vehicular networking environments, this paper proposes
a dynamic pre-deployment scheme based on vehicle trajectory prediction infor-
mation. First, to train a unified Seq2Seq-GRU trajectory prediction model,
multiple UAVs equipped with edge computing servers eliminate the central ag-
gregation node under a distributed federated learning and blockchain architec-
ture. An improved Raft algorithm is adopted, where nodes are elected in each
training round based on their contributed data volume to complete parameter
aggregation and model updating tasks. Second, based on the model’s predic-
tion results, an improved virtual force-guided deployment algorithm is proposed.
Various virtual forces guide UAVs to deploy dynamically to improve vehicle ac-
cess rates and communication quality. Simulation results demonstrate that the
proposed training architecture accelerates model training, while the deployment
algorithm enhances vehicle access rates and improves communication quality be-
tween vehicles and UAVs.

Keywords: unmanned aerial vehicle; Internet of vehicles; federated learning;
blockchain; virtual force

0 Introduction
In recent years, with China’s economic development and improved urban liv-
ing standards, traffic volume in cities has increased rapidly. The Internet of
Vehicles (IoV), as a new paradigm integrating automotive and electronic infor-
mation technologies, aims to address urban congestion and safe driving issues
through artificial intelligence and information communication technologies. Fu-
ture modern Intelligent Transportation Systems (ITS) urgently require intelli-
gent, convenient, safe, and reliable IoV environments. However, in complex
urban environments, various factors such as urban construction, obstacles, and
inaccessible areas can cause base station coverage voids and poor communication
link quality. Additionally, urban road congestion caused by rush hour traffic,
accidents, and road construction, along with local traffic hotspot issues, pose
serious threats to the low-latency and high-reliability requirements of IoV.

To address these problems, scholars have proposed using aerial nodes such as
Unmanned Aerial Vehicles (UAVs) to assist ground vehicle communications,
which has become a trend. China will commercialize 6G networks by 2030,
with space-air-ground integrated networks as a crucial component aiming to
achieve ubiquitous coverage through aerial nodes. UAVs, due to their low cost
and agility, are widely used in agriculture, security inspection, communications,
disaster relief, and other fields. As aerial nodes, they can quickly adapt to
various environments and achieve large-scale coverage in complex urban envi-
ronments, representing an important part of future 6G communication networks.
Although base stations and Road Side Units (RSUs) have provided communica-
tion guarantees for IoV, they cannot promptly handle the aforementioned issues.
UAVs’high mobility and flexible deployment offer significant advantages in solv-
ing coverage voids and emergency communications, enabling better service for
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ITS when assisting base stations.

Effective network access and traffic prediction in IoV are key to UAV deployment
and coordinated networking. However, traffic data in IoV is difficult to obtain.
Literature [5] provides an insight: since most vehicular terminal services in IoV
are periodic broadcast services with relatively stable network traffic, there is a
strong correlation between network traffic and vehicle data within a certain area.
Therefore, this paper uses urban vehicle migration trends and vehicle location
information to describe network access and traffic prediction in IoV.

Current research on UAV deployment as aerial base stations mainly focuses
on three-dimensional spatial deployment and UAV flight trajectory optimiza-
tion under energy constraints. Literature [6] studied UAV-assisted edge users
in ground base stations, maximizing the minimum throughput for all users in
a cell by optimizing UAV trajectory, bandwidth allocation between UAVs and
ground base stations, and user partitioning. Literature [7] investigated commu-
nication scheduling and user association optimization problems for multi-UAV
systems supporting multiple users, accelerating algorithm convergence and im-
proving throughput through problem decomposition. However, these scenarios
do not consider that user locations change over time, which affects overall sys-
tem communication throughput. Research on vehicle trajectory prediction in
IoV primarily uses neural networks to learn vehicle mobility characteristics to
predict possible future locations. Zhang et al. [8] employed Spatio-Temporal
Residual Networks (ST-ResNet) combined with external factors such as weather
and weekdays/weekends on Beijing taxi and New York bike-sharing trajectory
datasets, demonstrating the network’s capability to predict citywide vehicle
trajectories effectively. Zhang et al. [9] first utilized CNN to extract spatial
correlations of traffic flow across urban regions, studying a Spatio-Temporal
prediction model (DeepST) based on partial and global components, validating
the network model’s advantages in capturing spatio-temporal characteristics on
datasets. In research on spatio-temporal distribution and prediction of cellular
network traffic in cities, Zhang et al. [10] designed a Spatio-Temporal Densely
Connected Convolutional Neural Network for urban cellular traffic prediction.
Validation using Telecom Italia datasets revealed significant temporal periodic-
ity in various services and differences in the same service across different urban
areas. Zhang et al. [11] designed a Spatio-Temporal Cross-domain Neural Net-
work (STCNet). By collecting base station information, POI distribution, social
activities, and related SMS, call, and Internet cellular service data, they con-
ducted correlation analysis, studied stepwise quantization of spatial correlations
between cross-regional datasets and cellular traffic, calculated Pearson correla-
tion coefficients, found certain similarities among three types of cellular service
data, and determined that cellular services are also affected by base station num-
bers and cell POIs. Based on this, the designed STCNet network can capture
spatio-temporal dependencies and external influencing factors of cellular traffic,
demonstrating good prediction performance. For vehicle trajectory prediction
and service deployment research, Dalgkitsis [12] designed a four-layer network
architecture: data center, regional server, edge computing server, and vehicles.

chinarxiv.org/items/chinaxiv-202204.00055 Machine Translation

https://chinarxiv.org/items/chinaxiv-202204.00055


By using CNN for vehicle mobility trajectory prediction and genetic algorithms
to dynamically migrate IoV services to the nearest edge server, they met user
quality-of-service requirements. However, they did not consider communication
overhead and data privacy leakage issues caused by centralized training.

Addressing the aforementioned issues of training data privacy protection, UAV
deployment without considering spatial distribution changes of vehicle users,
and multi-UAV collaboration, the main contributions of this paper are summa-
rized as follows:

1) A training framework based on distributed federated learning and
blockchain is designed. In this framework, multiple UAVs with edge
computing capabilities use local vehicle trajectory data for training
while eliminating the central aggregation node in traditional federated
learning. UAVs adopt an improved Raft algorithm to compete for election
as aggregation servers to complete parameter aggregation tasks, with
updated parameters stored in a uniformly maintained blockchain. Each
UAV node downloads parameters to continue training until completion.

2) An improved virtual force-guided algorithm is proposed. This algorithm
models UAVs as charges with mutual attraction and repulsion forces and
ground vehicle users as charges distributed at various locations that also
exert attractive forces on UAVs. In the design of attraction between UAVs,
the UAV’s energy and the number of vehicles in its coverage area affect
the Coulomb force coefficient. In the repulsion design between UAVs, the
safety distance serves as the coefficient to prevent collisions. In the attrac-
tion design from ground vehicles to UAVs, considering vehicle distribution
locations, the force direction is from vehicles to UAVs, ensuring UAVs de-
ploy at the center of vehicle clusters. Under the 牵引 of various forces, each
UAV deploys at positions where the net force is zero.

1.1 System Model
As shown in Figure 1, considering base station coverage void areas and local
traffic overload regions in cities, such as road traffic congestion areas, multiple
UAVs are required to assist base stations in completing coverage optimization
for these regions. The hotspot area is divided into regions, with the set of
divided sub-regions denoted as . Each initialized sub-region contains a certain
number of vehicles.

1) Underlying IoV Vehicles: Assume all vehicles in the city are equipped
with GPS devices to obtain their current positions. Each vehicle has 5G
transceiver equipment for accessing UAV base stations and can transmit
its location information. Using a time-slot division approach, each vehicle
records one position in each time slot . After every time slots, each vehicle
aggregates the positions from the past time slots, i.e., , and uploads the
past time slots’location information to the UAV for processing.
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2) UAVs: Currently, UAVs are commonly used as aerial base stations for
wireless access and coverage tasks due to their high mobility and agility.
Edge computing, as an emerging technology, offloads computing tasks to
the user equipment edge, significantly reducing task processing latency.
Considering future UAVs as aerial base stations, to meet the low-latency
computing requirements of IoV, they also integrate edge computing ca-
pabilities. Each region has one UAV for local coverage. Literature [5]
indicates a strong correlation between network traffic and vehicle num-
bers within a certain IoV area. This paper uses the number of vehicles
accessed by a UAV to represent its coverage capability, assuming each
UAV has identical coverage capability, i.e., . UAVs in the city form a
self-organizing network through networking and can inform each other of
their positions via routing and forwarding.

Fig. 1 System architecture

1.2 Problem Description
Considering that vehicle users in the region are not static and vehicle distribu-
tion locations in IoV change over time, traditional mathematical models have
significant limitations in characterizing vehicle trajectories. Therefore, to learn
the vehicle mobility characteristics in the region, deep learning methods are re-
quired to learn vehicle trajectory change information. Single UAV node training
has limitations, as it cannot interact with other UAVs or learn vehicle informa-
tion across the entire region. Thus, a distributed training framework is needed
to coordinate UAV training and accelerate model inference.

Traditional UAV deployment addresses single-moment deployment and energy
consumption issues. UAVs originally fixed in each divided region may experience
base station overload due to more vehicles moving in than out, or a sudden surge
in local accessed vehicles, affecting communication quality in IoV. Conversely,
more vehicles moving out than in may lead to UAV idleness due to decreased
accessed vehicles, causing communication resource waste. When vehicle users’
spatio-temporal characteristics change, UAV deployment energy optimization
must recalculate positions as ground vehicle user locations change. Therefore,
this paper designs an intelligent pre-deployment algorithm for iterative UAV
position updates. To obtain mobile vehicle user distribution characteristics,
this paper proposes a Seq2Seq-GRU training architecture based on federated
learning and blockchain. The trained model can predict and obtain vehicle user
distribution features. To optimize UAV deployment positions, an improved
virtual force-guided deployment algorithm is designed for dynamic updates.

2.1 Seq2Seq-GRU
Gated Recurrent Unit (GRU) is a neural unit improved based on Recurrent
Neural Network (RNN) [13]. Its network architecture is shown in Figure 2. It
demonstrates superior performance over traditional RNNs when processing and
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predicting time series data and has a simpler structure than Long Short-Term
Memory (LSTM) networks. The GRU unit structure includes two gates: an
update gate and a reset gate. The calculation formulas for the update gate,
reset gate, and next moment output gate are:

Vehicle trajectory data is time series data, . By knowing the location sequence,
the next time location sequence can be predicted. The trajectory prediction
problem can be formulated as follows:

Sequence-to-Sequence (Seq2Seq) is a structure specifically designed for time se-
ries learning and prediction. It can map input sequences of arbitrary length
to variable-length output sequences. Its network model is shown in Figure 3.
The Seq2Seq framework consists of two different neural networks: an encoder
network and a decoder network [14]. First, the encoder network reads the input
sequence and converts it into a fixed-length vector as its overall representation.
When the basic neural unit of Seq2Seq is GRU, the overall representation in-
cludes the final output state vector and candidate output state vector from the
encoder network. Then, the decoder uses this overall representation to initialize
its internal state and gradually estimates the correct output sequence in subse-
quent iterations. Each step’s output represents the prediction result at that
time. Typically, the decoder is designed as an autoregressive model, where the
previous step’s output is used as the next step’s input.

The encoder network includes three stacked GRU layers. Each trajectory input
enters each GRU unit in the first layer, with output state information fed to
the next layer and the next time step’s GRU unit. The decoder adopts the
same network structure as the encoder. The final updated GRU unit state of
the encoder network serves as input to the decoder network. Simultaneously,
the last trajectory data is input to the first GRU unit of the decoder, and so on,
with each previous step’s prediction result input to the next step’s first GRU
unit.

Fig. 2 GRU structure

Fig. 3 Sequence-to-sequence GRU network model

2.2 Seq2Seq-GRU Training Under Federated Learning and
Blockchain
In traditional centralized training frameworks, each UAV node possesses local
trajectory data. This framework requires each node to upload local data to
a unified cloud server, which undergoes data cleaning and format unification
before training a general neural network prediction model. After neural network
model training, each UAV node downloads the network model from the cloud
server. Data upload consumes substantial network resources and struggles to
meet real-time application requirements. Moreover, uploading data to cloud
servers risks data leakage, making it difficult to protect the security and privacy
of IoV user data.
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Federated learning is a distributed machine learning architecture aimed at pro-
tecting data security and user privacy [15]. It addresses issues such as small data,
data silos, and slow model training. Region-divided IoV is a typical distributed
network where vehicles in each region generate massive data. Uploading data
to a unified center for model learning faces three challenges: first, massive data
upload causes communication uplink congestion; second, data upload involves
vehicle privacy issues; third, centralized training leads to slow model training.

Under a single federated learning framework, distributed model training indi-
viduals rely on a unified central node to complete parameter aggregation and
model updates. However, when the central node is attacked, training stalls,
model parameters cannot be updated timely, affecting the entire system model
training process. Attacks can also lead to Seq2Seq-GRU model information leak-
age. Literature [16] points out that blockchain’s decentralization and distributed
ledger characteristics can solve central node vulnerability and information secu-
rity issues. Therefore, this paper designs a Seq2Seq-GRU training framework
based on federated learning and blockchain, characterizing each UAV node as a
blockchain miner node for model learning.

UAVs in divided regions are distributed across sub-regions, representing a typical
distributed structure. Each federated learning individual uses local data for
training, aiming to minimize the global loss function, defined as follows:

In equation (3), is the local loss function of UAV , is the size of UAV ’s dataset,
and is the size of the entire multi-UAV network dataset.

Blockchain Leader: The initial leader of the UAV group is randomly elected
from the entire UAV group. Its task is to create the blockchain’s genesis block.
All UAVs apply to this UAV for registration to obtain public and private keys.
Subsequent leaders are competitively elected by each UAV, tasked with creating
and maintaining new blocks and completing parameter aggregation and model
updates.

Public and Private Keys: Each UAV uses public keys to encrypt parameter
information when uploading model parameters and can use public keys to verify
whether the model parameters have been attacked. Private keys are local keys
kept by each UAV, providing verification and decryption of model parameter
information.

Genesis Block: The first block in the blockchain, containing the initial model
parameters of the Seq2Seq-GRU to be trained.

Miner: Miners are UAV nodes. Each miner can use collected vehicle trajectory
data for local model training and provide maintenance and verification of blocks
in the blockchain. The entire miner group can be divided into candidate groups
and voter groups.

The learning and training process for multiple UAVs is shown in Figure 4. The
detailed process is as follows:
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Step 1: The UAV group randomly elects an initial leader, who creates the
blockchain’s genesis block. Other UAVs in the group download initial model
parameters, public keys, and their respective private keys. At this point, each
UAV is a miner participating in the entire training process.

Step 2: Miners use local IoV vehicle datasets to perform local updates according
to the stochastic gradient descent algorithm based on their local loss functions,
i.e.:

where is the learning rate. Each miner encrypts model parameter information
using the public key.

Step 3: To reward miners for their training contributions, miners who complete
more training tasks gain opportunities to create new blocks and perform global
model parameter aggregation and updates locally. The miner group elects a
leader according to Algorithm 1.

Step 4: The leader creates the next block using the public key.

Step 5: Each miner digitally signs their encrypted model parameters with their
private key and uploads them to the leader.

Step 6: The leader decrypts and verifies each miner’s uploaded model parame-
ters using private keys and updates global model parameters using the federated
averaging algorithm as follows:

The leader encrypts the updated model using the public key, combines it with
digital signatures as transactions, and adds them to the block.

Step 7: Each terminal vehicle downloads the updated blockchain, decrypts to
obtain the updated global model parameters, and then repeats the process from
Step 2 based on these parameters until the global model converges or meets
other termination conditions.

Algorithm 1 Improved Raft Algorithm

Input: Number of miners , effective dataset size for training by each miner,
number of miner candidates , previous miner leader’s dataset size

Output: Miner leader , miner candidate group , miner voters , training round

1: if 2: for 3: if , elect candidate group, candidates gain priority for election in
the next round 4: else if , divide miner group, 5: end for 6: else 7: if , previous
election participants return to miner group 8: end if 9: for , elect this round’
s leader from candidate group 10: end for 11: for , miner with largest training
data contribution in this round enters candidate group for next round training
12: end for 13: end if

After training, each UAV can decrypt the model parameter information in the
final block using its private key and use the trained Seq2Seq-GRU to predict
the spatio-temporal distribution characteristics of IoV vehicles in the divided
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region. This serves as the basis for subsequent dynamic pre-deployment of the
UAV group.

3.1 Channel Model Between UAVs and Ground IoV Vehicle
Users
For simplified analysis, referring to the UAV air-ground channel model [17],
define the line-of-sight transmission probability between UAVs and ground IoV
vehicles as:

where is the angle between the UAV and ground IoV vehicle; and are geograph-
ical environment parameters determined by geographical factors. Meanwhile,
the non-line-of-sight transmission probability is:

The average path loss for line-of-sight and non-line-of-sight transmission between
UAVs and ground vehicles is:

where is the straight-line distance between UAV and ground vehicle, is the
carrier frequency of the UAV’s selected channel, is electromagnetic wave prop-
agation speed, and and are additional free-space losses in line-of-sight and non-
line-of-sight cases, respectively.

The path loss between UAV and ground vehicle can be expressed as:

When multiple UAVs serve ground vehicles, ground vehicle users receive signals
from various UAVs, creating superimposed interference. To ensure communica-
tion quality, ground vehicles select UAVs with SINR above their threshold. The
SINR for the th ground vehicle user receiving from the th UAV is:

where is the sum of interference power from other UAVs except UAV , is Gaus-
sian white noise power, and is the power gain between UAV and ground vehicle
user, determined by . Assuming UAVs allocate equal power to each vehicle user
. To ensure vehicle user communication quality, the vehicle user’s SINR must
satisfy the minimum SINR constraint in equation (10).

3.2 UAV Energy Consumption Model
UAVs are energy-constrained mobile terminals. To ensure normal flight and re-
covery, UAV energy consumption must be modeled to update remaining energy.
For simplified analysis, UAV transmission energy as a base station is ignored,
focusing primarily on UAV flight energy consumption.

UAV flight behavior can be divided into two states: hovering and straight-line
flight. For model simplification, UAV power in straight-line flight is set as a
constant, denoted as . After flying for a period, UAV flight energy consumption
is:

where is UAV flight speed, is the departure position, and is the position after
flying.
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In hovering state, UAV power is also set as a constant, denoted as . After
hovering at the original position for a period, UAV hovering energy consumption
is:

where is the time UAV stays at the original position. The average power during
flight should be greater than during stationary states, i.e., .

3.3 Virtual Force Design
The Seq2Seq-GRU model learned by UAVs can predict and perceive vehicle
users’next positions or positions after multiple steps, enabling pre-deployment
and providing a strong basis for alleviating communication pressure in hotspot
areas. To enable UAVs to pre-deploy at appropriate positions, UAV groups
and vehicle users are modeled as charges with mutual virtual Coulomb forces.
Several virtual forces are designed and improved to guide UAVs in accurate
flight and dynamic position updates.

In divided regions, each UAV covers a different number of vehicles. When vehicle
numbers in a region are excessive, the UAV requests assistance from nearby
UAVs for coverage, and the UAV’s remaining energy is a limiting condition for
serving the region, as shown in Figure 5(a). To characterize this relationship,
virtual attraction between UAVs is modeled according to Coulomb’s law as:

where is a constant representing the ratio of minimum energy to maximum
access capability; is the number of vehicles in UAV ’s coverage area at time ; is
UAV ’s remaining energy at time ; is the unit vector from UAV to UAV ; and
is the straight-line distance between UAV and UAV . Equation (13) shows that
this attraction increases when vehicle users in a UAV’s region grow or when
its remaining energy is insufficient, thereby requesting assistance from nearby
UAVs.

Additionally, a safety distance exists between UAVs, not only to prevent col-
lisions but also to ensure each UAV maintains a minimum coverage range for
serving vehicles within it, as shown in Figure 5(b). Virtual repulsion between
two UAVs is modeled according to Coulomb’s law as:

where is a constant representing the minimum safety distance between UAVs.

Each UAV can predict and obtain vehicle mobility trajectories and future posi-
tions in each region through the Seq2Seq-GRU network model, thereby obtain-
ing the two-dimensional spatial distribution of vehicles in the region, as shown
in Figure 6. To enable UAVs to fly above vehicle users, the attraction from user
to UAV can also be modeled as Coulomb attraction:

where is a constant representing the attraction constant from ground users to
UAVs; is the unit vector from user to UAV ; and is the straight-line distance
between UAV and user .

Fig. 5 Gravitation and repulsion diagram between UAVs
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Fig. 6 User’s gravitational force to UAV

Using force composition and decomposition from physics while ignoring forces
decomposed to the axis, the three resultant forces on UAV can be decomposed
into and axis components. The resultant force can be expressed as:

where and are the vector sums of various attraction and repulsion forces on the
and axes for UAV .

To prevent UAVs from continuously changing forces due to small-scale vehicle
user movements, making the net force non-zero, a UAV prediction deployment
time interval is set. On one hand, within single or multiple time intervals, UAVs
can use the prediction model to obtain vehicle positions after single or multiple
steps. On the other hand, within each time interval, vehicle users are assumed
to move to fixed positions and receive service from a UAV. When UAVs in the
divided region fly to positions where the resultant force is zero within this time
interval, coverage for that moment is completed.

When UAVs assist nearby UAVs, vehicle users in the overlapping coverage area
of two UAVs calculate the SINR with the assisting UAV. If higher than the
original SINR, they switch to that UAV. Therefore, ground vehicle users in this
paper select the maximum SINR for access. The entire assisted deployment is
shown in Algorithm 2.

Algorithm 2 UAV Dynamic Assisted IoV Vehicle User Coverage Ac-
cess

Input: UAVs’Seq2Seq-GRU prediction model, time interval , UAV deployment
position update interval , attraction coefficient between UAVs , attraction coef-
ficient from vehicle users to UAVs , repulsion coefficient between UAVs , UAV
access capability , UAV minimum energy

Output: UAV flight trajectories and deployment positions at each time interval.

Initialization: UAV initial positions

1: for in do 2: Predict vehicle users’spatial distribution after time and update ;
UAV calculates the position where resultant force is zero according to equation
(16) 3: if , fly back to base 4: else if , fly to position where ; update according
to equations (11) and (12) 5: else if , vehicle users switch access to 6: end if 7:
end for

Two key factors affect the deployment algorithm’s complexity: the number
of UAVs and the time to calculate zero resultant force. Assuming single UAV
calculation time is , the overall deployment algorithm time complexity is .

4.1 Seq2Seq-GRU Training Based on Blockchain Federated
Learning
To evaluate the proposed Seq2Seq-GRU algorithm performance, two evaluation
metrics are adopted: 1) Mean Squared Error (MSE), measuring the average
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error between predicted and actual position data for multiple users; 2) Straight-
line distance, representing the distance between predicted and actual positions.

MSE is defined as:

where is user ’s predicted position and is user ’s actual position.

Straight-line distance is calculated based on latitude and longitude data between
two locations using the formula:

where is Earth’s radius, and are predicted latitude/longitude positions, and
and are actual latitude/longitude positions.

This experiment uses a real dataset: GPS coordinates of 500 taxis collected
over 30 days in the San Francisco Bay Area, USA. Each taxi sample includes
latitude, longitude, occupancy, and timestamp (occupancy is not used in this
simulation). The simulation platform uses PyCharm 2020.3 and Anaconda 3,
with Python 3.7 as the programming language and TensorFlow as the deep
learning framework.

The dataset is divided into training, validation, and test sets at ratios of 80%,
10%, and 10%. To compare the proposed Seq2Seq-GRU trajectory prediction
model performance, traditional machine learning methods are used as baselines,
including linear regression, support vector machines, and deep learning-related
RNN and LSTM. MSE simulation results are shown in Figure 7. Another model
evaluation metric is the straight-line distance between single-step predicted po-
sitions and actual positions, with simulation results shown in Figure 8.

Fig. 7 MSE of different models

Fig. 8 Distance difference between predicted position and actual po-
sition of each model

Figures 7 and 8 show that Seq2Seq-GRU’s MSE and prediction errors are
significantly smaller than traditional regression methods and perform better
than RNN and LSTM-related models. Additionally, the attention mechanism
(Seq2Seq-Attention) does not outperform the conventional Seq2Seq framework.
Since attention mechanisms primarily address word order mismatch issues be-
tween input and output sentences in machine translation, while trajectory data
is a time series collection of positions with left-to-right sequential relationships,
and short-term trajectories have fine-grained characteristics, global information
such as speed and direction is more important for trajectory prediction.

When performing multi-step prediction, errors accumulate as prediction steps in-
crease. Table 1 statistics show the error distances between multi-step predicted
positions and actual positions for each method.

Table 1 Error distance between multi-step prediction and actual po-
sition of each method (m)

From Table 1, although Social-Scene-LSTM has lower single-step prediction
error than Seq2Seq-GRU, its cumulative error increases more significantly with
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prediction step length, resulting in unstable model predictions.

To accelerate model training and protect local vehicle location data privacy,
a federated learning and blockchain framework is introduced during training.
Figure 9 compares the model training convergence speed between a centralized
framework and the proposed framework with 10 nodes. The centralized frame-
work trajectory prediction model begins converging around round 160, while the
federated learning and blockchain framework converges by round 20, proving the
proposed framework accelerates training.

Fig. 9 Convergence diagram of training model for centralized training
and federated learning

4.2 Improved Virtual Force Deployment
Relevant simulation parameters for the pre-deployment algorithm are shown in
Table 2.

Table 2 Simulation parameter settings

To validate the dynamic UAV coverage deployment optimization algorithm, four
deployment algorithms are compared: UAVs stationary in their regions, UAVs
repeatedly moving horizontally between adjacent regions, random movement
deployment, and improved virtual force-guided deployment. Coverage access
rate over time is compared, where coverage rate is defined as:

Simulation results for the four algorithms at different times are shown in Figure
10.

Fig. 10 Four algorithms cover the access rate at different times

The improved virtual force deployment algorithm maintains a stable coverage
access rate around 92% over time, showing significant improvement over the
other three algorithms.

Figure 11 compares the remaining energy consumption of the four deployment
algorithms at each moment.

Fig. 11 The sum of the remaining energy of each UAV at different
times

The improved virtual force deployment algorithm consumes more energy than
the other three algorithms because UAVs incur significant flight energy con-
sumption to meet deployment requirements at different times and positions.

Additionally, the average SINR of ground vehicle users under the maximum
SINR access algorithm is compared across the four deployment algorithms, as
shown in Figure 12.

Fig. 12 Average signal-to-interference-noise ratio of ground vehicle
users at different times with four algorithms
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The improved virtual force deployment algorithm maintains vehicle user SINR
stable around 12.5dB over time, showing significant improvement over the other
three algorithms.

Comprehensive analysis of Figures 10-12 reveals that the algorithm sacrifices
UAV energy to improve communication performance.

UAVs can perform multi-step prediction and deployment. Simulations compare
single-step and multi-step prediction coverage rates versus energy consumption.
Average coverage rate for single-step and multi-step prediction is defined as the
stable mean coverage rate of the UAV group across multiple experiments when
using the improved virtual force pre-deployment algorithm. Average remaining
energy rate is defined as the experimental average ratio of total remaining energy
to initial total energy after UAVs perform corresponding step predictions and
adjust deployment positions. Simulation results are shown in Figure 13.

Fig. 13 The relationship between the average coverage rate and the
average remaining energy rate and the adjustment step size

As prediction step size increases, UAV average coverage rate gradually decreases
while average remaining energy rate increases, showing a trade-off between the
two. To maintain optimal balance, the optimal pre-deployment adjustment step
size should be around 2.5 steps.

5 Conclusion
This paper proposes a deep learning training method based on federated learning
and blockchain. Additionally, an improved virtual force pre-deployment algo-
rithm is designed for multi-UAV collaboration. To protect privacy of IoV vehicle
users in urban traffic hotspot areas and improve distributed UAV network model
training efficiency, this paper proposes an edge computing node-coordinated fed-
erated learning and blockchain framework. This framework effectively achieves
collaborative training and model updates among UAV nodes. Each UAV can
predict urban vehicle mobility trajectories and obtain spatio-temporal distribu-
tion characteristics of underlying vehicle users using the trained model. The
improved virtual force pre-deployment algorithm, combined with the maximum
SINR access algorithm for underlying vehicle users, enables UAV nodes to deploy
at appropriate positions under forces from neighboring nodes and vehicle users.
This algorithm achieves collaborative deployment among nodes and guarantees
vehicle user access quality. Compared with four other deployment algorithms,
the improved virtual force deployment algorithm significantly improves access
rate and average SINR. Simulations also demonstrate the trade-off between
energy consumption and UAV coverage. Results show that UAVs performing
prediction and adjustment deployment every 2.5 steps achieve a good balance.
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